easyAi/README.md

213 lines
17 KiB
Markdown
Raw Normal View History

2020-01-13 23:04:31 +08:00
# 图像超市
本包功能说明:本包对物体在图像中进行训练及识别,切割,定位的轻量级,面向小白的框架,功能在逐渐扩展中
### 目的是
低硬件成本CPU可快速学习运行面向jAVA开发的程序员经过简单API调用就可实现物体在图像中的识别及定位等功能
### 特点是
入手门槛低,简单配置,快速上手
#### 为什么做这个包
2020-01-18 15:10:55 +08:00
* 因为图像属于超大浮点运算亿对亿级任何一点操作都会被扩大一千万倍以上所以目前市面上的框架大都针对GPU运算。
* 深度学习GPU价格昂贵动则几万一块这也是图像识别的费用门槛而JAVA的用户一般都是使用CPU运算。
* JAVA开发者很少会使用JCUDA 包的GPU浮点操作,目前的主流算法大都使用GPU运算速度快
* 为了保证用户对本包的使用性能且降低部署成本面向JAVA开发的程序员对图像的CPU快速处理可以在CPU部署。
* 所以本包对一些算法进行了部分功能阉割部分精度忽略来保证速度并且做到可CPU快速运算。
* 阉割的代价,在某些精度上会有所下降,所以本包建议使用方案是对图像识别的分类。
* 比如你要分辨当前图像 是 苹果或是香蕉或是桃子,对图像进行判断分类,精准度更高,对图像的切割,针对占比比较大的物体切割,定位。
2020-01-18 15:40:29 +08:00
* 下面API文档有不清楚的地方可联系作者询问QQ794757862
2020-01-13 23:04:31 +08:00
## 好的让我们从HELLO WORLD 开始:
public static void testPic() throws Exception {
//测试SPEED模式学习过程
//初始化图像转矩阵类:作用就是说将一个图片文件转化为矩阵类
Picture picture = new Picture();
//初始化配置模板类,设置模式为SPEED_PATTERN模式 即速度模式
TempleConfig templeConfig = getTemple(true, StudyPattern.Speed_Pattern);
//初始化计算类,并将配置模版和输出回调类载入计算类
//运算类有两个构造一个是配置回调类,一个是不配置回调类
//若使用定位功能,则无需配置回调类,若不启用,则要配置回调类
//回调类要实现OutBack接口中的方法
Ma ma = new Ma();
Operation operation = new Operation(templeConfig, ma);
//标注主键为 第几种分类,值为标注 1 是TRUE 0是FALSE
//给训练图像进行标注健是分类的ID,对应的就是输出结果的ID值值要么写0要么写1
// 1就是 是这种分类0就是不是这种分类
Map<Integer, Double> rightTagging = new HashMap<>();//分类标注
Map<Integer, Double> wrongTagging = new HashMap<>();//分类标注
rightTagging.put(1, 1.0);
wrongTagging.put(1, 0.0);
// 例如上面的标注了 只有一种分类第一个MAP是true标注第二个map是false标注
for (int i = 1; i < 999; i++) {
System.out.println("开始学习1==" + i);
//读取本地URL地址图片(适用于电脑本地图片),并转化成矩阵
//注意学习图片至少要一千张+同物体的不同图片,学习的越多就越准,拿同样的图片反复循环学习是没用的
//picture.getImageMatrixByIo(InputStream) 另外一个api,是通过字节流读取图片矩阵,适用于网络传输的图片
Matrix right = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/c/c" + i + ".png");
Matrix wrong = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/b/b" + i + ".png");
//将图像矩阵和标注加入进行学习正确的图片配置正确的标注true错误的图片配置错误的标注false
//right这个矩阵是 正确的图片 所以要配置上面正确的标注1.0 学习告诉计算机这个图片是正确的
operation.study(right, rightTagging);
//wrong这个矩阵是错误的图片所以要配置上面错误的标注0.0 学习 告诉计算机这个图片是错误的
operation.study(wrong, wrongTagging);
}
//如果启用物体坐标定位则在学习结束的时候一定要执行boxStudy方法
//若不启用,则请不要使用,否则会报错
//templeConfig.boxStudy();
//获取训练结束的模型参数提取出来转化成JSON保存数据库下次服务启动时不用学习
//直接将模型参数注入
//获取模型MODLE 这个模型就是我们程序学习的目的,学习结束后我们要拿到这个模型
ModelParameter modelParameter = templeConfig.getModel();
//将模型MODEL转化成JSON 字符串 保存到数据库 留待下次服务启动的时候,识别提取用
String model = JSON.toJSONString(modelParameter);
//以上就是SPEED模式下的学习全过程识别的过程就是再次初始化将学习结果注入之后使用
//识别过程
//将从数据库取出的JSON字符串转化为模型MODEL
ModelParameter modelParameter1 = JSONObject.parseObject(model, ModelParameter.class);
//初始化模型配置
TempleConfig templeConfig1 = getTemple(false, StudyPattern.Speed_Pattern);
//注入之前学习结果的模型MODEL到配置模版里面将学习结果注入就可以使用识别了
templeConfig1.insertModel(modelParameter1);
//将配置模板配置到运算类
Operation operation1 = new Operation(templeConfig1);
//获取本地图片字节码转化成降纬后的灰度矩阵
Matrix right = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/test/a101.png");
Matrix wrong = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/b/b1000.png");
//进行图像识别 参数说明 eventId,事件id,因为输出结果是在回调类回调的,所以必须有个主键去判断事件
//说明你回调是响应的哪一次调用的ID,所以每一次识别调用请用不同的id
operation1.look(wrong, 3);
operation1.look(right, 2);
//若启用定位功能检测请使用lookWithPosition,若没有启用,使用检测会报错
//返回map,主键是分类id,值是该图片中此分类有多少个物体,每个物体的具体位置坐标的大小
//Map<Integer, List<FrameBody>> map = operation1.lookWithPosition(right, 4);
}
public static TempleConfig getTemple(boolean isFirst, int pattern) throws Exception {
//创建一个配置模板类,作用:主要是保存及载入一些配置参数用
TempleConfig templeConfig = new TempleConfig();
//全连接层深度,选填可不填 不填默认值为2
//这就像人类大脑的意识深度原理一样,深度学习越深,训练结果越准,但是训练量成几何倍数增加
//比如默认深度是2 需要 正负模板各一千+张照片进行训练。识别率70%(数值只是举个例子,不是具体数值)
//当深度改成3则需要正负模板各三千+张照片进行训练,识别率 80%深度4八千+90%
//以此类推,,内存允许的情况下,深度无限 识别率无限接近与百分之百
//但是有极限,即超过某个深度,即使再增加深度,识别率反而会下降。需要具体不断尝试找到 合适的深度
//注意:若深度提升,训练量没有成倍增长,则准确度反而更低!
templeConfig.setDeep(2);
//启用定位学习 注意启用在图片中对某个物体进行定位,要注意
//学习的图片必须除了学习的物体以外,其他位置都是白色或者空白(即用PS扣空)。
//即该图片除了这个物体,没有其他任何干扰杂色(一个像素的杂色都不可以有)
//templeConfig.setHavePosition(true);
//窗口类,就是用来扫描图片的窗口大小和移动距离的设定
//Frame frame = new Frame();
//初始化配置模版,参数说明(int studyPattern, boolean initPower, int width, int height
//, int classificationNub)
//studyPattern 学习模式:常量值 StudyPattern.Accuracy_Pattern;StudyPattern.Speed_Pattern
//第一种模式精准模式,第二种模式是速度模式
//精准模式顾名思义准确相对高很多但是缺点也很明显学习速度慢不是一般的慢CPU学习1000张图片
//24小时都不够用它学习速度比速度模式学习速度慢十倍都不止但是执行识别速度上却比速度模式还要快一点
//第二种速度模式,学习速度明显很快,一千张图片的学习大概一个半小时左右,但是精准度上差了一些
//但是依然还是比较精准的,尤其做分类判断的时候,问题不大。
//如何选择模式:在大部分情况下速度模式就够用了,在分类一张图片,比如这张图片有苹果的概率是多少
//有橘子的概率是多少,精准度已经足够,它不是不精准,只是相对于精准模式要差一些
//所以在大部分情况下,还是建议用速度模式,满足很多识别分类需求
//initPower,是否是第一次初始化
//学习就是学的模型参数学完了要把模型参数类拿出来序列化成JSON字符串保存数据库
//下次服务启动读取JSON字符串反序列化为MODEL模型 直接注入就可,无需再次学习
//如果说你是要学习就写true,如果已经有学习结果了你要注入之前的学习结果就是false
//如果你选了false还没有进行注入的话你取模型参数你可以看到所有参数都是0
//width heigth ,要学习的图片宽高,注意:这个宽高不是严格图片尺寸,而是一个大致尺寸
//要识别和学习的图片尺寸与这个宽高比 必要相差太大就好,而且宁长勿短
//classificationNub 要识别的有几个分类比如我就识别苹果就是1 有两种苹果橘子就是 2
templeConfig.init(pattern, isFirst, 3204, 4032, 1);
return templeConfig;
}
public static void testModel() throws Exception {
// 模型参数获取及注入 实例
TempleConfig templeConfig = getTemple(true, StudyPattern.Accuracy_Pattern);
ModelParameter modelParameter1 = templeConfig.getModel();
String model = JSON.toJSONString(modelParameter1);
System.out.println(model);
TempleConfig templeConfig2 = getTemple(false, StudyPattern.Accuracy_Pattern);
ModelParameter modelParameter3 = JSONObject.parseObject(model, ModelParameter.class);
templeConfig2.insertModel(modelParameter3);
ModelParameter modelParameter2 = templeConfig2.getModel();
String model2 = JSON.toJSONString(modelParameter2);
System.out.println(model2);
}
public static void testPic2() throws Exception {
//测试Accuracy_Pattern 模式学习过程跟SPEED模式相同的部分就不再说明了
Picture picture = new Picture();
TempleConfig templeConfig = getTemple(true, StudyPattern.Accuracy_Pattern);
Operation operation = new Operation(templeConfig);
for (int i = 1; i < 2; i++) {
System.out.println("开始学习1==" + i);
//读取本地URL地址图片,并转化成矩阵
Matrix right = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/c/c" + i + ".png");
Matrix wrong = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/b/b" + i + ".png");
//将图像矩阵和标注加入进行学习 注意的是 Accuracy_Pattern 模式 要学习两次
//这里使用learning方法第一个参数没变第二个参数是标注参数learning的标注
//不再使用MAP而是直接给一个整型的数字01,2,3...作为它的分类id注意我们约定
//id 为0的分类为全FALSE分类即背景
//第三个参数,第一次学习的时候 这个参数必须是 false
operation.learning(right, 1, false);
operation.learning(wrong, 0, false);
}
for (int i = 1; i < 2; i++) {//神经网络学习
System.out.println("开始学习2==" + i);
//读取本地URL地址图片,并转化成矩阵
Matrix right = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/c/c" + i + ".png");
Matrix wrong = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/b/b" + i + ".png");
//将图像矩阵和标注加入进行学习Accuracy_Pattern 模式 进行第二次学习
//第二次学习的时候,第三个参数必须是 true
operation.learning(right, rightTagging, true);
operation.learning(wrong, wrongTagging, true);
}
Matrix right = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/test/a101.png");
Matrix wrong = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/b/b1000.png");
//精准模式检测单张图片将直接返回分类id,而不是通过回调来获取分类概率
//不是使用look,而是使用toSee
int rightId = operation.toSee(right);
int wrongId = operation.toSee(wrong);
System.out.println("该图是菜单:" + rightId);
System.out.println("该图是桌子:" + wrongId);
}
2020-01-18 15:10:55 +08:00
回调输出类:
public class Ma implements OutBack {
private int nub;
public void setNub(int nub) {
this.nub = nub;
}
@Override
public void getBack(double out, int id, long eventId) {
System.out.println("id==" + id + ",out==" + out + ",nub==" + nub);
}
}
回调类实现OUTBACK 接口 当检测结果输出的时候 会回调getBack方法
回调第一个参数是输出值 指的是 这个分类的概率 该数值是0-1之间的浮点
第二个参数是 分类的id 判断是训练的哪个分类的ID
第三个参数是 事件ID,一次判断事件 使用一个ID,让开发者知道是哪次事件的回调判断
#### 最终说明
* TempleConfig()配置模版类一定要静态在内存中长期持有检测的时候不要每次都NEW
一直就使用一个配置类就可以了。
* Operation():运算类除了学习可以使用一个以外用户每检测一次都要NEW一次。
因为学习是单线程无所谓,而检测是多线程,如果使用一个运算类,可能会造成线程安全问题
#### 精准模式和速度模式的优劣
* 速度模式学习很快但是检测速度慢双核i3检测单张图片1200万像素单物体检测速度约800ms.
学习1200万像素的照片物体1000张需耗时1-2小时。
* 精准模式学习很慢但是检测速度快双核i3检测单张图片1200万像素单物体检测速度约100ms.
学习1200万像素的照片物体1000张需耗时5-7个小时。
#### 本包为性能优化而对AI算法的修改
* 本包对图像AI算法进行了修改为应对CPU部署。
2020-02-06 10:42:09 +08:00
* 卷积神经网络后的全连接层直接替换成了LVQ算法进行特征向量量化学习聚类通过卷积结果与LVQ原型向量欧式距离来进行判定。
* 物体的边框检测通过卷积后的特征向量进行多元线性回归获得检测边框的候选区并没有使用图像分割cpu对图像分割算法真是超慢
而是通过Frame类让用户自定义先验图框大小和先验图框每次移动的检测步长然后再通过多次检测的IOU来确定是否为同一物体。
* 所以添加定位模式用户要确定Frame的大小和步长来替代基于图像分割的候选区推荐算法。
* 速度模式是使用固定的边缘算子进行多次卷积核然后使用BP的多层神经网络进行强行拟合给出的结果它之所以学习快就是因为速度模式学习的是
全连接层的权重及阈值,而没有对卷积核进行学习)
2020-02-02 10:16:39 +08:00
* 本包检测使用的是灰度单通道即对RGB进行降纬变成灰度图像来进行检测RGB三通道都算的话CPU有些吃不住
2020-02-02 10:11:06 +08:00
* 若使用本包还有疑问可自行看测试包内的HelloWorld测试案例类或者联系作者Q794757862