mirror of
https://gitee.com/dify_ai/dify.git
synced 2024-12-02 03:07:59 +08:00
115 lines
3.7 KiB
Python
115 lines
3.7 KiB
Python
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from typing import Optional
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from core.extension.extensible import Extensible, ExtensionModule
|
|
|
|
|
|
class ModerationAction(Enum):
|
|
DIRECT_OUTPUT = 'direct_output'
|
|
OVERRIDED = 'overrided'
|
|
|
|
|
|
class ModerationInputsResult(BaseModel):
|
|
flagged: bool = False
|
|
action: ModerationAction
|
|
preset_response: str = ""
|
|
inputs: dict = {}
|
|
query: str = ""
|
|
|
|
|
|
class ModerationOutputsResult(BaseModel):
|
|
flagged: bool = False
|
|
action: ModerationAction
|
|
preset_response: str = ""
|
|
text: str = ""
|
|
|
|
|
|
class Moderation(Extensible, ABC):
|
|
"""
|
|
The base class of moderation.
|
|
"""
|
|
module: ExtensionModule = ExtensionModule.MODERATION
|
|
|
|
def __init__(self, app_id: str, tenant_id: str, config: Optional[dict] = None) -> None:
|
|
super().__init__(tenant_id, config)
|
|
self.app_id = app_id
|
|
|
|
@classmethod
|
|
@abstractmethod
|
|
def validate_config(cls, tenant_id: str, config: dict) -> None:
|
|
"""
|
|
Validate the incoming form config data.
|
|
|
|
:param tenant_id: the id of workspace
|
|
:param config: the form config data
|
|
:return:
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
|
|
"""
|
|
Moderation for inputs.
|
|
After the user inputs, this method will be called to perform sensitive content review
|
|
on the user inputs and return the processed results.
|
|
|
|
:param inputs: user inputs
|
|
:param query: query string (required in chat app)
|
|
:return:
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
|
|
"""
|
|
Moderation for outputs.
|
|
When LLM outputs content, the front end will pass the output content (may be segmented)
|
|
to this method for sensitive content review, and the output content will be shielded if the review fails.
|
|
|
|
:param text: LLM output content
|
|
:return:
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def _validate_inputs_and_outputs_config(self, config: dict, is_preset_response_required: bool) -> None:
|
|
# inputs_config
|
|
inputs_config = config.get("inputs_config")
|
|
if not isinstance(inputs_config, dict):
|
|
raise ValueError("inputs_config must be a dict")
|
|
|
|
# outputs_config
|
|
outputs_config = config.get("outputs_config")
|
|
if not isinstance(outputs_config, dict):
|
|
raise ValueError("outputs_config must be a dict")
|
|
|
|
inputs_config_enabled = inputs_config.get("enabled")
|
|
outputs_config_enabled = outputs_config.get("enabled")
|
|
if not inputs_config_enabled and not outputs_config_enabled:
|
|
raise ValueError("At least one of inputs_config or outputs_config must be enabled")
|
|
|
|
# preset_response
|
|
if not is_preset_response_required:
|
|
return
|
|
|
|
if inputs_config_enabled:
|
|
if not inputs_config.get("preset_response"):
|
|
raise ValueError("inputs_config.preset_response is required")
|
|
|
|
if len(inputs_config.get("preset_response")) > 100:
|
|
raise ValueError("inputs_config.preset_response must be less than 100 characters")
|
|
|
|
if outputs_config_enabled:
|
|
if not outputs_config.get("preset_response"):
|
|
raise ValueError("outputs_config.preset_response is required")
|
|
|
|
if len(outputs_config.get("preset_response")) > 100:
|
|
raise ValueError("outputs_config.preset_response must be less than 100 characters")
|
|
|
|
|
|
class ModerationException(Exception):
|
|
pass
|