dify/api
Joe ce930f19b9
fix dataset operator (#6064)
Co-authored-by: JzoNg <jzongcode@gmail.com>
2024-07-09 17:47:54 +08:00
..
configs fix dataset operator (#6064) 2024-07-09 17:47:54 +08:00
constants feat:add tts-streaming config and future (#5492) 2024-07-09 11:33:58 +08:00
controllers fix dataset operator (#6064) 2024-07-09 17:47:54 +08:00
core feat: support AnalyticDB vector store (#5586) 2024-07-09 13:32:04 +08:00
docker feat: correctly delete applications using Celery workers (#5787) 2024-07-01 14:21:17 +08:00
events feat: correctly delete applications using Celery workers (#5787) 2024-07-01 14:21:17 +08:00
extensions fix azure stream download (#6063) 2024-07-08 17:13:16 +08:00
fields FR: #4048 - Add color customization to the chatbot (#4885) 2024-06-26 17:51:00 +08:00
libs feat: implement forgot password feature (#5534) 2024-07-05 13:38:51 +08:00
migrations fix dataset operator (#6064) 2024-07-09 17:47:54 +08:00
models fix dataset operator (#6064) 2024-07-09 17:47:54 +08:00
schedule Feat/dify rag (#2528) 2024-02-22 23:31:57 +08:00
services fix dataset operator (#6064) 2024-07-09 17:47:54 +08:00
tasks feat: implement forgot password feature (#5534) 2024-07-05 13:38:51 +08:00
templates feat: implement forgot password feature (#5534) 2024-07-05 13:38:51 +08:00
tests feat: support AnalyticDB vector store (#5586) 2024-07-09 13:32:04 +08:00
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 2024-06-22 01:34:08 +08:00
.env.example feat: support AnalyticDB vector store (#5586) 2024-07-09 13:32:04 +08:00
app.py Chore/remove-unused-code (#5917) 2024-07-04 18:18:26 +08:00
commands.py feat: support AnalyticDB vector store (#5586) 2024-07-09 13:32:04 +08:00
Dockerfile chore: skip pip upgrade preparation in api dockerfile (#5999) 2024-07-06 14:17:34 +08:00
poetry.lock feat: support AnalyticDB vector store (#5586) 2024-07-09 13:32:04 +08:00
poetry.toml build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
pyproject.toml feat: support AnalyticDB vector store (#5586) 2024-07-09 13:32:04 +08:00
README.md typo: Update README.md (#5987) 2024-07-04 22:50:27 +08:00

Dify Backend API

Usage

Important

In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    cp middleware.env.example middleware.env
    docker compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  4. Create environment.

    Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  5. Install dependencies

    poetry env use 3.10
    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    poetry run python -m flask db upgrade
    
  7. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Start Dify web service.

  9. Setup your application by visiting http://localhost:3000...

  10. If you need to debug local async processing, please start the worker service.

poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh