mirror of
https://gitee.com/dromara/easyAi.git
synced 2024-11-29 18:27:37 +08:00
增加参数说明
This commit is contained in:
parent
931c37abc5
commit
6a02f30d7f
@ -8,17 +8,16 @@ import org.wlld.rnnNerveCenter.NerveManager;
|
||||
import org.wlld.rnnNerveEntity.SensoryNerve;
|
||||
import org.wlld.tools.IdCreator;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.locks.ReentrantReadWriteLock;
|
||||
|
||||
public class RecommendCodeManager {//推荐id管理
|
||||
private NerveManager nerveManager;
|
||||
private double studyTh;
|
||||
private int dim;
|
||||
private ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
|
||||
private final NerveManager nerveManager;
|
||||
private final double studyTh;
|
||||
private final int dim;
|
||||
private final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
|
||||
|
||||
public RecommendCodeManager(boolean initPower, RecommendConfig recommendConfig) throws Exception {
|
||||
studyTh = recommendConfig.getStudyTh();
|
||||
|
@ -275,13 +275,14 @@ public class NerveJumpManager {
|
||||
* @param hiddenDepth 隐层深度
|
||||
* @param activeFunction 激活函数
|
||||
* @param isDynamic 是否是动态神经元
|
||||
* @param studyPoint 学习率
|
||||
* @param rzType 正则函数
|
||||
* @param lParam 正则系数
|
||||
* @throws Exception 如果参数错误则抛异常
|
||||
*/
|
||||
public NerveJumpManager(int sensoryNerveNub, int hiddenNerveNub, int outNerveNub
|
||||
, int hiddenDepth, ActiveFunction activeFunction, boolean isDynamic,
|
||||
double studyPoint, int rzType, double lParam) throws Exception {
|
||||
double studyPoint, int rzType, double lParam) throws Exception {
|
||||
if (sensoryNerveNub > 0 && hiddenNerveNub > 0 && outNerveNub > 0 && hiddenDepth > 0 && activeFunction != null) {
|
||||
this.hiddenNerveNub = hiddenNerveNub;
|
||||
this.sensoryNerveNub = sensoryNerveNub;
|
||||
@ -384,7 +385,14 @@ public class NerveJumpManager {
|
||||
}
|
||||
rnnOutNerveBodies.add(rnnOutNerveBody);
|
||||
}
|
||||
|
||||
/**
|
||||
* 初始化残差Rnn神经元(跳层)参数
|
||||
*
|
||||
* @param initPower 是否是首次进行训练
|
||||
* @param isShowLog 是否打印续写过程中的参数
|
||||
* @param toSoftMax 是否增加softMax输出层
|
||||
* @throws Exception 如果参数错误则抛异常
|
||||
*/
|
||||
public void initRnn(boolean initPower, boolean isShowLog, boolean toSoftMax) throws Exception {
|
||||
isRnn = true;
|
||||
initDepthNerve(false, 0, 0);//初始化深度隐层神经元
|
||||
|
@ -23,11 +23,14 @@ public class SensoryNerve extends Nerve {
|
||||
}
|
||||
|
||||
/**
|
||||
* @param eventId 唯一的事件id
|
||||
* @param parameter 输入点的数据
|
||||
* @param isStudy 是否是学习 (学习状态没有输出)
|
||||
* @param E 标注
|
||||
* @param outBack 回调结果
|
||||
* @param eventId 唯一的事件id(每个用户线程一个id用来处理线程安全)
|
||||
* @param parameter 该输入层的输入参数
|
||||
* @param isStudy 是否是学习 (学习状态没有输出)
|
||||
* @param E 标注
|
||||
* @param outBack 回调结果
|
||||
* @param isEmbedding 是否获取word2Vec返回结果(单独为词向量嵌入兼容,若无需则传false)
|
||||
* @param rnnMatrix rnn参数矩阵,矩阵中每一行是每一层的特征向量
|
||||
* @param storeys 记录跳层路径的数组,即在rnn中经过的层数,若不在此路径集合内则跳跃
|
||||
*/
|
||||
public void postMessage(long eventId, double parameter, boolean isStudy, Map<Integer, Double> E
|
||||
, OutBack outBack, boolean isEmbedding, Matrix rnnMatrix, int[] storeys) throws Exception {//感知神经元输出
|
||||
|
Loading…
Reference in New Issue
Block a user