mirror of
https://gitee.com/dromara/easyAi.git
synced 2024-11-30 02:37:42 +08:00
14 KiB
14 KiB
easyAi
本包说明:
- 本包对物体在图像中进行训练及识别,切割,定位的轻量级,面向小白的框架。
- 本包对中文输入语句,对输入语句的类别进行分类,关键词抓取,词延伸,以及集成智能客服功能在逐渐扩展中
- 若有想扩充的功能请进群提意见,若是通用场景我会陆续补充,技术交流群:561433236
详细视频教程地址:
框架效果演示结果:
- 因为是框架没有图像化界面,演示结果就是控制台输出的数据,只能用视频展示,想看演示结果请看教学视频
- 详细api文档见项目html文档:https://wlhlwl.com/gw/easyAi.html
强大的自主智能客服工具,支持自动与用户对话,并捕捉用户对话中的需求后自动生成订单!基于easyAi算法引擎构建——myJecs
链接:https://gitee.com/ldp_dpsmax/my-jecs
目前拥有的核心功能(若对您的学习生产有帮助,请留下您的STAR)
- 对单张图片物体进行识别。
- 对中文语言进行分类语义识别,判断用户说话的语义是什么,关键词抓取,以及要做什么
- 游戏内交互机器人
- 若有想扩充的功能请进群提意见,若是通用场景我会陆续补充,技术交流群:222475213,561433236(满)
目的是
- 低硬件成本,CPU可快速学习运行,面向jAVA开发的程序员,经过简单API调用就可实现物体在图像中的识别,定位及中文语言分类,抓取关键词等功能
- 努力为中小企业提供AI场景成套解决技术方案
- easyAi交流1群:561433236(满了进不去),easyAi交流2群:222475213
特点是
入手门槛低,简单配置,快速上手
为什么做这个包
- 低门槛化: 现在随着人工智能技术的兴起,很多场景需要开发人员添加相应的功能,但是在二三线城市算法人才匮乏。 并且大多是JAVA开发程序员,业务做的更多,因为作者本人就是三线城市程序员,所以深知这一点。 所以我本人认为需要一款部署简单,不需要学习任何算法知识, 只通过最简单的API调用,就可以实现部分人工智能应用,并面向覆盖面最广的JAVA程序员使用的,且 能满足大部分AI业务场景实现的技术包。
- 面向用户:广大没接触过算法知识,人才相对匮乏的二三线JAVA业务开发程序员,实现人工智能应用
- 部署简单: 本包所有底层函数及数学库都是作者JAVA手写,不依赖任何第三方库,所以开发者只需要将本包下载到本地后,打成JAR包 引入到自己的POM文件中,就可以独立使用所有功能。
- 功能还在扩展: 本包现在的功能还在逐步扩展中
- 抛错捕获暂时还没有做全,若有抛错请进群交流:561433236,我来做一下错误定位
- 若您有相对复杂的人工智能业务(开源功能无法满足的,包括但不限于图像识别,自然语言)请联系作者 vx:thenk008 进行基于easyAi定制化业务情景开发(即java人工智能开发)
HELLO WORLD说明:
- 以下为最简API文档,所有非必设参数都使用本引擎默认值
- 要注意的是使用最简API,及参数默认值准确度远不能达到最佳状态
图像学习部分最简API 说明:
训练过程
Picture picture = new Picture();//图片解析类
Config config = new Config();//配置文件
config.setTypeNub(2);//设置训练种类数
config.setBoxSize(125);//设置物体大致大小 单位像素 即 125*125 的矩形
config.setPictureNumber(5);//设置每个种类训练图片数量 某个类别有几张照片,注意所有种类照片数量要保持一致
config.setPth(0.7);//设置可信概率,只有超过可信概率阈值,得出的结果才是可信的 数值为0-1之间
config.setShowLog(true);//输出学习时打印数据
Distinguish distinguish = new Distinguish(config);//创建识别类
distinguish.setBackGround(picture.getThreeMatrix("E:\\ls\\fp15\\back.jpg"));//设置识别的背景图片(该api为固定背景)
List<FoodPicture> foodPictures = new ArrayList<>();//创建训练模板集合
for (int i = 1; i < 3; i++) {
FoodPicture foodPicture = new FoodPicture();//创建每一类图片的训练模板类
foodPictures.add(foodPicture);//将该类模板加入集合
List<PicturePosition> picturePositionList = new ArrayList<>();//创建该类模板的训练集合类
foodPicture.setId(i + 1);//设置该图片类别id
foodPicture.setPicturePositionList(picturePositionList);
for (int j = 1; j < 6; j++) {//训练图片数量为 每种五张 注意跟config 中的 pictureNumber 要一致
String name;
if (i == 1) {//加载图片url地址名称
name = "a";
} else {
name = "b";
}
PicturePosition picturePosition = new PicturePosition();
picturePosition.setUrl("E:\\ls\\fp15\\" + name + i + ".jpg");//加载该类别图片地址
picturePosition.setNeedCut(false);//是否需要剪切,若训练素材为充满全图图片,则充满全图不需要剪切 写false
picturePositionList.add(picturePosition);//加载
}
}
distinguish.studyImage(foodPictures);//进行学习
System.out.println(JSON.toJSONString(distinguish.getModel()));//输出模型保存,将模型实体类序列化为json保存
///////////////////////////////////////////////////////////////////////
初始化过程
Picture picture = new Picture();//图片解析类
Config config = new Config();//配置文件
config.setTypeNub(2);//设置类别数量
config.setBoxSize(125);//设置物体大小 单位像素
config.setPictureNumber(5);//设置每个种类训练图片数量
config.setPth(0.7);//设置可信概率,只有超过可信概率阈值,得出的结果才是可信的
config.setShowLog(true);//输出学习时打印数据
Distinguish distinguish = new Distinguish(config);//识别类
distinguish.insertModel(JSONObject.parseObject(ModelData.DATA, Model.class));//将之前训练时保存的训练模型反序列化为实体类后,注入模型
完成后请单例Distinguish类,即完成系统启动时初始化过程
///////////////////////////////////////////////////////////////////////
识别过程
Distinguish distinguish; 此识别类为系统启动时已经初始化的 单例distinguish,识别过程请不要 "new" 这个类
for (int i = 1; i < 8; i++) {
System.out.println("i====" + i);
ThreeChannelMatrix t = picture.getThreeMatrix("E:\\ls\\fp15\\t" + i + ".jpg");//将识别图片转化为矩阵
Map<Integer, Double> map = distinguish.distinguish(t);//识别结果
for (Map.Entry<Integer, Double> entry : map.entrySet()) {
System.out.println(entry.getKey() + ":" + entry.getValue());//识别结果打印
}
}
////////////////////////////////////////////////////////////////////////////////////
识别结果打印说明(此为本包提供的测试图片样本的 输出结果说明,在之前的训练中橘子设置的id为2,苹果为3)
i====1//第一张图 结果为 橘子,出现2:代表类别。:0.8874306751020916,带表该类别权重,权重越高说明该类别的物品在当前 图片中数量越多或者面积越大。
2:0.8874306751020916 说明(图1有橘子,权重为:0.8874306751020916)
i====2
2:0.8878192183606407
i====3
3:0.7233916245920673说明(图3有苹果,权重为:0.7233916245920673)
i====4
2:0.9335699571468958说明(图4有橘子,权重为:0.9335699571468958)
3:0.7750825597199661说明(图4有苹果,权重为:0.7750825597199661)
i====5
3:0.8481590575557582
i====6
2:0.7971025523095067
i====7
2:1.5584968376080388(图7有橘子,权重为:1.5584968376080388)
3:0.8754957897385587(图7有苹果,权重为:0.8754957897385587)
本演示样例代码位置在: src/test/java/org/wlld/ImageTest.java
本演示训练素材位置在: src/test/image
注意:以上图片识别代码样例为训练素材为物品全图充满图片(自己看能看到橘子训练图片为全图充满,苹果也是).自行开发时用以上代码样例时,请也使用全图充满训练物品的图片来做训练,非全图充满训练素材图训练api有变化!
通过给图片生成摘要id进行快速相似度对比
//参数分别为:
//第一个参数:threeChannelMatrix,图片矩阵(图片矩阵如何提取,上文有讲不在阐述)
//第二个参数:boxSize,将一张图片横纵各分为几个区域提取特征
参数说明:该值越大,摘要id敏感度越高,该参数有最大值。最大值为图片:图片最小边长/5,超过会报错数组越界
//第三个参数:regionSize,相似特征区域分区种类数量
参数说明:该值越大,摘要id敏感度越高
//返回name 即为该图片摘要id,通过id逐位对比即可对比相似程度
//什么是id敏感度:
//id敏感度越高,对图片变化越敏感,越适合越大的检索区域匹配,即特征越细致,但缺点id长度越长。
//id敏感度越低,对图片变化越不敏感,越适合越小的检索区域匹配,特征越粗,优点是id长度越短。
FastPictureExcerpt fastPictureExcerpt = new FastPictureExcerpt();
String name = fastPictureExcerpt.creatImageName(threeChannelMatrix, 5, 10);
自然语言分类最简API 说明:
//通过txt默认格式进行读取
TemplateReader templateReader = new TemplateReader();
WordTemple wordTemple = new WordTemple();//初始化语言模版,该语言模板训练结束后一定要static出来,在内存中长期持有,Talk识别构造参数进行复用
//wordTemple.setTreeNub(9);
//wordTemple.setTrustPunishment(0.5);
//读取语言模版,第一个参数是模版地址,第二个参数是编码方式 (教程里的第三个参数已经省略)
//同时也是学习过程
templateReader.read("/Users/lidapeng/Desktop/myDocument/model.txt", "UTF-8", wordTemple);
Talk talk = new Talk(wordTemple);
//输入语句进行识别,若有标点符号会形成LIST中的每个元素
//返回的集合中每个值代表了输入语句,每个标点符号前语句的分类
List<Integer> list = talk.talk("空调坏了,帮我修一修");
System.out.println(list);
/////////////////////////////////自定义输入训练语句
WordTemple wordTemple = new WordTemple();//初始化语言模版,该语言模板训练结束后一定要static出来,在内存中长期持有,Talk识别构造参数进行复用
Tokenizer tokenizer = new Tokenizer(wordTemple);//学习类
//训练模板 主键为类别id,值为该类别id的语句集合
//注意
//1,若训练量不足,建议训练语句通过标点符号拆分为若干句,且不要将标点符号带入训练语句
//2,包含数字的语句用统一的占位符代替 例如 35,3,36% 变为 #,#,#%
Map<Integer, List<String>> model = new HashMap<>();
//开始训练
tokenizer.start(model);
///////////////////////////////////单纯对输入语句进行切词结果返回,不进行识别
wordTemple.setSplitWord(true);//将模板设置成纯切词模式
List<List<String>> lists = talk.getSplitWord("空调坏了,帮我修一修");
for (List<String> list : lists) {
System.out.println(list);
}
神经网络最简API说明
//创建一个DNN神经网络管理器
NerveManager nerveManager = new NerveManager(...);
//构造参数
//sensoryNerveNub 感知神经元数量 即输入特征数量
//hiddenNerverNub 每一层隐层神经元的数量
//outNerveNub 输出神经元数量 即分类的类别
//hiddenDepth 隐层神经元深度,即学习深度
//activeFunction 激活函数
//isDynamic 是否启用动态神经元数量(没有特殊需求建议为静态,动态需要专业知识)
public NerveManager(int sensoryNerveNub, int hiddenNerverNub, int outNerveNub, int hiddenDepth, ActiveFunction activeFunction, boolean isDynamic)
nerveManager.getSensoryNerves()获取感知神经元集合
//eventId:事件ID
//parameter:输入特征值
//isStudy:是否是学习
//E:特征标注
//OutBack 回调类
SensoryNerv.postMessage(long eventId, double parameter, boolean isStudy, Map<Integer, Double> E, OutBack outBack)
//每一次输出结果都会返回给回调类,通过回调类拿取输出结果,并通过eventId来对应事件
随机森林最简API说明
//创建一个内存中的数据表
DataTable dataTable = new DataTable(column);
//构造参数是列名集合
public DataTable(Set<String> key)
//指定主列名集合中该表的主键
dataTable.setKey("point");
//创建一片随机森林
RandomForest randomForest = new RandomForest(7);
//构造参数为森林里的树木数量
public RandomForest(int treeNub)
//唤醒随机森林里的树木
randomForest.init(dataTable);
//将加入数据的实体类一条条插入森林中
randomForest.insert(Object object);
//森林进行学习
randomForest.study();
//插入特征数据,森林对该数据的最终分类结果进行判断
randomForest.forest(Object objcet);