fastNLP/tutorials/fastnlp_tutorial_3.ipynb

454 lines
15 KiB
Plaintext
Raw Normal View History

2022-05-14 15:53:14 +08:00
{
"cells": [
{
"cell_type": "markdown",
"id": "213d538c",
"metadata": {},
"source": [
2022-05-17 18:04:15 +08:00
"# T3. dataloader 的内部结构和基本使用\n",
2022-05-14 15:53:14 +08:00
"\n",
2022-05-18 15:41:24 +08:00
"  1   fastNLP 中的 dataloader\n",
2022-05-14 15:53:14 +08:00
" \n",
2022-06-04 00:03:40 +08:00
"    1.1   dataloader 的基本介绍\n",
2022-05-14 15:53:14 +08:00
"\n",
2022-06-04 00:03:40 +08:00
"    1.2   dataloader 的函数创建\n",
2022-05-14 15:53:14 +08:00
"\n",
2022-05-18 15:41:24 +08:00
"  2   fastNLP 中 dataloader 的延伸\n",
2022-05-14 15:53:14 +08:00
"\n",
2022-05-18 15:41:24 +08:00
"    2.1   collator 的概念与使用\n",
2022-05-14 15:53:14 +08:00
"\n",
2022-05-18 15:41:24 +08:00
"    2.2   sampler 的概念与使用"
]
},
{
"cell_type": "markdown",
"id": "85857115",
"metadata": {},
"source": [
"## 1. fastNLP 中的 dataloader\n",
2022-05-14 15:53:14 +08:00
"\n",
2022-06-04 00:03:40 +08:00
"### 1.1 dataloader 的基本介绍\n",
2022-05-18 15:41:24 +08:00
"\n",
2022-06-04 00:03:40 +08:00
"在`fastNLP 0.8`的开发中,最关键的开发目标就是**实现`fastNLP`对当前主流机器学习框架**,例如\n",
"\n",
"  **较为火热的`pytorch`**,以及**国产的`paddle`和`jittor`的兼容**,扩大受众的同时,也是助力国产\n",
"\n",
"本着分而治之的思想,我们可以将`fastNLP 0.8`对`pytorch`、`paddle`、`jittor`框架的兼容,划分为\n",
"\n",
"    **对数据预处理**、**批量`batch`的划分与补齐**、**模型训练**、**模型评测****四个部分的兼容**\n",
"\n",
"  针对数据预处理,我们已经在`tutorial-1`中介绍了`dataset`和`vocabulary`的使用\n",
"\n",
"    而结合`tutorial-0`,我们可以发现**数据预处理环节本质上是框架无关的**\n",
"\n",
"    因为在不同框架下,读取的原始数据格式都差异不大,彼此也很容易转换\n",
"\n",
"只有涉及到张量、模型,不同框架才展现出其各自的特色:**`pytorch`中的`tensor`和`nn.Module`**\n",
"\n",
"    **在`paddle`中称为`tensor`和`nn.Layer`****在`jittor`中则称为`Var`和`Module`**\n",
"\n",
"    因此,**模型训练、模型评测****是兼容的重难点**,我们将会在`tutorial-5`中详细介绍\n",
"\n",
"  针对批量`batch`的处理,作为`fastNLP 0.8`中框架无关部分想框架相关部分的过渡\n",
"\n",
"    就是`dataloader`模块的职责,这也是本篇教程`tutorial-3`讲解的重点\n",
"\n",
"**`dataloader`模块的职责**,详细划分可以包含以下三部分,**采样划分、补零对齐、框架匹配**\n",
"\n",
"    第一,确定`batch`大小,确定采样方式,划分后通过迭代器即可得到`batch`序列\n",
"\n",
"    第二,对于序列处理,这也是`fastNLP`主要针对的,将同个`batch`内的数据对齐\n",
"\n",
"    第三,**`batch`内数据格式要匹配框架****但`batch`结构需保持一致****参数匹配机制**\n",
"\n",
"  对此,`fastNLP 0.8`给出了 **`TorchDataLoader`、`PaddleDataLoader`和`JittorDataLoader`**\n",
"\n",
"    分别针对并匹配不同框架,但彼此之间参数名、属性、方法仍然类似,前两者大致如下表所示\n",
"\n",
"| <div align=\"center\">名称</div> | <div align=\"center\">参数</div> | <div align=\"center\">属性</div> | <div align=\"center\">功能</div> | <div align=\"center\">内容</div> |\n",
"|:--|:--:|:--:|:--|:--|\n",
"| **`dataset`** | √ | √ | 指定`dataloader`的数据内容 | |\n",
"| `batch_size` | √ | √ | 指定`dataloader`的`batch`大小 | 默认`16` |\n",
"| `shuffle` | √ | √ | 指定`dataloader`的数据是否打乱 | 默认`False` |\n",
"| `collate_fn` | √ | √ | 指定`dataloader`的`batch`打包方法 | 视框架而定 |\n",
"| `sampler` | √ | √ | | 默认`None` |\n",
"| `batch_sampler` | √ | √ | | 默认`None` |\n",
"| `drop_last` | √ | √ | 指定`dataloader`划分`batch`时是否丢弃剩余的 | 默认`False` |\n",
"| `cur_batch_indices` | | √ | 记录`dataloader`当前遍历批量序号 | |\n",
"| `num_workers` | √ | √ | 指定`dataloader`开启子进程数量 | 默认`0` |\n",
"| `worker_init_fn` | √ | √ | 指定`dataloader`子进程初始方法 | 默认`None` |\n",
"| `generator` | √ | √ | 指定`dataloader`子进程随机种子 | 默认`None` |\n",
"| `prefetch_factor` | | √ | 指定为每个`worker`装载的`sampler`数量 | 默认`2` |"
2022-05-14 15:53:14 +08:00
]
},
2022-05-17 18:04:15 +08:00
{
"cell_type": "markdown",
2022-06-04 00:03:40 +08:00
"id": "60a8a224",
2022-05-17 18:04:15 +08:00
"metadata": {},
"source": [
2022-06-04 00:03:40 +08:00
"&emsp; 论及`dataloader`的函数,其中,`get_batch_indices`用来获取当前遍历到的`batch`序号,其他函数\n",
"\n",
"&emsp; &emsp; 包括`set_ignore`、`set_pad`和`databundle`类似,请参考`tutorial-2`,此处不做更多介绍\n",
2022-05-17 18:04:15 +08:00
"\n",
2022-06-04 00:03:40 +08:00
"&emsp; &emsp; 以下是`tutorial-2`中已经介绍过的数据预处理流程,接下来是对相关数据进行`dataloader`处理"
2022-05-17 18:04:15 +08:00
]
},
{
"cell_type": "code",
2022-06-04 00:03:40 +08:00
"execution_count": 5,
2022-05-17 18:04:15 +08:00
"id": "aca72b49",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
2022-06-04 00:03:40 +08:00
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Processing: 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Processing: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Processing: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"+------------+------------------+-----------+------------------+--------------------+--------------------+\n",
"| SentenceId | Sentence | Sentiment | input_ids | token_type_ids | attention_mask |\n",
"+------------+------------------+-----------+------------------+--------------------+--------------------+\n",
"| 5 | A comedy-dram... | positive | [101, 1037, 4... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... |\n",
"| 2 | This quiet , ... | positive | [101, 2023, 4... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... |\n",
"| 1 | A series of e... | negative | [101, 1037, 2... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... |\n",
"| 6 | The Importanc... | neutral | [101, 1996, 5... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... |\n",
"+------------+------------------+-----------+------------------+--------------------+--------------------+\n"
]
}
],
2022-05-17 18:04:15 +08:00
"source": [
2022-06-04 00:03:40 +08:00
"import sys\n",
"sys.path.append('..')\n",
"\n",
2022-05-18 15:41:24 +08:00
"import pandas as pd\n",
"from functools import partial\n",
"from fastNLP.transformers.torch import BertTokenizer\n",
"\n",
"from fastNLP import DataSet\n",
"from fastNLP import Vocabulary\n",
"from fastNLP.io import DataBundle\n",
"\n",
"\n",
"class PipeDemo:\n",
2022-06-04 00:03:40 +08:00
" def __init__(self, tokenizer='bert-base-uncased'):\n",
2022-05-18 15:41:24 +08:00
" self.tokenizer = BertTokenizer.from_pretrained(tokenizer)\n",
"\n",
" def process_from_file(self, path='./data/test4dataset.tsv'):\n",
2022-06-04 00:03:40 +08:00
" datasets = DataSet.from_pandas(pd.read_csv(path, sep='\\t'))\n",
2022-05-18 15:41:24 +08:00
" train_ds, test_ds = datasets.split(ratio=0.7)\n",
" train_ds, dev_ds = datasets.split(ratio=0.8)\n",
" data_bundle = DataBundle(datasets={'train': train_ds, 'dev': dev_ds, 'test': test_ds})\n",
2022-05-17 18:04:15 +08:00
"\n",
2022-05-18 15:41:24 +08:00
" encode = partial(self.tokenizer.encode_plus, max_length=100, truncation=True,\n",
" return_attention_mask=True)\n",
2022-06-04 00:03:40 +08:00
" data_bundle.apply_field_more(encode, field_name='Sentence', progress_bar='tqdm')\n",
" \n",
2022-05-18 15:41:24 +08:00
" target_vocab = Vocabulary(padding=None, unknown=None)\n",
"\n",
2022-06-04 00:03:40 +08:00
" target_vocab.from_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='Sentiment')\n",
" target_vocab.index_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='Sentiment',\n",
2022-05-18 15:41:24 +08:00
" new_field_name='target')\n",
"\n",
" data_bundle.set_pad('input_ids', pad_val=self.tokenizer.pad_token_id)\n",
2022-06-04 00:03:40 +08:00
" data_bundle.set_ignore('SentenceId', 'Sentence', 'Sentiment') \n",
" return data_bundle\n",
"\n",
" \n",
"pipe = PipeDemo(tokenizer='bert-base-uncased')\n",
"\n",
"data_bundle = pipe.process_from_file('./data/test4dataset.tsv')"
2022-05-17 18:04:15 +08:00
]
},
{
"cell_type": "markdown",
2022-06-04 00:03:40 +08:00
"id": "76e6b8ab",
2022-05-17 18:04:15 +08:00
"metadata": {},
"source": [
2022-06-04 00:03:40 +08:00
"### 1.2 dataloader 的函数创建\n",
"\n",
"在`fastNLP 0.8`中,**更方便、可能更常用的`dataloader`创建方法是通过`prepare_xx_dataloader`函数**\n",
"\n",
"&emsp; 例如下方的`prepare_torch_dataloader`函数,指定必要参数,读取数据集,生成对应`dataloader`\n",
"\n",
"&emsp; 类型为`TorchDataLoader`,只能适用于`pytorch`框架,因此对应`trainer`初始化时`driver='torch'`"
2022-05-17 18:04:15 +08:00
]
},
{
"cell_type": "code",
2022-06-04 00:03:40 +08:00
"execution_count": 7,
"id": "5fd60e42",
2022-05-18 15:41:24 +08:00
"metadata": {},
2022-05-17 18:04:15 +08:00
"outputs": [],
2022-05-18 15:41:24 +08:00
"source": [
2022-06-04 00:03:40 +08:00
"from fastNLP import prepare_torch_dataloader\n",
2022-05-18 15:41:24 +08:00
"\n",
2022-06-04 00:03:40 +08:00
"train_dataset = data_bundle.get_dataset('train')\n",
"evaluate_dataset = data_bundle.get_dataset('dev')\n",
"\n",
"train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
"evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
2022-05-18 15:41:24 +08:00
]
2022-05-17 18:04:15 +08:00
},
{
"cell_type": "markdown",
2022-06-04 00:03:40 +08:00
"id": "7c53f181",
2022-05-17 18:04:15 +08:00
"metadata": {},
"source": [
2022-06-04 00:03:40 +08:00
"```python\n",
"trainer = Trainer(\n",
" model=model,\n",
" train_dataloader=train_dataloader,\n",
" optimizers=optimizer,\n",
"\t...\n",
"\tdriver='torch',\n",
"\tdevice='cuda',\n",
"\t...\n",
" evaluate_dataloaders=evaluate_dataloader, \n",
" metrics={'acc': Accuracy()},\n",
"\t...\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "9f457a6e",
"metadata": {},
"source": [
"之所以称`prepare_xx_dataloader`函数更方便,是因为其**导入对象不仅可也是`DataSet`类型****还可以**\n",
"\n",
"&emsp; **是`DataBundle`类型**,不过数据集名称需要是`'train'`、`'dev'`、`'test'`供`fastNLP`识别\n",
"\n",
"&emsp; 例如下方就是**直接通过`prepare_paddle_dataloader`函数生成基于`PaddleDataLoader`的字典**\n",
"\n",
"&emsp; 在接下来`trainer`的初始化过程中,按如下方式使用即可,除了初始化时`driver='paddle'`外\n",
"\n",
"&emsp; &emsp; 这里也可以看出 **`evaluate_dataloaders`的妙处**,一次评测可以针对多个数据集"
2022-05-18 15:41:24 +08:00
]
},
{
"cell_type": "code",
2022-06-04 00:03:40 +08:00
"execution_count": 6,
2022-05-18 15:41:24 +08:00
"id": "7827557d",
"metadata": {},
"outputs": [],
"source": [
2022-06-04 00:03:40 +08:00
"from fastNLP import prepare_paddle_dataloader\n",
2022-05-18 15:41:24 +08:00
"\n",
2022-06-04 00:03:40 +08:00
"dl_bundle = prepare_paddle_dataloader(data_bundle, batch_size=16, shuffle=True)"
2022-05-18 15:41:24 +08:00
]
},
{
"cell_type": "markdown",
"id": "d898cf40",
"metadata": {},
"source": [
"```python\n",
"trainer = Trainer(\n",
" model=model,\n",
" train_dataloader=dl_bundle['train'],\n",
" optimizers=optimizer,\n",
"\t...\n",
2022-06-04 00:03:40 +08:00
"\tdriver='paddle',\n",
"\tdevice='gpu',\n",
2022-05-18 15:41:24 +08:00
"\t...\n",
" evaluate_dataloaders={'dev': dl_bundle['dev'], 'test': dl_bundle['test']}, \n",
" metrics={'acc': Accuracy()},\n",
"\t...\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "d74d0523",
"metadata": {},
"source": [
"## 2. fastNLP 中 dataloader 的延伸\n",
"\n",
"### 2.1 collator 的概念与使用\n",
"\n",
"在`fastNLP 0.8`中,在数据加载模块`DataLoader`之前,还存在其他的一些模块,负责例如对文本数据\n",
"\n",
"&emsp; 进行补零对齐,即 **核对器`collator`模块**,进行分词标注,即 **分词器`tokenizer`模块**\n",
"\n",
"&emsp; 本节将对`fastNLP`中的核对器`collator`等展开介绍,分词器`tokenizer`将在下一节中详细介绍\n",
"\n",
"在`fastNLP 0.8`中,**核对器`collator`模块负责文本序列的补零对齐**,通过"
2022-05-17 18:04:15 +08:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "651baef6",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from fastNLP import prepare_torch_dataloader\n",
"\n",
"dl_bundle = prepare_torch_dataloader(data_bundle, train_batch_size=2)\n",
"\n",
"print(type(dl_bundle), type(dl_bundle['train']))"
]
},
2022-06-04 00:03:40 +08:00
{
"cell_type": "markdown",
"id": "5f816ef5",
"metadata": {},
"source": [
"&emsp; "
]
},
2022-05-17 18:04:15 +08:00
{
"cell_type": "code",
"execution_count": null,
"id": "726ba357",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"dataloader = prepare_torch_dataloader(datasets['train'], train_batch_size=2)\n",
"print(type(dataloader))\n",
"print(dir(dataloader))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d0795b3e",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"dataloader.collate_fn"
]
},
{
"cell_type": "markdown",
2022-05-18 15:41:24 +08:00
"id": "f9bbd9a7",
2022-05-17 18:04:15 +08:00
"metadata": {},
"source": [
2022-05-18 15:41:24 +08:00
"### 2.2 sampler 的概念与使用"
2022-05-17 18:04:15 +08:00
]
},
{
"cell_type": "code",
"execution_count": null,
2022-05-18 15:41:24 +08:00
"id": "b0c3c58d",
2022-05-17 18:04:15 +08:00
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
2022-05-18 15:41:24 +08:00
"dataloader.batch_sampler"
2022-05-17 18:04:15 +08:00
]
},
{
2022-05-18 15:41:24 +08:00
"cell_type": "markdown",
"id": "51bf0878",
"metadata": {},
2022-05-17 18:04:15 +08:00
"source": [
2022-05-18 15:41:24 +08:00
"&emsp; "
2022-05-17 18:04:15 +08:00
]
},
{
"cell_type": "code",
"execution_count": null,
2022-05-18 15:41:24 +08:00
"id": "3fd2486f",
2022-05-17 18:04:15 +08:00
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
2022-05-14 15:53:14 +08:00
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2022-05-30 22:48:28 +08:00
"version": "3.7.13"
2022-05-17 18:04:15 +08:00
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
2022-05-14 15:53:14 +08:00
}
},
"nbformat": 4,
"nbformat_minor": 5
}