dify/api/core/indexing_runner.py
Charlie.Wei fa7ba30ba3
Fix rebuild index&csv parsing (#2705)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-06 11:33:32 +08:00

814 lines
35 KiB
Python

import datetime
import json
import logging
import re
import threading
import time
import uuid
from typing import Optional, cast
from flask import Flask, current_app
from flask_login import current_user
from sqlalchemy.orm.exc import ObjectDeletedError
from core.docstore.dataset_docstore import DatasetDocumentStore
from core.errors.error import ProviderTokenNotInitError
from core.generator.llm_generator import LLMGenerator
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelType, PriceType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from core.rag.models.document import Document
from core.splitter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter
from core.splitter.text_splitter import TextSplitter
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs import helper
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
from models.dataset import Document as DatasetDocument
from models.model import UploadFile
from services.feature_service import FeatureService
class IndexingRunner:
def __init__(self):
self.storage = storage
self.model_manager = ModelManager()
def run(self, dataset_documents: list[DatasetDocument]):
"""Run the indexing process."""
for dataset_document in dataset_documents:
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
first()
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
# extract
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(index_processor, dataset, text_docs, processing_rule.to_dict())
# save segment
self._load_segments(dataset, dataset_document, documents)
# load
self._load(
index_processor=index_processor,
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except ObjectDeletedError:
logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
def run_in_splitting_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is splitting."""
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id,
document_id=dataset_document.id
).all()
for document_segment in document_segments:
db.session.delete(document_segment)
db.session.commit()
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
first()
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
# extract
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(index_processor, dataset, text_docs, processing_rule.to_dict())
# save segment
self._load_segments(dataset, dataset_document, documents)
# load
self._load(
index_processor=index_processor,
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
def run_in_indexing_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is indexing."""
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id,
document_id=dataset_document.id
).all()
documents = []
if document_segments:
for document_segment in document_segments:
# transform segment to node
if document_segment.status != "completed":
document = Document(
page_content=document_segment.content,
metadata={
"doc_id": document_segment.index_node_id,
"doc_hash": document_segment.index_node_hash,
"document_id": document_segment.document_id,
"dataset_id": document_segment.dataset_id,
}
)
documents.append(document)
# build index
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
first()
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
self._load(
index_processor=index_processor,
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict,
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
indexing_technique: str = 'economy') -> dict:
"""
Estimate the indexing for the document.
"""
# check document limit
features = FeatureService.get_features(tenant_id)
if features.billing.enabled:
count = len(extract_settings)
batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
embedding_model_instance = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if not dataset:
raise ValueError('Dataset not found.')
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
if dataset.embedding_model_provider:
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
else:
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
else:
if indexing_technique == 'high_quality':
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
tokens = 0
preview_texts = []
total_segments = 0
total_price = 0
currency = 'USD'
index_type = doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
all_text_docs = []
for extract_setting in extract_settings:
# extract
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
all_text_docs.extend(text_docs)
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"],
rules=json.dumps(tmp_processing_rule["rules"])
)
# get splitter
splitter = self._get_splitter(processing_rule, embedding_model_instance)
# split to documents
documents = self._split_to_documents_for_estimate(
text_docs=text_docs,
splitter=splitter,
processing_rule=processing_rule
)
total_segments += len(documents)
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
if indexing_technique == 'high_quality' or embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
tokens += embedding_model_type_instance.get_num_tokens(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
texts=[self.filter_string(document.page_content)]
)
if doc_form and doc_form == 'qa_model':
model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM
)
model_type_instance = model_instance.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
if len(preview_texts) > 0:
# qa model document
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
doc_language)
document_qa_list = self.format_split_text(response)
price_info = model_type_instance.get_price(
model=model_instance.model,
credentials=model_instance.credentials,
price_type=PriceType.INPUT,
tokens=total_segments * 2000,
)
return {
"total_segments": total_segments * 20,
"tokens": total_segments * 2000,
"total_price": '{:f}'.format(price_info.total_amount),
"currency": price_info.currency,
"qa_preview": document_qa_list,
"preview": preview_texts
}
if embedding_model_instance:
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
embedding_price_info = embedding_model_type_instance.get_price(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
total_price = '{:f}'.format(embedding_price_info.total_amount)
currency = embedding_price_info.currency
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": total_price,
"currency": currency,
"preview": preview_texts
}
def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \
-> list[Document]:
# load file
if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
return []
data_source_info = dataset_document.data_source_info_dict
text_docs = []
if dataset_document.data_source_type == 'upload_file':
if not data_source_info or 'upload_file_id' not in data_source_info:
raise ValueError("no upload file found")
file_detail = db.session.query(UploadFile). \
filter(UploadFile.id == data_source_info['upload_file_id']). \
one_or_none()
if file_detail:
extract_setting = ExtractSetting(
datasource_type="upload_file",
upload_file=file_detail,
document_model=dataset_document.doc_form
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
elif dataset_document.data_source_type == 'notion_import':
if (not data_source_info or 'notion_workspace_id' not in data_source_info
or 'notion_page_id' not in data_source_info):
raise ValueError("no notion import info found")
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": data_source_info['notion_workspace_id'],
"notion_obj_id": data_source_info['notion_page_id'],
"notion_page_type": data_source_info['type'],
"document": dataset_document,
"tenant_id": dataset_document.tenant_id
},
document_model=dataset_document.doc_form
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
# update document status to splitting
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="splitting",
extra_update_params={
DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
}
)
# replace doc id to document model id
text_docs = cast(list[Document], text_docs)
for text_doc in text_docs:
text_doc.metadata['document_id'] = dataset_document.id
text_doc.metadata['dataset_id'] = dataset_document.dataset_id
return text_docs
def filter_string(self, text):
text = re.sub(r'<\|', '<', text)
text = re.sub(r'\|>', '>', text)
text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
# Unicode U+FFFE
text = re.sub('\uFFFE', '', text)
return text
def _get_splitter(self, processing_rule: DatasetProcessRule,
embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
"""
Get the NodeParser object according to the processing rule.
"""
if processing_rule.mode == "custom":
# The user-defined segmentation rule
rules = json.loads(processing_rule.rules)
segmentation = rules["segmentation"]
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
raise ValueError("Custom segment length should be between 50 and 1000.")
separator = segmentation["separator"]
if separator:
separator = separator.replace('\\n', '\n')
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
chunk_size=segmentation["max_tokens"],
chunk_overlap=segmentation.get('chunk_overlap', 0),
fixed_separator=separator,
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
)
else:
# Automatic segmentation
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
)
return character_splitter
def _step_split(self, text_docs: list[Document], splitter: TextSplitter,
dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
-> list[Document]:
"""
Split the text documents into documents and save them to the document segment.
"""
documents = self._split_to_documents(
text_docs=text_docs,
splitter=splitter,
processing_rule=processing_rule,
tenant_id=dataset.tenant_id,
document_form=dataset_document.doc_form,
document_language=dataset_document.doc_language
)
# save node to document segment
doc_store = DatasetDocumentStore(
dataset=dataset,
user_id=dataset_document.created_by,
document_id=dataset_document.id
)
# add document segments
doc_store.add_documents(documents)
# update document status to indexing
cur_time = datetime.datetime.utcnow()
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="indexing",
extra_update_params={
DatasetDocument.cleaning_completed_at: cur_time,
DatasetDocument.splitting_completed_at: cur_time,
}
)
# update segment status to indexing
self._update_segments_by_document(
dataset_document_id=dataset_document.id,
update_params={
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.utcnow()
}
)
return documents
def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter,
processing_rule: DatasetProcessRule, tenant_id: str,
document_form: str, document_language: str) -> list[Document]:
"""
Split the text documents into nodes.
"""
all_documents = []
all_qa_documents = []
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
text_doc.page_content = document_text
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
for document_node in documents:
if document_node.page_content.strip():
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
# delete Spliter character
page_content = document_node.page_content
if page_content.startswith(".") or page_content.startswith(""):
page_content = page_content[1:]
else:
page_content = page_content
document_node.page_content = page_content
if document_node.page_content:
split_documents.append(document_node)
all_documents.extend(split_documents)
# processing qa document
if document_form == 'qa_model':
for i in range(0, len(all_documents), 10):
threads = []
sub_documents = all_documents[i:i + 10]
for doc in sub_documents:
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
'flask_app': current_app._get_current_object(),
'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
'document_language': document_language})
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:
thread.join()
return all_qa_documents
return all_documents
def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
format_documents = []
if document_node.page_content is None or not document_node.page_content.strip():
return
with flask_app.app_context():
try:
# qa model document
response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
document_qa_list = self.format_split_text(response)
qa_documents = []
for result in document_qa_list:
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(result['question'])
qa_document.metadata['answer'] = result['answer']
qa_document.metadata['doc_id'] = doc_id
qa_document.metadata['doc_hash'] = hash
qa_documents.append(qa_document)
format_documents.extend(qa_documents)
except Exception as e:
logging.exception(e)
all_qa_documents.extend(format_documents)
def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter,
processing_rule: DatasetProcessRule) -> list[Document]:
"""
Split the text documents into nodes.
"""
all_documents = []
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
text_doc.page_content = document_text
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
for document in documents:
if document.page_content is None or not document.page_content.strip():
continue
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document.page_content)
document.metadata['doc_id'] = doc_id
document.metadata['doc_hash'] = hash
split_documents.append(document)
all_documents.extend(split_documents)
return all_documents
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
"""
Clean the document text according to the processing rules.
"""
if processing_rule.mode == "automatic":
rules = DatasetProcessRule.AUTOMATIC_RULES
else:
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
if 'pre_processing_rules' in rules:
pre_processing_rules = rules["pre_processing_rules"]
for pre_processing_rule in pre_processing_rules:
if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
# Remove extra spaces
pattern = r'\n{3,}'
text = re.sub(pattern, '\n\n', text)
pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
text = re.sub(pattern, ' ', text)
elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
# Remove email
pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
text = re.sub(pattern, '', text)
# Remove URL
pattern = r'https?://[^\s]+'
text = re.sub(pattern, '', text)
return text
def format_split_text(self, text):
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
matches = re.findall(regex, text, re.UNICODE)
return [
{
"question": q,
"answer": re.sub(r"\n\s*", "\n", a.strip())
}
for q, a in matches if q and a
]
def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset,
dataset_document: DatasetDocument, documents: list[Document]) -> None:
"""
insert index and update document/segment status to completed
"""
embedding_model_instance = None
if dataset.indexing_technique == 'high_quality':
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 100
embedding_model_type_instance = None
if embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
for i in range(0, len(documents), chunk_size):
# check document is paused
self._check_document_paused_status(dataset_document.id)
chunk_documents = documents[i:i + chunk_size]
if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
tokens += sum(
embedding_model_type_instance.get_num_tokens(
embedding_model_instance.model,
embedding_model_instance.credentials,
[document.page_content]
)
for document in chunk_documents
)
# load index
index_processor.load(dataset, chunk_documents)
db.session.add(dataset)
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.index_node_id.in_(document_ids),
DocumentSegment.status == "indexing"
).update({
DocumentSegment.status: "completed",
DocumentSegment.enabled: True,
DocumentSegment.completed_at: datetime.datetime.utcnow()
})
db.session.commit()
indexing_end_at = time.perf_counter()
# update document status to completed
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="completed",
extra_update_params={
DatasetDocument.tokens: tokens,
DatasetDocument.completed_at: datetime.datetime.utcnow(),
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
}
)
def _check_document_paused_status(self, document_id: str):
indexing_cache_key = 'document_{}_is_paused'.format(document_id)
result = redis_client.get(indexing_cache_key)
if result:
raise DocumentIsPausedException()
def _update_document_index_status(self, document_id: str, after_indexing_status: str,
extra_update_params: Optional[dict] = None) -> None:
"""
Update the document indexing status.
"""
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
if count > 0:
raise DocumentIsPausedException()
document = DatasetDocument.query.filter_by(id=document_id).first()
if not document:
raise DocumentIsDeletedPausedException()
update_params = {
DatasetDocument.indexing_status: after_indexing_status
}
if extra_update_params:
update_params.update(extra_update_params)
DatasetDocument.query.filter_by(id=document_id).update(update_params)
db.session.commit()
def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
"""
Update the document segment by document id.
"""
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
db.session.commit()
def batch_add_segments(self, segments: list[DocumentSegment], dataset: Dataset):
"""
Batch add segments index processing
"""
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
documents.append(document)
# save vector index
index_type = dataset.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
index_processor.load(dataset, documents)
def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
text_docs: list[Document], process_rule: dict) -> list[Document]:
# get embedding model instance
embedding_model_instance = None
if dataset.indexing_technique == 'high_quality':
if dataset.embedding_model_provider:
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
else:
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
process_rule=process_rule)
return documents
def _load_segments(self, dataset, dataset_document, documents):
# save node to document segment
doc_store = DatasetDocumentStore(
dataset=dataset,
user_id=dataset_document.created_by,
document_id=dataset_document.id
)
# add document segments
doc_store.add_documents(documents)
# update document status to indexing
cur_time = datetime.datetime.utcnow()
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="indexing",
extra_update_params={
DatasetDocument.cleaning_completed_at: cur_time,
DatasetDocument.splitting_completed_at: cur_time,
}
)
# update segment status to indexing
self._update_segments_by_document(
dataset_document_id=dataset_document.id,
update_params={
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.utcnow()
}
)
pass
class DocumentIsPausedException(Exception):
pass
class DocumentIsDeletedPausedException(Exception):
pass