fastNLP/tutorials/tutorial_5_loss_optimizer.ipynb

604 lines
16 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 使用Trainer和Tester快速训练和测试"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 数据读入和处理"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/remote-home/ynzheng/anaconda3/envs/now/lib/python3.8/site-packages/FastNLP-0.5.0-py3.8.egg/fastNLP/io/loader/classification.py:340: UserWarning: SST2's test file has no target.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"In total 3 datasets:\n",
"\ttest has 1821 instances.\n",
"\ttrain has 67349 instances.\n",
"\tdev has 872 instances.\n",
"In total 2 vocabs:\n",
"\twords has 16292 entries.\n",
"\ttarget has 2 entries.\n",
"\n",
"+-----------------------------------+--------+-----------------------------------+---------+\n",
"| raw_words | target | words | seq_len |\n",
"+-----------------------------------+--------+-----------------------------------+---------+\n",
"| hide new secretions from the p... | 1 | [4110, 97, 12009, 39, 2, 6843,... | 7 |\n",
"+-----------------------------------+--------+-----------------------------------+---------+\n",
"Vocabulary(['hide', 'new', 'secretions', 'from', 'the']...)\n"
]
}
],
"source": [
"from fastNLP.io import SST2Pipe\n",
"\n",
"pipe = SST2Pipe()\n",
"databundle = pipe.process_from_file()\n",
"vocab = databundle.get_vocab('words')\n",
"print(databundle)\n",
"print(databundle.get_dataset('train')[0])\n",
"print(databundle.get_vocab('words'))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4925 872 75\n"
]
}
],
"source": [
"train_data = databundle.get_dataset('train')[:5000]\n",
"train_data, test_data = train_data.split(0.015)\n",
"dev_data = databundle.get_dataset('dev')\n",
"print(len(train_data),len(dev_data),len(test_data))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"+-------------+-----------+--------+-------+---------+\n",
"| field_names | raw_words | target | words | seq_len |\n",
"+-------------+-----------+--------+-------+---------+\n",
"| is_input | False | False | True | True |\n",
"| is_target | False | True | False | False |\n",
"| ignore_type | | False | False | False |\n",
"| pad_value | | 0 | 0 | 0 |\n",
"+-------------+-----------+--------+-------+---------+\n"
]
},
{
"data": {
"text/plain": [
"<prettytable.PrettyTable at 0x7f49ec540160>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_data.print_field_meta()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 使用内置模型训练"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP.models import CNNText\n",
"\n",
"#词嵌入的维度\n",
"EMBED_DIM = 100\n",
"\n",
"#使用CNNText的时候第一个参数输入一个tuple,作为模型定义embedding的参数\n",
"#还可以传入 kernel_nums, kernel_sizes, padding, dropout的自定义值\n",
"model_cnn = CNNText((len(vocab),EMBED_DIM), num_classes=2, dropout=0.1)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP import AccuracyMetric\n",
"from fastNLP import Const\n",
"\n",
"# metrics=AccuracyMetric() 在本例中与下面这行代码等价\n",
"metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP import CrossEntropyLoss\n",
"\n",
"# loss = CrossEntropyLoss() 在本例中与下面这行代码等价\n",
"loss = CrossEntropyLoss(pred=Const.OUTPUT, target=Const.TARGET)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# 这表示构建了一个损失函数类由func计算损失函数其中将从模型返回值或者DataSet的target=True的field\n",
"# 当中找到一个参数名为`pred`的参数传入func一个参数名为`input`的参数;找到一个参数名为`label`的参数\n",
"# 传入func作为一个名为`target`的参数\n",
"#下面自己构建了一个交叉熵函数和之后直接使用fastNLP中的交叉熵函数是一个效果\n",
"import torch\n",
"from fastNLP import LossFunc\n",
"func = torch.nn.functional.cross_entropy\n",
"loss_func = LossFunc(func, input=Const.OUTPUT, target=Const.TARGET)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"import torch.optim as optim\n",
"\n",
"#使用 torch.optim 定义优化器\n",
"optimizer=optim.RMSprop(model_cnn.parameters(), lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input fields after batch(if batch size is 2):\n",
"\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 4]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"training epochs started 2020-02-27-11-31-25\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=3080.0), HTML(value='')), layout=Layout(d…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.75 seconds!\n",
"\r",
"Evaluation on dev at Epoch 1/10. Step:308/3080: \n",
"\r",
"AccuracyMetric: acc=0.751147\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.83 seconds!\n",
"\r",
"Evaluation on dev at Epoch 2/10. Step:616/3080: \n",
"\r",
"AccuracyMetric: acc=0.755734\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 1.32 seconds!\n",
"\r",
"Evaluation on dev at Epoch 3/10. Step:924/3080: \n",
"\r",
"AccuracyMetric: acc=0.758028\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.88 seconds!\n",
"\r",
"Evaluation on dev at Epoch 4/10. Step:1232/3080: \n",
"\r",
"AccuracyMetric: acc=0.741972\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.96 seconds!\n",
"\r",
"Evaluation on dev at Epoch 5/10. Step:1540/3080: \n",
"\r",
"AccuracyMetric: acc=0.728211\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.87 seconds!\n",
"\r",
"Evaluation on dev at Epoch 6/10. Step:1848/3080: \n",
"\r",
"AccuracyMetric: acc=0.755734\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 1.04 seconds!\n",
"\r",
"Evaluation on dev at Epoch 7/10. Step:2156/3080: \n",
"\r",
"AccuracyMetric: acc=0.732798\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.57 seconds!\n",
"\r",
"Evaluation on dev at Epoch 8/10. Step:2464/3080: \n",
"\r",
"AccuracyMetric: acc=0.747706\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.48 seconds!\n",
"\r",
"Evaluation on dev at Epoch 9/10. Step:2772/3080: \n",
"\r",
"AccuracyMetric: acc=0.732798\n",
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.48 seconds!\n",
"\r",
"Evaluation on dev at Epoch 10/10. Step:3080/3080: \n",
"\r",
"AccuracyMetric: acc=0.740826\n",
"\n",
"\r\n",
"In Epoch:3/Step:924, got best dev performance:\n",
"AccuracyMetric: acc=0.758028\n",
"Reloaded the best model.\n"
]
},
{
"data": {
"text/plain": [
"{'best_eval': {'AccuracyMetric': {'acc': 0.758028}},\n",
" 'best_epoch': 3,\n",
" 'best_step': 924,\n",
" 'seconds': 160.58}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Trainer\n",
"\n",
"#训练的轮数和batch size\n",
"N_EPOCHS = 10\n",
"BATCH_SIZE = 16\n",
"\n",
"#如果在定义trainer的时候没有传入optimizer参数模型默认的优化器为torch.optim.Adam且learning rate为lr=4e-3\n",
"#这里只使用了loss作为损失函数输入感兴趣可以尝试其他损失函数如之前自定义的loss_func作为输入\n",
"trainer = Trainer(model=model_cnn, train_data=train_data, dev_data=dev_data, loss=loss, metrics=metrics,\n",
"optimizer=optimizer,n_epochs=N_EPOCHS, batch_size=BATCH_SIZE)\n",
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=5.0), HTML(value='')), layout=Layout(disp…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"[tester] \n",
"AccuracyMetric: acc=0.773333\n"
]
},
{
"data": {
"text/plain": [
"{'AccuracyMetric': {'acc': 0.773333}}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Tester\n",
"\n",
"tester = Tester(test_data, model_cnn, metrics=AccuracyMetric())\n",
"tester.test()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python Now",
"language": "python",
"name": "now"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}