ce930f19b9
Co-authored-by: JzoNg <jzongcode@gmail.com> |
||
---|---|---|
.. | ||
configs | ||
constants | ||
controllers | ||
core | ||
docker | ||
events | ||
extensions | ||
fields | ||
libs | ||
migrations | ||
models | ||
schedule | ||
services | ||
tasks | ||
templates | ||
tests | ||
.dockerignore | ||
.env.example | ||
app.py | ||
commands.py | ||
Dockerfile | ||
poetry.lock | ||
poetry.toml | ||
pyproject.toml | ||
README.md |
Dify Backend API
Usage
Important
In the v0.6.12 release, we deprecated
pip
as the package management tool for Dify API Backend service and replaced it withpoetry
.
-
Start the docker-compose stack
The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using
docker-compose
.cd ../docker cp middleware.env.example middleware.env docker compose -f docker-compose.middleware.yaml -p dify up -d cd ../api
-
Copy
.env.example
to.env
-
Generate a
SECRET_KEY
in the.env
file.sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
secret_key=$(openssl rand -base64 42) sed -i '' "/^SECRET_KEY=/c\\ SECRET_KEY=${secret_key}" .env
-
Create environment.
Dify API service uses Poetry to manage dependencies. You can execute
poetry shell
to activate the environment. -
Install dependencies
poetry env use 3.10 poetry install
In case of contributors missing to update dependencies for
pyproject.toml
, you can perform the following shell instead.poetry shell # activate current environment poetry add $(cat requirements.txt) # install dependencies of production and update pyproject.toml poetry add $(cat requirements-dev.txt) --group dev # install dependencies of development and update pyproject.toml
-
Run migrate
Before the first launch, migrate the database to the latest version.
poetry run python -m flask db upgrade
-
Start backend
poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
-
Start Dify web service.
-
Setup your application by visiting
http://localhost:3000
... -
If you need to debug local async processing, please start the worker service.
poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
The started celery app handles the async tasks, e.g. dataset importing and documents indexing.
Testing
-
Install dependencies for both the backend and the test environment
poetry install --with dev
-
Run the tests locally with mocked system environment variables in
tool.pytest_env
section inpyproject.toml
cd ../ poetry run -C api bash dev/pytest/pytest_all_tests.sh