mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-12-02 11:18:19 +08:00
1236 lines
55 KiB
Python
1236 lines
55 KiB
Python
import datetime
|
|
import json
|
|
import logging
|
|
import random
|
|
import time
|
|
import uuid
|
|
from typing import List, Optional, cast
|
|
|
|
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
|
|
from core.index.index import IndexBuilder
|
|
from core.model_manager import ModelManager
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
|
from events.dataset_event import dataset_was_deleted
|
|
from events.document_event import document_was_deleted
|
|
from extensions.ext_database import db
|
|
from extensions.ext_redis import redis_client
|
|
from flask import current_app
|
|
from flask_login import current_user
|
|
from libs import helper
|
|
from models.account import Account
|
|
from models.dataset import (AppDatasetJoin, Dataset, DatasetCollectionBinding, DatasetProcessRule, DatasetQuery,
|
|
Document, DocumentSegment)
|
|
from models.model import UploadFile
|
|
from models.source import DataSourceBinding
|
|
from services.errors.account import NoPermissionError
|
|
from services.errors.dataset import DatasetNameDuplicateError
|
|
from services.errors.document import DocumentIndexingError
|
|
from services.errors.file import FileNotExistsError
|
|
from services.vector_service import VectorService
|
|
from sqlalchemy import func
|
|
from tasks.clean_notion_document_task import clean_notion_document_task
|
|
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
|
|
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
|
|
from tasks.document_indexing_task import document_indexing_task
|
|
from tasks.document_indexing_update_task import document_indexing_update_task
|
|
from tasks.recover_document_indexing_task import recover_document_indexing_task
|
|
|
|
|
|
class DatasetService:
|
|
|
|
@staticmethod
|
|
def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
|
|
if user:
|
|
permission_filter = db.or_(Dataset.created_by == user.id,
|
|
Dataset.permission == 'all_team_members')
|
|
else:
|
|
permission_filter = Dataset.permission == 'all_team_members'
|
|
datasets = Dataset.query.filter(
|
|
db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
|
|
.order_by(Dataset.created_at.desc()) \
|
|
.paginate(
|
|
page=page,
|
|
per_page=per_page,
|
|
max_per_page=100,
|
|
error_out=False
|
|
)
|
|
|
|
return datasets.items, datasets.total
|
|
|
|
@staticmethod
|
|
def get_process_rules(dataset_id):
|
|
# get the latest process rule
|
|
dataset_process_rule = db.session.query(DatasetProcessRule). \
|
|
filter(DatasetProcessRule.dataset_id == dataset_id). \
|
|
order_by(DatasetProcessRule.created_at.desc()). \
|
|
limit(1). \
|
|
one_or_none()
|
|
if dataset_process_rule:
|
|
mode = dataset_process_rule.mode
|
|
rules = dataset_process_rule.rules_dict
|
|
else:
|
|
mode = DocumentService.DEFAULT_RULES['mode']
|
|
rules = DocumentService.DEFAULT_RULES['rules']
|
|
return {
|
|
'mode': mode,
|
|
'rules': rules
|
|
}
|
|
|
|
@staticmethod
|
|
def get_datasets_by_ids(ids, tenant_id):
|
|
datasets = Dataset.query.filter(Dataset.id.in_(ids),
|
|
Dataset.tenant_id == tenant_id).paginate(
|
|
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
|
|
return datasets.items, datasets.total
|
|
|
|
@staticmethod
|
|
def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
|
|
# check if dataset name already exists
|
|
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
|
|
raise DatasetNameDuplicateError(
|
|
f'Dataset with name {name} already exists.')
|
|
embedding_model = None
|
|
if indexing_technique == 'high_quality':
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_default_model_instance(
|
|
tenant_id=tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING
|
|
)
|
|
dataset = Dataset(name=name, indexing_technique=indexing_technique)
|
|
# dataset = Dataset(name=name, provider=provider, config=config)
|
|
dataset.created_by = account.id
|
|
dataset.updated_by = account.id
|
|
dataset.tenant_id = tenant_id
|
|
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
|
|
dataset.embedding_model = embedding_model.model if embedding_model else None
|
|
db.session.add(dataset)
|
|
db.session.commit()
|
|
return dataset
|
|
|
|
@staticmethod
|
|
def get_dataset(dataset_id):
|
|
dataset = Dataset.query.filter_by(
|
|
id=dataset_id
|
|
).first()
|
|
if dataset is None:
|
|
return None
|
|
else:
|
|
return dataset
|
|
|
|
@staticmethod
|
|
def check_dataset_model_setting(dataset):
|
|
if dataset.indexing_technique == 'high_quality':
|
|
try:
|
|
model_manager = ModelManager()
|
|
model_manager.get_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model
|
|
)
|
|
except LLMBadRequestError:
|
|
raise ValueError(
|
|
f"No Embedding Model available. Please configure a valid provider "
|
|
f"in the Settings -> Model Provider.")
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ValueError(f"The dataset in unavailable, due to: "
|
|
f"{ex.description}")
|
|
|
|
@staticmethod
|
|
def update_dataset(dataset_id, data, user):
|
|
filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
|
|
dataset = DatasetService.get_dataset(dataset_id)
|
|
DatasetService.check_dataset_permission(dataset, user)
|
|
action = None
|
|
if dataset.indexing_technique != data['indexing_technique']:
|
|
# if update indexing_technique
|
|
if data['indexing_technique'] == 'economy':
|
|
action = 'remove'
|
|
filtered_data['embedding_model'] = None
|
|
filtered_data['embedding_model_provider'] = None
|
|
filtered_data['collection_binding_id'] = None
|
|
elif data['indexing_technique'] == 'high_quality':
|
|
action = 'add'
|
|
# get embedding model setting
|
|
try:
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_default_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING
|
|
)
|
|
filtered_data['embedding_model'] = embedding_model.model
|
|
filtered_data['embedding_model_provider'] = embedding_model.provider
|
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
|
embedding_model.provider,
|
|
embedding_model.model
|
|
)
|
|
filtered_data['collection_binding_id'] = dataset_collection_binding.id
|
|
except LLMBadRequestError:
|
|
raise ValueError(
|
|
f"No Embedding Model available. Please configure a valid provider "
|
|
f"in the Settings -> Model Provider.")
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ValueError(ex.description)
|
|
|
|
filtered_data['updated_by'] = user.id
|
|
filtered_data['updated_at'] = datetime.datetime.now()
|
|
|
|
# update Retrieval model
|
|
filtered_data['retrieval_model'] = data['retrieval_model']
|
|
|
|
dataset.query.filter_by(id=dataset_id).update(filtered_data)
|
|
|
|
db.session.commit()
|
|
if action:
|
|
deal_dataset_vector_index_task.delay(dataset_id, action)
|
|
return dataset
|
|
|
|
@staticmethod
|
|
def delete_dataset(dataset_id, user):
|
|
# todo: cannot delete dataset if it is being processed
|
|
|
|
dataset = DatasetService.get_dataset(dataset_id)
|
|
|
|
if dataset is None:
|
|
return False
|
|
|
|
DatasetService.check_dataset_permission(dataset, user)
|
|
|
|
dataset_was_deleted.send(dataset)
|
|
|
|
db.session.delete(dataset)
|
|
db.session.commit()
|
|
return True
|
|
|
|
@staticmethod
|
|
def check_dataset_permission(dataset, user):
|
|
if dataset.tenant_id != user.current_tenant_id:
|
|
logging.debug(
|
|
f'User {user.id} does not have permission to access dataset {dataset.id}')
|
|
raise NoPermissionError(
|
|
'You do not have permission to access this dataset.')
|
|
if dataset.permission == 'only_me' and dataset.created_by != user.id:
|
|
logging.debug(
|
|
f'User {user.id} does not have permission to access dataset {dataset.id}')
|
|
raise NoPermissionError(
|
|
'You do not have permission to access this dataset.')
|
|
|
|
@staticmethod
|
|
def get_dataset_queries(dataset_id: str, page: int, per_page: int):
|
|
dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
|
|
.order_by(db.desc(DatasetQuery.created_at)) \
|
|
.paginate(
|
|
page=page, per_page=per_page, max_per_page=100, error_out=False
|
|
)
|
|
return dataset_queries.items, dataset_queries.total
|
|
|
|
@staticmethod
|
|
def get_related_apps(dataset_id: str):
|
|
return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
|
|
.order_by(db.desc(AppDatasetJoin.created_at)).all()
|
|
|
|
|
|
class DocumentService:
|
|
DEFAULT_RULES = {
|
|
'mode': 'custom',
|
|
'rules': {
|
|
'pre_processing_rules': [
|
|
{'id': 'remove_extra_spaces', 'enabled': True},
|
|
{'id': 'remove_urls_emails', 'enabled': False}
|
|
],
|
|
'segmentation': {
|
|
'delimiter': '\n',
|
|
'max_tokens': 500
|
|
}
|
|
}
|
|
}
|
|
|
|
DOCUMENT_METADATA_SCHEMA = {
|
|
"book": {
|
|
"title": str,
|
|
"language": str,
|
|
"author": str,
|
|
"publisher": str,
|
|
"publication_date": str,
|
|
"isbn": str,
|
|
"category": str,
|
|
},
|
|
"web_page": {
|
|
"title": str,
|
|
"url": str,
|
|
"language": str,
|
|
"publish_date": str,
|
|
"author/publisher": str,
|
|
"topic/keywords": str,
|
|
"description": str,
|
|
},
|
|
"paper": {
|
|
"title": str,
|
|
"language": str,
|
|
"author": str,
|
|
"publish_date": str,
|
|
"journal/conference_name": str,
|
|
"volume/issue/page_numbers": str,
|
|
"doi": str,
|
|
"topic/keywords": str,
|
|
"abstract": str,
|
|
},
|
|
"social_media_post": {
|
|
"platform": str,
|
|
"author/username": str,
|
|
"publish_date": str,
|
|
"post_url": str,
|
|
"topic/tags": str,
|
|
},
|
|
"wikipedia_entry": {
|
|
"title": str,
|
|
"language": str,
|
|
"web_page_url": str,
|
|
"last_edit_date": str,
|
|
"editor/contributor": str,
|
|
"summary/introduction": str,
|
|
},
|
|
"personal_document": {
|
|
"title": str,
|
|
"author": str,
|
|
"creation_date": str,
|
|
"last_modified_date": str,
|
|
"document_type": str,
|
|
"tags/category": str,
|
|
},
|
|
"business_document": {
|
|
"title": str,
|
|
"author": str,
|
|
"creation_date": str,
|
|
"last_modified_date": str,
|
|
"document_type": str,
|
|
"department/team": str,
|
|
},
|
|
"im_chat_log": {
|
|
"chat_platform": str,
|
|
"chat_participants/group_name": str,
|
|
"start_date": str,
|
|
"end_date": str,
|
|
"summary": str,
|
|
},
|
|
"synced_from_notion": {
|
|
"title": str,
|
|
"language": str,
|
|
"author/creator": str,
|
|
"creation_date": str,
|
|
"last_modified_date": str,
|
|
"notion_page_link": str,
|
|
"category/tags": str,
|
|
"description": str,
|
|
},
|
|
"synced_from_github": {
|
|
"repository_name": str,
|
|
"repository_description": str,
|
|
"repository_owner/organization": str,
|
|
"code_filename": str,
|
|
"code_file_path": str,
|
|
"programming_language": str,
|
|
"github_link": str,
|
|
"open_source_license": str,
|
|
"commit_date": str,
|
|
"commit_author": str,
|
|
},
|
|
"others": dict
|
|
}
|
|
|
|
@staticmethod
|
|
def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
|
|
document = db.session.query(Document).filter(
|
|
Document.id == document_id,
|
|
Document.dataset_id == dataset_id
|
|
).first()
|
|
|
|
return document
|
|
|
|
@staticmethod
|
|
def get_document_by_id(document_id: str) -> Optional[Document]:
|
|
document = db.session.query(Document).filter(
|
|
Document.id == document_id
|
|
).first()
|
|
|
|
return document
|
|
|
|
@staticmethod
|
|
def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
|
|
documents = db.session.query(Document).filter(
|
|
Document.dataset_id == dataset_id,
|
|
Document.enabled == True
|
|
).all()
|
|
|
|
return documents
|
|
|
|
@staticmethod
|
|
def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
|
|
documents = db.session.query(Document).filter(
|
|
Document.batch == batch,
|
|
Document.dataset_id == dataset_id,
|
|
Document.tenant_id == current_user.current_tenant_id
|
|
).all()
|
|
|
|
return documents
|
|
|
|
@staticmethod
|
|
def get_document_file_detail(file_id: str):
|
|
file_detail = db.session.query(UploadFile). \
|
|
filter(UploadFile.id == file_id). \
|
|
one_or_none()
|
|
return file_detail
|
|
|
|
@staticmethod
|
|
def check_archived(document):
|
|
if document.archived:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
@staticmethod
|
|
def delete_document(document):
|
|
# trigger document_was_deleted signal
|
|
document_was_deleted.send(document.id, dataset_id=document.dataset_id)
|
|
|
|
db.session.delete(document)
|
|
db.session.commit()
|
|
|
|
@staticmethod
|
|
def pause_document(document):
|
|
if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
|
|
raise DocumentIndexingError()
|
|
# update document to be paused
|
|
document.is_paused = True
|
|
document.paused_by = current_user.id
|
|
document.paused_at = datetime.datetime.utcnow()
|
|
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
# set document paused flag
|
|
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
|
|
redis_client.setnx(indexing_cache_key, "True")
|
|
|
|
@staticmethod
|
|
def recover_document(document):
|
|
if not document.is_paused:
|
|
raise DocumentIndexingError()
|
|
# update document to be recover
|
|
document.is_paused = False
|
|
document.paused_by = None
|
|
document.paused_at = None
|
|
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
# delete paused flag
|
|
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
|
|
redis_client.delete(indexing_cache_key)
|
|
# trigger async task
|
|
recover_document_indexing_task.delay(document.dataset_id, document.id)
|
|
|
|
@staticmethod
|
|
def get_documents_position(dataset_id):
|
|
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
|
|
if document:
|
|
return document.position + 1
|
|
else:
|
|
return 1
|
|
|
|
@staticmethod
|
|
def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
|
|
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
|
|
created_from: str = 'web'):
|
|
|
|
# check document limit
|
|
if current_app.config['EDITION'] == 'CLOUD':
|
|
if 'original_document_id' not in document_data or not document_data['original_document_id']:
|
|
count = 0
|
|
if document_data["data_source"]["type"] == "upload_file":
|
|
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
|
|
count = len(upload_file_list)
|
|
elif document_data["data_source"]["type"] == "notion_import":
|
|
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
|
|
for notion_info in notion_info_list:
|
|
count = count + len(notion_info['pages'])
|
|
# if dataset is empty, update dataset data_source_type
|
|
if not dataset.data_source_type:
|
|
dataset.data_source_type = document_data["data_source"]["type"]
|
|
|
|
if not dataset.indexing_technique:
|
|
if 'indexing_technique' not in document_data \
|
|
or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
|
|
raise ValueError("Indexing technique is required")
|
|
|
|
dataset.indexing_technique = document_data["indexing_technique"]
|
|
if document_data["indexing_technique"] == 'high_quality':
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_default_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING
|
|
)
|
|
dataset.embedding_model = embedding_model.model
|
|
dataset.embedding_model_provider = embedding_model.provider
|
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
|
embedding_model.provider,
|
|
embedding_model.model
|
|
)
|
|
dataset.collection_binding_id = dataset_collection_binding.id
|
|
if not dataset.retrieval_model:
|
|
default_retrieval_model = {
|
|
'search_method': 'semantic_search',
|
|
'reranking_enable': False,
|
|
'reranking_model': {
|
|
'reranking_provider_name': '',
|
|
'reranking_model_name': ''
|
|
},
|
|
'top_k': 2,
|
|
'score_threshold_enabled': False
|
|
}
|
|
|
|
dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
|
|
'retrieval_model') else default_retrieval_model
|
|
|
|
documents = []
|
|
batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
|
|
if 'original_document_id' in document_data and document_data["original_document_id"]:
|
|
document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
|
|
documents.append(document)
|
|
else:
|
|
# save process rule
|
|
if not dataset_process_rule:
|
|
process_rule = document_data["process_rule"]
|
|
if process_rule["mode"] == "custom":
|
|
dataset_process_rule = DatasetProcessRule(
|
|
dataset_id=dataset.id,
|
|
mode=process_rule["mode"],
|
|
rules=json.dumps(process_rule["rules"]),
|
|
created_by=account.id
|
|
)
|
|
elif process_rule["mode"] == "automatic":
|
|
dataset_process_rule = DatasetProcessRule(
|
|
dataset_id=dataset.id,
|
|
mode=process_rule["mode"],
|
|
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
|
|
created_by=account.id
|
|
)
|
|
db.session.add(dataset_process_rule)
|
|
db.session.commit()
|
|
position = DocumentService.get_documents_position(dataset.id)
|
|
document_ids = []
|
|
if document_data["data_source"]["type"] == "upload_file":
|
|
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
|
|
for file_id in upload_file_list:
|
|
file = db.session.query(UploadFile).filter(
|
|
UploadFile.tenant_id == dataset.tenant_id,
|
|
UploadFile.id == file_id
|
|
).first()
|
|
|
|
# raise error if file not found
|
|
if not file:
|
|
raise FileNotExistsError()
|
|
|
|
file_name = file.name
|
|
data_source_info = {
|
|
"upload_file_id": file_id,
|
|
}
|
|
document = DocumentService.build_document(dataset, dataset_process_rule.id,
|
|
document_data["data_source"]["type"],
|
|
document_data["doc_form"],
|
|
document_data["doc_language"],
|
|
data_source_info, created_from, position,
|
|
account, file_name, batch)
|
|
db.session.add(document)
|
|
db.session.flush()
|
|
document_ids.append(document.id)
|
|
documents.append(document)
|
|
position += 1
|
|
elif document_data["data_source"]["type"] == "notion_import":
|
|
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
|
|
exist_page_ids = []
|
|
exist_document = dict()
|
|
documents = Document.query.filter_by(
|
|
dataset_id=dataset.id,
|
|
tenant_id=current_user.current_tenant_id,
|
|
data_source_type='notion_import',
|
|
enabled=True
|
|
).all()
|
|
if documents:
|
|
for document in documents:
|
|
data_source_info = json.loads(document.data_source_info)
|
|
exist_page_ids.append(data_source_info['notion_page_id'])
|
|
exist_document[data_source_info['notion_page_id']] = document.id
|
|
for notion_info in notion_info_list:
|
|
workspace_id = notion_info['workspace_id']
|
|
data_source_binding = DataSourceBinding.query.filter(
|
|
db.and_(
|
|
DataSourceBinding.tenant_id == current_user.current_tenant_id,
|
|
DataSourceBinding.provider == 'notion',
|
|
DataSourceBinding.disabled == False,
|
|
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
|
|
)
|
|
).first()
|
|
if not data_source_binding:
|
|
raise ValueError('Data source binding not found.')
|
|
for page in notion_info['pages']:
|
|
if page['page_id'] not in exist_page_ids:
|
|
data_source_info = {
|
|
"notion_workspace_id": workspace_id,
|
|
"notion_page_id": page['page_id'],
|
|
"notion_page_icon": page['page_icon'],
|
|
"type": page['type']
|
|
}
|
|
document = DocumentService.build_document(dataset, dataset_process_rule.id,
|
|
document_data["data_source"]["type"],
|
|
document_data["doc_form"],
|
|
document_data["doc_language"],
|
|
data_source_info, created_from, position,
|
|
account, page['page_name'], batch)
|
|
db.session.add(document)
|
|
db.session.flush()
|
|
document_ids.append(document.id)
|
|
documents.append(document)
|
|
position += 1
|
|
else:
|
|
exist_document.pop(page['page_id'])
|
|
# delete not selected documents
|
|
if len(exist_document) > 0:
|
|
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
|
|
db.session.commit()
|
|
|
|
# trigger async task
|
|
document_indexing_task.delay(dataset.id, document_ids)
|
|
|
|
return documents, batch
|
|
|
|
@staticmethod
|
|
def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
|
|
document_language: str, data_source_info: dict, created_from: str, position: int,
|
|
account: Account,
|
|
name: str, batch: str):
|
|
document = Document(
|
|
tenant_id=dataset.tenant_id,
|
|
dataset_id=dataset.id,
|
|
position=position,
|
|
data_source_type=data_source_type,
|
|
data_source_info=json.dumps(data_source_info),
|
|
dataset_process_rule_id=process_rule_id,
|
|
batch=batch,
|
|
name=name,
|
|
created_from=created_from,
|
|
created_by=account.id,
|
|
doc_form=document_form,
|
|
doc_language=document_language
|
|
)
|
|
return document
|
|
|
|
@staticmethod
|
|
def get_tenant_documents_count():
|
|
documents_count = Document.query.filter(Document.completed_at.isnot(None),
|
|
Document.enabled == True,
|
|
Document.archived == False,
|
|
Document.tenant_id == current_user.current_tenant_id).count()
|
|
return documents_count
|
|
|
|
@staticmethod
|
|
def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
|
|
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
|
|
created_from: str = 'web'):
|
|
DatasetService.check_dataset_model_setting(dataset)
|
|
document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
|
|
if document.display_status != 'available':
|
|
raise ValueError("Document is not available")
|
|
# update document name
|
|
if 'name' in document_data and document_data['name']:
|
|
document.name = document_data['name']
|
|
# save process rule
|
|
if 'process_rule' in document_data and document_data['process_rule']:
|
|
process_rule = document_data["process_rule"]
|
|
if process_rule["mode"] == "custom":
|
|
dataset_process_rule = DatasetProcessRule(
|
|
dataset_id=dataset.id,
|
|
mode=process_rule["mode"],
|
|
rules=json.dumps(process_rule["rules"]),
|
|
created_by=account.id
|
|
)
|
|
elif process_rule["mode"] == "automatic":
|
|
dataset_process_rule = DatasetProcessRule(
|
|
dataset_id=dataset.id,
|
|
mode=process_rule["mode"],
|
|
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
|
|
created_by=account.id
|
|
)
|
|
db.session.add(dataset_process_rule)
|
|
db.session.commit()
|
|
document.dataset_process_rule_id = dataset_process_rule.id
|
|
# update document data source
|
|
if 'data_source' in document_data and document_data['data_source']:
|
|
file_name = ''
|
|
data_source_info = {}
|
|
if document_data["data_source"]["type"] == "upload_file":
|
|
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
|
|
for file_id in upload_file_list:
|
|
file = db.session.query(UploadFile).filter(
|
|
UploadFile.tenant_id == dataset.tenant_id,
|
|
UploadFile.id == file_id
|
|
).first()
|
|
|
|
# raise error if file not found
|
|
if not file:
|
|
raise FileNotExistsError()
|
|
|
|
file_name = file.name
|
|
data_source_info = {
|
|
"upload_file_id": file_id,
|
|
}
|
|
elif document_data["data_source"]["type"] == "notion_import":
|
|
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
|
|
for notion_info in notion_info_list:
|
|
workspace_id = notion_info['workspace_id']
|
|
data_source_binding = DataSourceBinding.query.filter(
|
|
db.and_(
|
|
DataSourceBinding.tenant_id == current_user.current_tenant_id,
|
|
DataSourceBinding.provider == 'notion',
|
|
DataSourceBinding.disabled == False,
|
|
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
|
|
)
|
|
).first()
|
|
if not data_source_binding:
|
|
raise ValueError('Data source binding not found.')
|
|
for page in notion_info['pages']:
|
|
data_source_info = {
|
|
"notion_workspace_id": workspace_id,
|
|
"notion_page_id": page['page_id'],
|
|
"notion_page_icon": page['page_icon'],
|
|
"type": page['type']
|
|
}
|
|
document.data_source_type = document_data["data_source"]["type"]
|
|
document.data_source_info = json.dumps(data_source_info)
|
|
document.name = file_name
|
|
# update document to be waiting
|
|
document.indexing_status = 'waiting'
|
|
document.completed_at = None
|
|
document.processing_started_at = None
|
|
document.parsing_completed_at = None
|
|
document.cleaning_completed_at = None
|
|
document.splitting_completed_at = None
|
|
document.updated_at = datetime.datetime.utcnow()
|
|
document.created_from = created_from
|
|
document.doc_form = document_data['doc_form']
|
|
db.session.add(document)
|
|
db.session.commit()
|
|
# update document segment
|
|
update_params = {
|
|
DocumentSegment.status: 're_segment'
|
|
}
|
|
DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
|
|
db.session.commit()
|
|
# trigger async task
|
|
document_indexing_update_task.delay(document.dataset_id, document.id)
|
|
|
|
return document
|
|
|
|
@staticmethod
|
|
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
|
|
count = 0
|
|
if document_data["data_source"]["type"] == "upload_file":
|
|
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
|
|
count = len(upload_file_list)
|
|
elif document_data["data_source"]["type"] == "notion_import":
|
|
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
|
|
for notion_info in notion_info_list:
|
|
count = count + len(notion_info['pages'])
|
|
|
|
embedding_model = None
|
|
dataset_collection_binding_id = None
|
|
retrieval_model = None
|
|
if document_data['indexing_technique'] == 'high_quality':
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_default_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING
|
|
)
|
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
|
embedding_model.provider,
|
|
embedding_model.model
|
|
)
|
|
dataset_collection_binding_id = dataset_collection_binding.id
|
|
if 'retrieval_model' in document_data and document_data['retrieval_model']:
|
|
retrieval_model = document_data['retrieval_model']
|
|
else:
|
|
default_retrieval_model = {
|
|
'search_method': 'semantic_search',
|
|
'reranking_enable': False,
|
|
'reranking_model': {
|
|
'reranking_provider_name': '',
|
|
'reranking_model_name': ''
|
|
},
|
|
'top_k': 2,
|
|
'score_threshold_enabled': False
|
|
}
|
|
retrieval_model = default_retrieval_model
|
|
# save dataset
|
|
dataset = Dataset(
|
|
tenant_id=tenant_id,
|
|
name='',
|
|
data_source_type=document_data["data_source"]["type"],
|
|
indexing_technique=document_data["indexing_technique"],
|
|
created_by=account.id,
|
|
embedding_model=embedding_model.model if embedding_model else None,
|
|
embedding_model_provider=embedding_model.provider if embedding_model else None,
|
|
collection_binding_id=dataset_collection_binding_id,
|
|
retrieval_model=retrieval_model
|
|
)
|
|
|
|
db.session.add(dataset)
|
|
db.session.flush()
|
|
|
|
documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
|
|
|
|
cut_length = 18
|
|
cut_name = documents[0].name[:cut_length]
|
|
dataset.name = cut_name + '...'
|
|
dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
|
|
db.session.commit()
|
|
|
|
return dataset, documents, batch
|
|
|
|
@classmethod
|
|
def document_create_args_validate(cls, args: dict):
|
|
if 'original_document_id' not in args or not args['original_document_id']:
|
|
DocumentService.data_source_args_validate(args)
|
|
DocumentService.process_rule_args_validate(args)
|
|
else:
|
|
if ('data_source' not in args and not args['data_source']) \
|
|
and ('process_rule' not in args and not args['process_rule']):
|
|
raise ValueError("Data source or Process rule is required")
|
|
else:
|
|
if 'data_source' in args and args['data_source']:
|
|
DocumentService.data_source_args_validate(args)
|
|
if 'process_rule' in args and args['process_rule']:
|
|
DocumentService.process_rule_args_validate(args)
|
|
|
|
@classmethod
|
|
def data_source_args_validate(cls, args: dict):
|
|
if 'data_source' not in args or not args['data_source']:
|
|
raise ValueError("Data source is required")
|
|
|
|
if not isinstance(args['data_source'], dict):
|
|
raise ValueError("Data source is invalid")
|
|
|
|
if 'type' not in args['data_source'] or not args['data_source']['type']:
|
|
raise ValueError("Data source type is required")
|
|
|
|
if args['data_source']['type'] not in Document.DATA_SOURCES:
|
|
raise ValueError("Data source type is invalid")
|
|
|
|
if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
|
|
raise ValueError("Data source info is required")
|
|
|
|
if args['data_source']['type'] == 'upload_file':
|
|
if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
|
|
'file_info_list']:
|
|
raise ValueError("File source info is required")
|
|
if args['data_source']['type'] == 'notion_import':
|
|
if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
|
|
'notion_info_list']:
|
|
raise ValueError("Notion source info is required")
|
|
|
|
@classmethod
|
|
def process_rule_args_validate(cls, args: dict):
|
|
if 'process_rule' not in args or not args['process_rule']:
|
|
raise ValueError("Process rule is required")
|
|
|
|
if not isinstance(args['process_rule'], dict):
|
|
raise ValueError("Process rule is invalid")
|
|
|
|
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
|
|
raise ValueError("Process rule mode is required")
|
|
|
|
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
|
|
raise ValueError("Process rule mode is invalid")
|
|
|
|
if args['process_rule']['mode'] == 'automatic':
|
|
args['process_rule']['rules'] = {}
|
|
else:
|
|
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
|
|
raise ValueError("Process rule rules is required")
|
|
|
|
if not isinstance(args['process_rule']['rules'], dict):
|
|
raise ValueError("Process rule rules is invalid")
|
|
|
|
if 'pre_processing_rules' not in args['process_rule']['rules'] \
|
|
or args['process_rule']['rules']['pre_processing_rules'] is None:
|
|
raise ValueError("Process rule pre_processing_rules is required")
|
|
|
|
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
|
|
raise ValueError("Process rule pre_processing_rules is invalid")
|
|
|
|
unique_pre_processing_rule_dicts = {}
|
|
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
|
|
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
|
|
raise ValueError("Process rule pre_processing_rules id is required")
|
|
|
|
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
|
|
raise ValueError("Process rule pre_processing_rules id is invalid")
|
|
|
|
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
|
|
raise ValueError("Process rule pre_processing_rules enabled is required")
|
|
|
|
if not isinstance(pre_processing_rule['enabled'], bool):
|
|
raise ValueError("Process rule pre_processing_rules enabled is invalid")
|
|
|
|
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
|
|
|
|
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
|
|
|
|
if 'segmentation' not in args['process_rule']['rules'] \
|
|
or args['process_rule']['rules']['segmentation'] is None:
|
|
raise ValueError("Process rule segmentation is required")
|
|
|
|
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
|
|
raise ValueError("Process rule segmentation is invalid")
|
|
|
|
if 'separator' not in args['process_rule']['rules']['segmentation'] \
|
|
or not args['process_rule']['rules']['segmentation']['separator']:
|
|
raise ValueError("Process rule segmentation separator is required")
|
|
|
|
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
|
|
raise ValueError("Process rule segmentation separator is invalid")
|
|
|
|
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
|
|
or not args['process_rule']['rules']['segmentation']['max_tokens']:
|
|
raise ValueError("Process rule segmentation max_tokens is required")
|
|
|
|
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
|
|
raise ValueError("Process rule segmentation max_tokens is invalid")
|
|
|
|
@classmethod
|
|
def estimate_args_validate(cls, args: dict):
|
|
if 'info_list' not in args or not args['info_list']:
|
|
raise ValueError("Data source info is required")
|
|
|
|
if not isinstance(args['info_list'], dict):
|
|
raise ValueError("Data info is invalid")
|
|
|
|
if 'process_rule' not in args or not args['process_rule']:
|
|
raise ValueError("Process rule is required")
|
|
|
|
if not isinstance(args['process_rule'], dict):
|
|
raise ValueError("Process rule is invalid")
|
|
|
|
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
|
|
raise ValueError("Process rule mode is required")
|
|
|
|
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
|
|
raise ValueError("Process rule mode is invalid")
|
|
|
|
if args['process_rule']['mode'] == 'automatic':
|
|
args['process_rule']['rules'] = {}
|
|
else:
|
|
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
|
|
raise ValueError("Process rule rules is required")
|
|
|
|
if not isinstance(args['process_rule']['rules'], dict):
|
|
raise ValueError("Process rule rules is invalid")
|
|
|
|
if 'pre_processing_rules' not in args['process_rule']['rules'] \
|
|
or args['process_rule']['rules']['pre_processing_rules'] is None:
|
|
raise ValueError("Process rule pre_processing_rules is required")
|
|
|
|
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
|
|
raise ValueError("Process rule pre_processing_rules is invalid")
|
|
|
|
unique_pre_processing_rule_dicts = {}
|
|
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
|
|
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
|
|
raise ValueError("Process rule pre_processing_rules id is required")
|
|
|
|
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
|
|
raise ValueError("Process rule pre_processing_rules id is invalid")
|
|
|
|
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
|
|
raise ValueError("Process rule pre_processing_rules enabled is required")
|
|
|
|
if not isinstance(pre_processing_rule['enabled'], bool):
|
|
raise ValueError("Process rule pre_processing_rules enabled is invalid")
|
|
|
|
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
|
|
|
|
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
|
|
|
|
if 'segmentation' not in args['process_rule']['rules'] \
|
|
or args['process_rule']['rules']['segmentation'] is None:
|
|
raise ValueError("Process rule segmentation is required")
|
|
|
|
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
|
|
raise ValueError("Process rule segmentation is invalid")
|
|
|
|
if 'separator' not in args['process_rule']['rules']['segmentation'] \
|
|
or not args['process_rule']['rules']['segmentation']['separator']:
|
|
raise ValueError("Process rule segmentation separator is required")
|
|
|
|
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
|
|
raise ValueError("Process rule segmentation separator is invalid")
|
|
|
|
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
|
|
or not args['process_rule']['rules']['segmentation']['max_tokens']:
|
|
raise ValueError("Process rule segmentation max_tokens is required")
|
|
|
|
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
|
|
raise ValueError("Process rule segmentation max_tokens is invalid")
|
|
|
|
|
|
class SegmentService:
|
|
@classmethod
|
|
def segment_create_args_validate(cls, args: dict, document: Document):
|
|
if document.doc_form == 'qa_model':
|
|
if 'answer' not in args or not args['answer']:
|
|
raise ValueError("Answer is required")
|
|
if not args['answer'].strip():
|
|
raise ValueError("Answer is empty")
|
|
if 'content' not in args or not args['content'] or not args['content'].strip():
|
|
raise ValueError("Content is empty")
|
|
|
|
@classmethod
|
|
def create_segment(cls, args: dict, document: Document, dataset: Dataset):
|
|
content = args['content']
|
|
doc_id = str(uuid.uuid4())
|
|
segment_hash = helper.generate_text_hash(content)
|
|
tokens = 0
|
|
if dataset.indexing_technique == 'high_quality':
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model
|
|
)
|
|
# calc embedding use tokens
|
|
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
|
|
tokens = model_type_instance.get_num_tokens(
|
|
model=embedding_model.model,
|
|
credentials=embedding_model.credentials,
|
|
texts=[content]
|
|
)
|
|
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
|
|
DocumentSegment.document_id == document.id
|
|
).scalar()
|
|
segment_document = DocumentSegment(
|
|
tenant_id=current_user.current_tenant_id,
|
|
dataset_id=document.dataset_id,
|
|
document_id=document.id,
|
|
index_node_id=doc_id,
|
|
index_node_hash=segment_hash,
|
|
position=max_position + 1 if max_position else 1,
|
|
content=content,
|
|
word_count=len(content),
|
|
tokens=tokens,
|
|
status='completed',
|
|
indexing_at=datetime.datetime.utcnow(),
|
|
completed_at=datetime.datetime.utcnow(),
|
|
created_by=current_user.id
|
|
)
|
|
if document.doc_form == 'qa_model':
|
|
segment_document.answer = args['answer']
|
|
|
|
db.session.add(segment_document)
|
|
db.session.commit()
|
|
|
|
# save vector index
|
|
try:
|
|
VectorService.create_segment_vector(args['keywords'], segment_document, dataset)
|
|
except Exception as e:
|
|
logging.exception("create segment index failed")
|
|
segment_document.enabled = False
|
|
segment_document.disabled_at = datetime.datetime.utcnow()
|
|
segment_document.status = 'error'
|
|
segment_document.error = str(e)
|
|
db.session.commit()
|
|
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
|
|
return segment
|
|
|
|
@classmethod
|
|
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
|
|
embedding_model = None
|
|
if dataset.indexing_technique == 'high_quality':
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model
|
|
)
|
|
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
|
|
DocumentSegment.document_id == document.id
|
|
).scalar()
|
|
pre_segment_data_list = []
|
|
segment_data_list = []
|
|
for segment_item in segments:
|
|
content = segment_item['content']
|
|
doc_id = str(uuid.uuid4())
|
|
segment_hash = helper.generate_text_hash(content)
|
|
tokens = 0
|
|
if dataset.indexing_technique == 'high_quality' and embedding_model:
|
|
# calc embedding use tokens
|
|
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
|
|
tokens = model_type_instance.get_num_tokens(
|
|
model=embedding_model.model,
|
|
credentials=embedding_model.credentials,
|
|
texts=[content]
|
|
)
|
|
segment_document = DocumentSegment(
|
|
tenant_id=current_user.current_tenant_id,
|
|
dataset_id=document.dataset_id,
|
|
document_id=document.id,
|
|
index_node_id=doc_id,
|
|
index_node_hash=segment_hash,
|
|
position=max_position + 1 if max_position else 1,
|
|
content=content,
|
|
word_count=len(content),
|
|
tokens=tokens,
|
|
status='completed',
|
|
indexing_at=datetime.datetime.utcnow(),
|
|
completed_at=datetime.datetime.utcnow(),
|
|
created_by=current_user.id
|
|
)
|
|
if document.doc_form == 'qa_model':
|
|
segment_document.answer = segment_item['answer']
|
|
db.session.add(segment_document)
|
|
segment_data_list.append(segment_document)
|
|
pre_segment_data = {
|
|
'segment': segment_document,
|
|
'keywords': segment_item['keywords']
|
|
}
|
|
pre_segment_data_list.append(pre_segment_data)
|
|
|
|
try:
|
|
# save vector index
|
|
VectorService.multi_create_segment_vector(pre_segment_data_list, dataset)
|
|
except Exception as e:
|
|
logging.exception("create segment index failed")
|
|
for segment_document in segment_data_list:
|
|
segment_document.enabled = False
|
|
segment_document.disabled_at = datetime.datetime.utcnow()
|
|
segment_document.status = 'error'
|
|
segment_document.error = str(e)
|
|
db.session.commit()
|
|
return segment_data_list
|
|
|
|
@classmethod
|
|
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
|
|
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
|
|
cache_result = redis_client.get(indexing_cache_key)
|
|
if cache_result is not None:
|
|
raise ValueError("Segment is indexing, please try again later")
|
|
try:
|
|
content = args['content']
|
|
if segment.content == content:
|
|
if document.doc_form == 'qa_model':
|
|
segment.answer = args['answer']
|
|
if 'keywords' in args and args['keywords']:
|
|
segment.keywords = args['keywords']
|
|
if'enabled' in args and args['enabled'] is not None:
|
|
segment.enabled = args['enabled']
|
|
db.session.add(segment)
|
|
db.session.commit()
|
|
# update segment index task
|
|
if args['keywords']:
|
|
kw_index = IndexBuilder.get_index(dataset, 'economy')
|
|
# delete from keyword index
|
|
kw_index.delete_by_ids([segment.index_node_id])
|
|
# save keyword index
|
|
kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
|
|
else:
|
|
segment_hash = helper.generate_text_hash(content)
|
|
tokens = 0
|
|
if dataset.indexing_technique == 'high_quality':
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=current_user.current_tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model
|
|
)
|
|
|
|
# calc embedding use tokens
|
|
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
|
|
tokens = model_type_instance.get_num_tokens(
|
|
model=embedding_model.model,
|
|
credentials=embedding_model.credentials,
|
|
texts=[content]
|
|
)
|
|
segment.content = content
|
|
segment.index_node_hash = segment_hash
|
|
segment.word_count = len(content)
|
|
segment.tokens = tokens
|
|
segment.status = 'completed'
|
|
segment.indexing_at = datetime.datetime.utcnow()
|
|
segment.completed_at = datetime.datetime.utcnow()
|
|
segment.updated_by = current_user.id
|
|
segment.updated_at = datetime.datetime.utcnow()
|
|
if document.doc_form == 'qa_model':
|
|
segment.answer = args['answer']
|
|
db.session.add(segment)
|
|
db.session.commit()
|
|
# update segment vector index
|
|
VectorService.update_segment_vector(args['keywords'], segment, dataset)
|
|
except Exception as e:
|
|
logging.exception("update segment index failed")
|
|
segment.enabled = False
|
|
segment.disabled_at = datetime.datetime.utcnow()
|
|
segment.status = 'error'
|
|
segment.error = str(e)
|
|
db.session.commit()
|
|
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
|
|
return segment
|
|
|
|
@classmethod
|
|
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
|
|
indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
|
|
cache_result = redis_client.get(indexing_cache_key)
|
|
if cache_result is not None:
|
|
raise ValueError("Segment is deleting.")
|
|
|
|
# enabled segment need to delete index
|
|
if segment.enabled:
|
|
# send delete segment index task
|
|
redis_client.setex(indexing_cache_key, 600, 1)
|
|
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
|
|
db.session.delete(segment)
|
|
db.session.commit()
|
|
|
|
|
|
class DatasetCollectionBindingService:
|
|
@classmethod
|
|
def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
|
|
collection_type: str = 'dataset') -> DatasetCollectionBinding:
|
|
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
|
|
filter(DatasetCollectionBinding.provider_name == provider_name,
|
|
DatasetCollectionBinding.model_name == model_name,
|
|
DatasetCollectionBinding.type == collection_type). \
|
|
order_by(DatasetCollectionBinding.created_at). \
|
|
first()
|
|
|
|
if not dataset_collection_binding:
|
|
dataset_collection_binding = DatasetCollectionBinding(
|
|
provider_name=provider_name,
|
|
model_name=model_name,
|
|
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node',
|
|
type=collection_type
|
|
)
|
|
db.session.add(dataset_collection_binding)
|
|
db.session.commit()
|
|
return dataset_collection_binding
|
|
|
|
@classmethod
|
|
def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
|
|
collection_type: str = 'dataset') -> DatasetCollectionBinding:
|
|
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
|
|
filter(DatasetCollectionBinding.id == collection_binding_id,
|
|
DatasetCollectionBinding.type == collection_type). \
|
|
order_by(DatasetCollectionBinding.created_at). \
|
|
first()
|
|
|
|
return dataset_collection_binding
|