mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-04 05:07:44 +08:00
Merge branch 'dev0.5.0' of https://github.com/fastnlp/fastNLP into dev0.5.0
This commit is contained in:
commit
0af71936f3
30
README.md
30
README.md
@ -6,13 +6,14 @@
|
||||
![Hex.pm](https://img.shields.io/hexpm/l/plug.svg)
|
||||
[![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest)
|
||||
|
||||
fastNLP 是一款轻量级的 NLP 处理套件。你既可以使用它快速地完成一个命名实体识别(NER)、中文分词或文本分类任务; 也可以使用他构建许多复杂的网络模型,进行科研。它具有如下的特性:
|
||||
fastNLP 是一款轻量级的 NLP 处理套件。你既可以使用它快速地完成一个序列标注([NER](reproduction/seqence_labelling/ner/)、POS-Tagging等)、中文分词、文本分类、[Matching](reproduction/matching/)、指代消解、摘要等任务; 也可以使用它构建许多复杂的网络模型,进行科研。它具有如下的特性:
|
||||
|
||||
- 统一的Tabular式数据容器,让数据预处理过程简洁明了。内置多种数据集的DataSet Loader,省去预处理代码。
|
||||
- 各种方便的NLP工具,例如预处理embedding加载; 中间数据cache等;
|
||||
- 详尽的中文文档以供查阅;
|
||||
- 统一的Tabular式数据容器,让数据预处理过程简洁明了。内置多种数据集的DataSet Loader,省去预处理代码;
|
||||
- 多种训练、测试组件,例如训练器Trainer;测试器Tester;以及各种评测metrics等等;
|
||||
- 各种方便的NLP工具,例如预处理embedding加载(包括EMLo和BERT); 中间数据cache等;
|
||||
- 详尽的中文[文档](https://fastnlp.readthedocs.io/)、教程以供查阅;
|
||||
- 提供诸多高级模块,例如Variational LSTM, Transformer, CRF等;
|
||||
- 封装CNNText,Biaffine等模型可供直接使用;
|
||||
- 在序列标注、中文分词、文本分类、Matching、指代消解、摘要等任务上封装了各种模型可供直接使用; [详细链接](reproduction/)
|
||||
- 便捷且具有扩展性的训练器; 提供多种内置callback函数,方便实验记录、异常捕获等。
|
||||
|
||||
|
||||
@ -20,13 +21,14 @@ fastNLP 是一款轻量级的 NLP 处理套件。你既可以使用它快速地
|
||||
|
||||
fastNLP 依赖如下包:
|
||||
|
||||
+ numpy
|
||||
+ torch>=0.4.0
|
||||
+ tqdm
|
||||
+ nltk
|
||||
+ numpy>=1.14.2
|
||||
+ torch>=1.0.0
|
||||
+ tqdm>=4.28.1
|
||||
+ nltk>=3.4.1
|
||||
+ requests
|
||||
|
||||
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 PyTorch 官网 。
|
||||
在依赖包安装完成的情况,您可以在命令行执行如下指令完成安装
|
||||
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 [PyTorch 官网](https://pytorch.org/) 。
|
||||
在依赖包安装完成后,您可以在命令行执行如下指令完成安装
|
||||
|
||||
```shell
|
||||
pip install fastNLP
|
||||
@ -77,8 +79,8 @@ fastNLP 在 modules 模块中内置了三种模块的诸多组件,可以帮助
|
||||
fastNLP 为不同的 NLP 任务实现了许多完整的模型,它们都经过了训练和测试。
|
||||
|
||||
你可以在以下两个地方查看相关信息
|
||||
- [介绍](reproduction/)
|
||||
- [源码](fastNLP/models/)
|
||||
- [模型介绍](reproduction/)
|
||||
- [模型源码](fastNLP/models/)
|
||||
|
||||
## 项目结构
|
||||
|
||||
@ -93,7 +95,7 @@ fastNLP的大致工作流程如上图所示,而项目结构如下:
|
||||
</tr>
|
||||
<tr>
|
||||
<td><b> fastNLP.core </b></td>
|
||||
<td> 实现了核心功能,包括数据处理组件、训练器、测速器等 </td>
|
||||
<td> 实现了核心功能,包括数据处理组件、训练器、测试器等 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><b> fastNLP.models </b></td>
|
||||
|
@ -20,6 +20,7 @@ from collections import defaultdict
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ..core.const import Const
|
||||
from .utils import _CheckError
|
||||
from .utils import _CheckRes
|
||||
from .utils import _build_args
|
||||
@ -28,6 +29,7 @@ from .utils import _check_function_or_method
|
||||
from .utils import _get_func_signature
|
||||
from .utils import seq_len_to_mask
|
||||
|
||||
|
||||
class LossBase(object):
|
||||
"""
|
||||
所有loss的基类。如果想了解其中的原理,请查看源码。
|
||||
@ -95,22 +97,7 @@ class LossBase(object):
|
||||
# if func_spect.varargs:
|
||||
# raise NameError(f"Delete `*{func_spect.varargs}` in {get_func_signature(self.get_loss)}(Do not use "
|
||||
# f"positional argument.).")
|
||||
|
||||
def _fast_param_map(self, pred_dict, target_dict):
|
||||
"""Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
|
||||
such as pred_dict has one element, target_dict has one element
|
||||
|
||||
:param pred_dict:
|
||||
:param target_dict:
|
||||
:return: dict, if dict is not {}, pass it to self.evaluate. Otherwise do mapping.
|
||||
"""
|
||||
fast_param = {}
|
||||
if len(self._param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1:
|
||||
fast_param['pred'] = list(pred_dict.values())[0]
|
||||
fast_param['target'] = list(target_dict.values())[0]
|
||||
return fast_param
|
||||
return fast_param
|
||||
|
||||
def __call__(self, pred_dict, target_dict, check=False):
|
||||
"""
|
||||
:param dict pred_dict: 模型的forward函数返回的dict
|
||||
@ -118,11 +105,7 @@ class LossBase(object):
|
||||
:param Boolean check: 每一次执行映射函数的时候是否检查映射表,默认为不检查
|
||||
:return:
|
||||
"""
|
||||
fast_param = self._fast_param_map(pred_dict, target_dict)
|
||||
if fast_param:
|
||||
loss = self.get_loss(**fast_param)
|
||||
return loss
|
||||
|
||||
|
||||
if not self._checked:
|
||||
# 1. check consistence between signature and _param_map
|
||||
func_spect = inspect.getfullargspec(self.get_loss)
|
||||
@ -212,7 +195,6 @@ class LossFunc(LossBase):
|
||||
if not isinstance(key_map, dict):
|
||||
raise RuntimeError(f"Loss error: key_map except a {type({})} but got a {type(key_map)}")
|
||||
self._init_param_map(key_map, **kwargs)
|
||||
|
||||
|
||||
|
||||
class CrossEntropyLoss(LossBase):
|
||||
@ -226,7 +208,7 @@ class CrossEntropyLoss(LossBase):
|
||||
:param seq_len: 句子的长度, 长度之外的token不会计算loss。。
|
||||
:param padding_idx: padding的index,在计算loss时将忽略target中标号为padding_idx的内容, 可以通过该值代替
|
||||
传入seq_len.
|
||||
:param str reduction: 支持'elementwise_mean'和'sum'.
|
||||
:param str reduction: 支持'mean','sum'和'none'.
|
||||
|
||||
Example::
|
||||
|
||||
@ -234,16 +216,16 @@ class CrossEntropyLoss(LossBase):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, pred=None, target=None, seq_len=None, padding_idx=-100, reduction='elementwise_mean'):
|
||||
def __init__(self, pred=None, target=None, seq_len=None, padding_idx=-100, reduction='mean'):
|
||||
super(CrossEntropyLoss, self).__init__()
|
||||
self._init_param_map(pred=pred, target=target, seq_len=seq_len)
|
||||
self.padding_idx = padding_idx
|
||||
assert reduction in ('elementwise_mean', 'sum')
|
||||
assert reduction in ('mean', 'sum', 'none')
|
||||
self.reduction = reduction
|
||||
|
||||
def get_loss(self, pred, target, seq_len=None):
|
||||
if pred.dim()>2:
|
||||
if pred.size(1)!=target.size(1):
|
||||
if pred.dim() > 2:
|
||||
if pred.size(1) != target.size(1):
|
||||
pred = pred.transpose(1, 2)
|
||||
pred = pred.reshape(-1, pred.size(-1))
|
||||
target = target.reshape(-1)
|
||||
@ -263,15 +245,18 @@ class L1Loss(LossBase):
|
||||
|
||||
:param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred`
|
||||
:param target: 参数映射表中 `target` 的映射关系,None表示映射关系为 `target` >`target`
|
||||
:param str reduction: 支持'mean','sum'和'none'.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, pred=None, target=None):
|
||||
def __init__(self, pred=None, target=None, reduction='mean'):
|
||||
super(L1Loss, self).__init__()
|
||||
self._init_param_map(pred=pred, target=target)
|
||||
assert reduction in ('mean', 'sum', 'none')
|
||||
self.reduction = reduction
|
||||
|
||||
def get_loss(self, pred, target):
|
||||
return F.l1_loss(input=pred, target=target)
|
||||
return F.l1_loss(input=pred, target=target, reduction=self.reduction)
|
||||
|
||||
|
||||
class BCELoss(LossBase):
|
||||
@ -282,14 +267,17 @@ class BCELoss(LossBase):
|
||||
|
||||
:param pred: 参数映射表中`pred`的映射关系,None表示映射关系为`pred`->`pred`
|
||||
:param target: 参数映射表中`target`的映射关系,None表示映射关系为`target`->`target`
|
||||
:param str reduction: 支持'mean','sum'和'none'.
|
||||
"""
|
||||
|
||||
def __init__(self, pred=None, target=None):
|
||||
def __init__(self, pred=None, target=None, reduction='mean'):
|
||||
super(BCELoss, self).__init__()
|
||||
self._init_param_map(pred=pred, target=target)
|
||||
assert reduction in ('mean', 'sum', 'none')
|
||||
self.reduction = reduction
|
||||
|
||||
def get_loss(self, pred, target):
|
||||
return F.binary_cross_entropy(input=pred, target=target)
|
||||
return F.binary_cross_entropy(input=pred, target=target, reduction=self.reduction)
|
||||
|
||||
|
||||
class NLLLoss(LossBase):
|
||||
@ -300,14 +288,20 @@ class NLLLoss(LossBase):
|
||||
|
||||
:param pred: 参数映射表中`pred`的映射关系,None表示映射关系为`pred`->`pred`
|
||||
:param target: 参数映射表中`target`的映射关系,None表示映射关系为`target`->`target`
|
||||
:param ignore_idx: ignore的index,在计算loss时将忽略target中标号为ignore_idx的内容, 可以通过该值代替
|
||||
传入seq_len.
|
||||
:param str reduction: 支持'mean','sum'和'none'.
|
||||
"""
|
||||
|
||||
def __init__(self, pred=None, target=None):
|
||||
def __init__(self, pred=None, target=None, ignore_idx=-100, reduction='mean'):
|
||||
super(NLLLoss, self).__init__()
|
||||
self._init_param_map(pred=pred, target=target)
|
||||
assert reduction in ('mean', 'sum', 'none')
|
||||
self.reduction = reduction
|
||||
self.ignore_idx = ignore_idx
|
||||
|
||||
def get_loss(self, pred, target):
|
||||
return F.nll_loss(input=pred, target=target)
|
||||
return F.nll_loss(input=pred, target=target, ignore_index=self.ignore_idx, reduction=self.reduction)
|
||||
|
||||
|
||||
class LossInForward(LossBase):
|
||||
@ -319,7 +313,7 @@ class LossInForward(LossBase):
|
||||
:param str loss_key: 在forward函数中loss的键名,默认为loss
|
||||
"""
|
||||
|
||||
def __init__(self, loss_key='loss'):
|
||||
def __init__(self, loss_key=Const.LOSS):
|
||||
super().__init__()
|
||||
if not isinstance(loss_key, str):
|
||||
raise TypeError(f"Only str allowed for loss_key, got {type(loss_key)}.")
|
||||
|
@ -11,21 +11,35 @@
|
||||
"""
|
||||
__all__ = [
|
||||
'EmbedLoader',
|
||||
|
||||
|
||||
'DataInfo',
|
||||
'DataSetLoader',
|
||||
|
||||
'CSVLoader',
|
||||
'JsonLoader',
|
||||
'ConllLoader',
|
||||
'SNLILoader',
|
||||
'SSTLoader',
|
||||
'PeopleDailyCorpusLoader',
|
||||
'Conll2003Loader',
|
||||
|
||||
'ModelLoader',
|
||||
'ModelSaver',
|
||||
|
||||
'SSTLoader',
|
||||
|
||||
'MatchingLoader',
|
||||
'SNLILoader',
|
||||
'MNLILoader',
|
||||
'QNLILoader',
|
||||
'QuoraLoader',
|
||||
'RTELoader',
|
||||
]
|
||||
|
||||
from .embed_loader import EmbedLoader
|
||||
from .dataset_loader import DataSetLoader, CSVLoader, JsonLoader, ConllLoader, \
|
||||
SNLILoader, SSTLoader, PeopleDailyCorpusLoader, Conll2003Loader
|
||||
from .base_loader import DataInfo, DataSetLoader
|
||||
from .dataset_loader import CSVLoader, JsonLoader, ConllLoader, \
|
||||
PeopleDailyCorpusLoader, Conll2003Loader
|
||||
from .model_io import ModelLoader, ModelSaver
|
||||
|
||||
from .data_loader.sst import SSTLoader
|
||||
from .data_loader.matching import MatchingLoader, SNLILoader, \
|
||||
MNLILoader, QNLILoader, QuoraLoader, RTELoader
|
||||
|
@ -10,6 +10,7 @@ from typing import Union, Dict
|
||||
import os
|
||||
from ..core.dataset import DataSet
|
||||
|
||||
|
||||
class BaseLoader(object):
|
||||
"""
|
||||
各个 Loader 的基类,提供了 API 的参考。
|
||||
@ -55,8 +56,6 @@ class BaseLoader(object):
|
||||
return obj
|
||||
|
||||
|
||||
|
||||
|
||||
def _download_from_url(url, path):
|
||||
try:
|
||||
from tqdm.auto import tqdm
|
||||
@ -115,13 +114,11 @@ class DataInfo:
|
||||
经过处理的数据信息,包括一系列数据集(比如:分开的训练集、验证集和测试集)及它们所用的词表和词嵌入。
|
||||
|
||||
:param vocabs: 从名称(字符串)到 :class:`~fastNLP.Vocabulary` 类型的dict
|
||||
:param embeddings: 从名称(字符串)到一系列 embedding 的dict,参考 :class:`~fastNLP.io.EmbedLoader`
|
||||
:param datasets: 从名称(字符串)到 :class:`~fastNLP.DataSet` 类型的dict
|
||||
"""
|
||||
|
||||
def __init__(self, vocabs: dict = None, embeddings: dict = None, datasets: dict = None):
|
||||
def __init__(self, vocabs: dict = None, datasets: dict = None):
|
||||
self.vocabs = vocabs or {}
|
||||
self.embeddings = embeddings or {}
|
||||
self.datasets = datasets or {}
|
||||
|
||||
def __repr__(self):
|
||||
@ -133,6 +130,7 @@ class DataInfo:
|
||||
_str += '\t{} has {} entries.\n'.format(name, len(vocab))
|
||||
return _str
|
||||
|
||||
|
||||
class DataSetLoader:
|
||||
"""
|
||||
别名::class:`fastNLP.io.DataSetLoader` :class:`fastNLP.io.dataset_loader.DataSetLoader`
|
||||
@ -213,7 +211,6 @@ class DataSetLoader:
|
||||
返回的 :class:`DataInfo` 对象有如下属性:
|
||||
|
||||
- vocabs: 由从数据集中获取的词表组成的字典,每个词表
|
||||
- embeddings: (可选) 数据集对应的词嵌入
|
||||
- datasets: 一个dict,包含一系列 :class:`~fastNLP.DataSet` 类型的对象。其中 field 的命名参考 :mod:`~fastNLP.core.const`
|
||||
|
||||
:param paths: 原始数据读取的路径
|
||||
|
19
fastNLP/io/data_loader/__init__.py
Normal file
19
fastNLP/io/data_loader/__init__.py
Normal file
@ -0,0 +1,19 @@
|
||||
"""
|
||||
用于读数据集的模块, 具体包括:
|
||||
|
||||
这些模块的使用方法如下:
|
||||
"""
|
||||
__all__ = [
|
||||
'SSTLoader',
|
||||
|
||||
'MatchingLoader',
|
||||
'SNLILoader',
|
||||
'MNLILoader',
|
||||
'QNLILoader',
|
||||
'QuoraLoader',
|
||||
'RTELoader',
|
||||
]
|
||||
|
||||
from .sst import SSTLoader
|
||||
from .matching import MatchingLoader, SNLILoader, \
|
||||
MNLILoader, QNLILoader, QuoraLoader, RTELoader
|
430
fastNLP/io/data_loader/matching.py
Normal file
430
fastNLP/io/data_loader/matching.py
Normal file
@ -0,0 +1,430 @@
|
||||
import os
|
||||
|
||||
from typing import Union, Dict
|
||||
|
||||
from ...core.const import Const
|
||||
from ...core.vocabulary import Vocabulary
|
||||
from ..base_loader import DataInfo, DataSetLoader
|
||||
from ..dataset_loader import JsonLoader, CSVLoader
|
||||
from ..file_utils import _get_base_url, cached_path, PRETRAINED_BERT_MODEL_DIR
|
||||
from ...modules.encoder._bert import BertTokenizer
|
||||
|
||||
|
||||
class MatchingLoader(DataSetLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.MatchingLoader` :class:`fastNLP.io.dataset_loader.MatchingLoader`
|
||||
|
||||
读取Matching任务的数据集
|
||||
|
||||
:param dict paths: key是数据集名称(如train、dev、test),value是对应的文件名
|
||||
"""
|
||||
|
||||
def __init__(self, paths: dict=None):
|
||||
self.paths = paths
|
||||
|
||||
def _load(self, path):
|
||||
"""
|
||||
:param str path: 待读取数据集的路径名
|
||||
:return: fastNLP.DataSet ds: 返回一个DataSet对象,里面必须包含3个field:其中两个分别为两个句子
|
||||
的原始字符串文本,第三个为标签
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def process(self, paths: Union[str, Dict[str, str]], dataset_name: str=None,
|
||||
to_lower=False, seq_len_type: str=None, bert_tokenizer: str=None,
|
||||
cut_text: int = None, get_index=True, auto_pad_length: int=None,
|
||||
auto_pad_token: str='<pad>', set_input: Union[list, str, bool]=True,
|
||||
set_target: Union[list, str, bool] = True, concat: Union[str, list, bool]=None, ) -> DataInfo:
|
||||
"""
|
||||
:param paths: str或者Dict[str, str]。如果是str,则为数据集所在的文件夹或者是全路径文件名:如果是文件夹,
|
||||
则会从self.paths里面找对应的数据集名称与文件名。如果是Dict,则为数据集名称(如train、dev、test)和
|
||||
对应的全路径文件名。
|
||||
:param str dataset_name: 如果在paths里传入的是一个数据集的全路径文件名,那么可以用dataset_name来定义
|
||||
这个数据集的名字,如果不定义则默认为train。
|
||||
:param bool to_lower: 是否将文本自动转为小写。默认值为False。
|
||||
:param str seq_len_type: 提供的seq_len类型,支持 ``seq_len`` :提供一个数字作为句子长度; ``mask`` :
|
||||
提供一个0/1的mask矩阵作为句子长度; ``bert`` :提供segment_type_id(第一个句子为0,第二个句子为1)和
|
||||
attention mask矩阵(0/1的mask矩阵)。默认值为None,即不提供seq_len
|
||||
:param str bert_tokenizer: bert tokenizer所使用的词表所在的文件夹路径
|
||||
:param int cut_text: 将长于cut_text的内容截掉。默认为None,即不截。
|
||||
:param bool get_index: 是否需要根据词表将文本转为index
|
||||
:param int auto_pad_length: 是否需要将文本自动pad到一定长度(超过这个长度的文本将会被截掉),默认为不会自动pad
|
||||
:param str auto_pad_token: 自动pad的内容
|
||||
:param set_input: 如果为True,则会自动将相关的field(名字里含有Const.INPUT的)设置为input,如果为False
|
||||
则不会将任何field设置为input。如果传入str或者List[str],则会根据传入的内容将相对应的field设置为input,
|
||||
于此同时其他field不会被设置为input。默认值为True。
|
||||
:param set_target: set_target将控制哪些field可以被设置为target,用法与set_input一致。默认值为True。
|
||||
:param concat: 是否需要将两个句子拼接起来。如果为False则不会拼接。如果为True则会在两个句子之间插入一个<sep>。
|
||||
如果传入一个长度为4的list,则分别表示插在第一句开始前、第一句结束后、第二句开始前、第二句结束后的标识符。如果
|
||||
传入字符串 ``bert`` ,则会采用bert的拼接方式,等价于['[CLS]', '[SEP]', '', '[SEP]'].
|
||||
:return:
|
||||
"""
|
||||
if isinstance(set_input, str):
|
||||
set_input = [set_input]
|
||||
if isinstance(set_target, str):
|
||||
set_target = [set_target]
|
||||
if isinstance(set_input, bool):
|
||||
auto_set_input = set_input
|
||||
else:
|
||||
auto_set_input = False
|
||||
if isinstance(set_target, bool):
|
||||
auto_set_target = set_target
|
||||
else:
|
||||
auto_set_target = False
|
||||
if isinstance(paths, str):
|
||||
if os.path.isdir(paths):
|
||||
path = {n: os.path.join(paths, self.paths[n]) for n in self.paths.keys()}
|
||||
else:
|
||||
path = {dataset_name if dataset_name is not None else 'train': paths}
|
||||
else:
|
||||
path = paths
|
||||
|
||||
data_info = DataInfo()
|
||||
for data_name in path.keys():
|
||||
data_info.datasets[data_name] = self._load(path[data_name])
|
||||
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
if auto_set_input:
|
||||
data_set.set_input(Const.INPUTS(0), Const.INPUTS(1))
|
||||
if auto_set_target:
|
||||
if Const.TARGET in data_set.get_field_names():
|
||||
data_set.set_target(Const.TARGET)
|
||||
|
||||
if to_lower:
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
data_set.apply(lambda x: [w.lower() for w in x[Const.INPUTS(0)]], new_field_name=Const.INPUTS(0),
|
||||
is_input=auto_set_input)
|
||||
data_set.apply(lambda x: [w.lower() for w in x[Const.INPUTS(1)]], new_field_name=Const.INPUTS(1),
|
||||
is_input=auto_set_input)
|
||||
|
||||
if bert_tokenizer is not None:
|
||||
if bert_tokenizer.lower() in PRETRAINED_BERT_MODEL_DIR:
|
||||
PRETRAIN_URL = _get_base_url('bert')
|
||||
model_name = PRETRAINED_BERT_MODEL_DIR[bert_tokenizer]
|
||||
model_url = PRETRAIN_URL + model_name
|
||||
model_dir = cached_path(model_url)
|
||||
# 检查是否存在
|
||||
elif os.path.isdir(bert_tokenizer):
|
||||
model_dir = bert_tokenizer
|
||||
else:
|
||||
raise ValueError(f"Cannot recognize BERT tokenizer from {bert_tokenizer}.")
|
||||
|
||||
words_vocab = Vocabulary(padding='[PAD]', unknown='[UNK]')
|
||||
with open(os.path.join(model_dir, 'vocab.txt'), 'r') as f:
|
||||
lines = f.readlines()
|
||||
lines = [line.strip() for line in lines]
|
||||
words_vocab.add_word_lst(lines)
|
||||
words_vocab.build_vocab()
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
||||
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
for fields in data_set.get_field_names():
|
||||
if Const.INPUT in fields:
|
||||
data_set.apply(lambda x: tokenizer.tokenize(' '.join(x[fields])), new_field_name=fields,
|
||||
is_input=auto_set_input)
|
||||
|
||||
if isinstance(concat, bool):
|
||||
concat = 'default' if concat else None
|
||||
if concat is not None:
|
||||
if isinstance(concat, str):
|
||||
CONCAT_MAP = {'bert': ['[CLS]', '[SEP]', '', '[SEP]'],
|
||||
'default': ['', '<sep>', '', '']}
|
||||
if concat.lower() in CONCAT_MAP:
|
||||
concat = CONCAT_MAP[concat]
|
||||
else:
|
||||
concat = 4 * [concat]
|
||||
assert len(concat) == 4, \
|
||||
f'Please choose a list with 4 symbols which at the beginning of first sentence ' \
|
||||
f'the end of first sentence, the begin of second sentence, and the end of second' \
|
||||
f'sentence. Your input is {concat}'
|
||||
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
data_set.apply(lambda x: [concat[0]] + x[Const.INPUTS(0)] + [concat[1]] + [concat[2]] +
|
||||
x[Const.INPUTS(1)] + [concat[3]], new_field_name=Const.INPUT)
|
||||
data_set.apply(lambda x: [w for w in x[Const.INPUT] if len(w) > 0], new_field_name=Const.INPUT,
|
||||
is_input=auto_set_input)
|
||||
|
||||
if seq_len_type is not None:
|
||||
if seq_len_type == 'seq_len': #
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
for fields in data_set.get_field_names():
|
||||
if Const.INPUT in fields:
|
||||
data_set.apply(lambda x: len(x[fields]),
|
||||
new_field_name=fields.replace(Const.INPUT, Const.INPUT_LEN),
|
||||
is_input=auto_set_input)
|
||||
elif seq_len_type == 'mask':
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
for fields in data_set.get_field_names():
|
||||
if Const.INPUT in fields:
|
||||
data_set.apply(lambda x: [1] * len(x[fields]),
|
||||
new_field_name=fields.replace(Const.INPUT, Const.INPUT_LEN),
|
||||
is_input=auto_set_input)
|
||||
elif seq_len_type == 'bert':
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
if Const.INPUT not in data_set.get_field_names():
|
||||
raise KeyError(f'Field ``{Const.INPUT}`` not in {data_name} data set: '
|
||||
f'got {data_set.get_field_names()}')
|
||||
data_set.apply(lambda x: [0] * (len(x[Const.INPUTS(0)]) + 2) + [1] * (len(x[Const.INPUTS(1)]) + 1),
|
||||
new_field_name=Const.INPUT_LENS(0), is_input=auto_set_input)
|
||||
data_set.apply(lambda x: [1] * len(x[Const.INPUT_LENS(0)]),
|
||||
new_field_name=Const.INPUT_LENS(1), is_input=auto_set_input)
|
||||
|
||||
if auto_pad_length is not None:
|
||||
cut_text = min(auto_pad_length, cut_text if cut_text is not None else auto_pad_length)
|
||||
|
||||
if cut_text is not None:
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
for fields in data_set.get_field_names():
|
||||
if (Const.INPUT in fields) or ((Const.INPUT_LEN in fields) and (seq_len_type != 'seq_len')):
|
||||
data_set.apply(lambda x: x[fields][: cut_text], new_field_name=fields,
|
||||
is_input=auto_set_input)
|
||||
|
||||
data_set_list = [d for n, d in data_info.datasets.items()]
|
||||
assert len(data_set_list) > 0, f'There are NO data sets in data info!'
|
||||
|
||||
if bert_tokenizer is None:
|
||||
words_vocab = Vocabulary(padding=auto_pad_token)
|
||||
words_vocab = words_vocab.from_dataset(*[d for n, d in data_info.datasets.items() if 'train' in n],
|
||||
field_name=[n for n in data_set_list[0].get_field_names()
|
||||
if (Const.INPUT in n)],
|
||||
no_create_entry_dataset=[d for n, d in data_info.datasets.items()
|
||||
if 'train' not in n])
|
||||
target_vocab = Vocabulary(padding=None, unknown=None)
|
||||
target_vocab = target_vocab.from_dataset(*[d for n, d in data_info.datasets.items() if 'train' in n],
|
||||
field_name=Const.TARGET)
|
||||
data_info.vocabs = {Const.INPUT: words_vocab, Const.TARGET: target_vocab}
|
||||
|
||||
if get_index:
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
for fields in data_set.get_field_names():
|
||||
if Const.INPUT in fields:
|
||||
data_set.apply(lambda x: [words_vocab.to_index(w) for w in x[fields]], new_field_name=fields,
|
||||
is_input=auto_set_input)
|
||||
|
||||
if Const.TARGET in data_set.get_field_names():
|
||||
data_set.apply(lambda x: target_vocab.to_index(x[Const.TARGET]), new_field_name=Const.TARGET,
|
||||
is_input=auto_set_input, is_target=auto_set_target)
|
||||
|
||||
if auto_pad_length is not None:
|
||||
if seq_len_type == 'seq_len':
|
||||
raise RuntimeError(f'the sequence will be padded with the length {auto_pad_length}, '
|
||||
f'so the seq_len_type cannot be `{seq_len_type}`!')
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
for fields in data_set.get_field_names():
|
||||
if Const.INPUT in fields:
|
||||
data_set.apply(lambda x: x[fields] + [words_vocab.to_index(words_vocab.padding)] *
|
||||
(auto_pad_length - len(x[fields])), new_field_name=fields,
|
||||
is_input=auto_set_input)
|
||||
elif (Const.INPUT_LEN in fields) and (seq_len_type != 'seq_len'):
|
||||
data_set.apply(lambda x: x[fields] + [0] * (auto_pad_length - len(x[fields])),
|
||||
new_field_name=fields, is_input=auto_set_input)
|
||||
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
if isinstance(set_input, list):
|
||||
data_set.set_input(*[inputs for inputs in set_input if inputs in data_set.get_field_names()])
|
||||
if isinstance(set_target, list):
|
||||
data_set.set_target(*[target for target in set_target if target in data_set.get_field_names()])
|
||||
|
||||
return data_info
|
||||
|
||||
|
||||
class SNLILoader(MatchingLoader, JsonLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.SNLILoader` :class:`fastNLP.io.dataset_loader.SNLILoader`
|
||||
|
||||
读取SNLI数据集,读取的DataSet包含fields::
|
||||
|
||||
words1: list(str),第一句文本, premise
|
||||
words2: list(str), 第二句文本, hypothesis
|
||||
target: str, 真实标签
|
||||
|
||||
数据来源: https://nlp.stanford.edu/projects/snli/snli_1.0.zip
|
||||
"""
|
||||
|
||||
def __init__(self, paths: dict=None):
|
||||
fields = {
|
||||
'sentence1_binary_parse': Const.INPUTS(0),
|
||||
'sentence2_binary_parse': Const.INPUTS(1),
|
||||
'gold_label': Const.TARGET,
|
||||
}
|
||||
paths = paths if paths is not None else {
|
||||
'train': 'snli_1.0_train.jsonl',
|
||||
'dev': 'snli_1.0_dev.jsonl',
|
||||
'test': 'snli_1.0_test.jsonl'}
|
||||
MatchingLoader.__init__(self, paths=paths)
|
||||
JsonLoader.__init__(self, fields=fields)
|
||||
|
||||
def _load(self, path):
|
||||
ds = JsonLoader._load(self, path)
|
||||
|
||||
parentheses_table = str.maketrans({'(': None, ')': None})
|
||||
|
||||
ds.apply(lambda ins: ins[Const.INPUTS(0)].translate(parentheses_table).strip().split(),
|
||||
new_field_name=Const.INPUTS(0))
|
||||
ds.apply(lambda ins: ins[Const.INPUTS(1)].translate(parentheses_table).strip().split(),
|
||||
new_field_name=Const.INPUTS(1))
|
||||
ds.drop(lambda x: x[Const.TARGET] == '-')
|
||||
return ds
|
||||
|
||||
|
||||
class RTELoader(MatchingLoader, CSVLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.RTELoader` :class:`fastNLP.io.dataset_loader.RTELoader`
|
||||
|
||||
读取RTE数据集,读取的DataSet包含fields::
|
||||
|
||||
words1: list(str),第一句文本, premise
|
||||
words2: list(str), 第二句文本, hypothesis
|
||||
target: str, 真实标签
|
||||
|
||||
数据来源:
|
||||
"""
|
||||
|
||||
def __init__(self, paths: dict=None):
|
||||
paths = paths if paths is not None else {
|
||||
'train': 'train.tsv',
|
||||
'dev': 'dev.tsv',
|
||||
'test': 'test.tsv' # test set has not label
|
||||
}
|
||||
MatchingLoader.__init__(self, paths=paths)
|
||||
self.fields = {
|
||||
'sentence1': Const.INPUTS(0),
|
||||
'sentence2': Const.INPUTS(1),
|
||||
'label': Const.TARGET,
|
||||
}
|
||||
CSVLoader.__init__(self, sep='\t')
|
||||
|
||||
def _load(self, path):
|
||||
ds = CSVLoader._load(self, path)
|
||||
|
||||
for k, v in self.fields.items():
|
||||
if v in ds.get_field_names():
|
||||
ds.rename_field(k, v)
|
||||
for fields in ds.get_all_fields():
|
||||
if Const.INPUT in fields:
|
||||
ds.apply(lambda x: x[fields].strip().split(), new_field_name=fields)
|
||||
|
||||
return ds
|
||||
|
||||
|
||||
class QNLILoader(MatchingLoader, CSVLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.QNLILoader` :class:`fastNLP.io.dataset_loader.QNLILoader`
|
||||
|
||||
读取QNLI数据集,读取的DataSet包含fields::
|
||||
|
||||
words1: list(str),第一句文本, premise
|
||||
words2: list(str), 第二句文本, hypothesis
|
||||
target: str, 真实标签
|
||||
|
||||
数据来源:
|
||||
"""
|
||||
|
||||
def __init__(self, paths: dict=None):
|
||||
paths = paths if paths is not None else {
|
||||
'train': 'train.tsv',
|
||||
'dev': 'dev.tsv',
|
||||
'test': 'test.tsv' # test set has not label
|
||||
}
|
||||
MatchingLoader.__init__(self, paths=paths)
|
||||
self.fields = {
|
||||
'question': Const.INPUTS(0),
|
||||
'sentence': Const.INPUTS(1),
|
||||
'label': Const.TARGET,
|
||||
}
|
||||
CSVLoader.__init__(self, sep='\t')
|
||||
|
||||
def _load(self, path):
|
||||
ds = CSVLoader._load(self, path)
|
||||
|
||||
for k, v in self.fields.items():
|
||||
if v in ds.get_field_names():
|
||||
ds.rename_field(k, v)
|
||||
for fields in ds.get_all_fields():
|
||||
if Const.INPUT in fields:
|
||||
ds.apply(lambda x: x[fields].strip().split(), new_field_name=fields)
|
||||
|
||||
return ds
|
||||
|
||||
|
||||
class MNLILoader(MatchingLoader, CSVLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.MNLILoader` :class:`fastNLP.io.dataset_loader.MNLILoader`
|
||||
|
||||
读取MNLI数据集,读取的DataSet包含fields::
|
||||
|
||||
words1: list(str),第一句文本, premise
|
||||
words2: list(str), 第二句文本, hypothesis
|
||||
target: str, 真实标签
|
||||
|
||||
数据来源:
|
||||
"""
|
||||
|
||||
def __init__(self, paths: dict=None):
|
||||
paths = paths if paths is not None else {
|
||||
'train': 'train.tsv',
|
||||
'dev_matched': 'dev_matched.tsv',
|
||||
'dev_mismatched': 'dev_mismatched.tsv',
|
||||
'test_matched': 'test_matched.tsv',
|
||||
'test_mismatched': 'test_mismatched.tsv',
|
||||
# 'test_0.9_matched': 'multinli_0.9_test_matched_unlabeled.txt',
|
||||
# 'test_0.9_mismatched': 'multinli_0.9_test_mismatched_unlabeled.txt',
|
||||
|
||||
# test_0.9_mathed与mismatched是MNLI0.9版本的(数据来源:kaggle)
|
||||
}
|
||||
MatchingLoader.__init__(self, paths=paths)
|
||||
CSVLoader.__init__(self, sep='\t')
|
||||
self.fields = {
|
||||
'sentence1_binary_parse': Const.INPUTS(0),
|
||||
'sentence2_binary_parse': Const.INPUTS(1),
|
||||
'gold_label': Const.TARGET,
|
||||
}
|
||||
|
||||
def _load(self, path):
|
||||
ds = CSVLoader._load(self, path)
|
||||
|
||||
for k, v in self.fields.items():
|
||||
if k in ds.get_field_names():
|
||||
ds.rename_field(k, v)
|
||||
|
||||
if Const.TARGET in ds.get_field_names():
|
||||
if ds[0][Const.TARGET] == 'hidden':
|
||||
ds.delete_field(Const.TARGET)
|
||||
|
||||
parentheses_table = str.maketrans({'(': None, ')': None})
|
||||
|
||||
ds.apply(lambda ins: ins[Const.INPUTS(0)].translate(parentheses_table).strip().split(),
|
||||
new_field_name=Const.INPUTS(0))
|
||||
ds.apply(lambda ins: ins[Const.INPUTS(1)].translate(parentheses_table).strip().split(),
|
||||
new_field_name=Const.INPUTS(1))
|
||||
if Const.TARGET in ds.get_field_names():
|
||||
ds.drop(lambda x: x[Const.TARGET] == '-')
|
||||
return ds
|
||||
|
||||
|
||||
class QuoraLoader(MatchingLoader, CSVLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.QuoraLoader` :class:`fastNLP.io.dataset_loader.QuoraLoader`
|
||||
|
||||
读取MNLI数据集,读取的DataSet包含fields::
|
||||
|
||||
words1: list(str),第一句文本, premise
|
||||
words2: list(str), 第二句文本, hypothesis
|
||||
target: str, 真实标签
|
||||
|
||||
数据来源:
|
||||
"""
|
||||
|
||||
def __init__(self, paths: dict=None):
|
||||
paths = paths if paths is not None else {
|
||||
'train': 'train.tsv',
|
||||
'dev': 'dev.tsv',
|
||||
'test': 'test.tsv',
|
||||
}
|
||||
MatchingLoader.__init__(self, paths=paths)
|
||||
CSVLoader.__init__(self, sep='\t', headers=(Const.TARGET, Const.INPUTS(0), Const.INPUTS(1), 'pairID'))
|
||||
|
||||
def _load(self, path):
|
||||
ds = CSVLoader._load(self, path)
|
||||
return ds
|
@ -16,8 +16,6 @@ __all__ = [
|
||||
'CSVLoader',
|
||||
'JsonLoader',
|
||||
'ConllLoader',
|
||||
'SNLILoader',
|
||||
'SSTLoader',
|
||||
'PeopleDailyCorpusLoader',
|
||||
'Conll2003Loader',
|
||||
]
|
||||
@ -30,7 +28,6 @@ from ..core.dataset import DataSet
|
||||
from ..core.instance import Instance
|
||||
from .file_reader import _read_csv, _read_json, _read_conll
|
||||
from .base_loader import DataSetLoader, DataInfo
|
||||
from .data_loader.sst import SSTLoader
|
||||
from ..core.const import Const
|
||||
from ..modules.encoder._bert import BertTokenizer
|
||||
|
||||
@ -111,7 +108,7 @@ class PeopleDailyCorpusLoader(DataSetLoader):
|
||||
else:
|
||||
instance = Instance(words=sent_words)
|
||||
data_set.append(instance)
|
||||
data_set.apply(lambda ins: len(ins["words"]), new_field_name="seq_len")
|
||||
data_set.apply(lambda ins: len(ins[Const.INPUT]), new_field_name=Const.INPUT_LEN)
|
||||
return data_set
|
||||
|
||||
|
||||
@ -249,42 +246,6 @@ class JsonLoader(DataSetLoader):
|
||||
return ds
|
||||
|
||||
|
||||
class SNLILoader(JsonLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.SNLILoader` :class:`fastNLP.io.dataset_loader.SNLILoader`
|
||||
|
||||
读取SNLI数据集,读取的DataSet包含fields::
|
||||
|
||||
words1: list(str),第一句文本, premise
|
||||
words2: list(str), 第二句文本, hypothesis
|
||||
target: str, 真实标签
|
||||
|
||||
数据来源: https://nlp.stanford.edu/projects/snli/snli_1.0.zip
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
fields = {
|
||||
'sentence1_parse': Const.INPUTS(0),
|
||||
'sentence2_parse': Const.INPUTS(1),
|
||||
'gold_label': Const.TARGET,
|
||||
}
|
||||
super(SNLILoader, self).__init__(fields=fields)
|
||||
|
||||
def _load(self, path):
|
||||
ds = super(SNLILoader, self)._load(path)
|
||||
|
||||
def parse_tree(x):
|
||||
t = Tree.fromstring(x)
|
||||
return t.leaves()
|
||||
|
||||
ds.apply(lambda ins: parse_tree(
|
||||
ins[Const.INPUTS(0)]), new_field_name=Const.INPUTS(0))
|
||||
ds.apply(lambda ins: parse_tree(
|
||||
ins[Const.INPUTS(1)]), new_field_name=Const.INPUTS(1))
|
||||
ds.drop(lambda x: x[Const.TARGET] == '-')
|
||||
return ds
|
||||
|
||||
|
||||
class CSVLoader(DataSetLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.CSVLoader` :class:`fastNLP.io.dataset_loader.CSVLoader`
|
||||
|
@ -8,35 +8,7 @@ from torch import nn
|
||||
from .base_model import BaseModel
|
||||
from ..core.const import Const
|
||||
from ..modules.encoder import BertModel
|
||||
|
||||
|
||||
class BertConfig:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=30522,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
from ..modules.encoder._bert import BertConfig
|
||||
|
||||
|
||||
class BertForSequenceClassification(BaseModel):
|
||||
@ -84,11 +56,17 @@ class BertForSequenceClassification(BaseModel):
|
||||
self.bert = BertModel.from_pretrained(bert_dir)
|
||||
else:
|
||||
if config is None:
|
||||
config = BertConfig()
|
||||
self.bert = BertModel(**config.__dict__)
|
||||
config = BertConfig(30522)
|
||||
self.bert = BertModel(config)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
self.classifier = nn.Linear(config.hidden_size, num_labels)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, num_labels, pretrained_model_dir):
|
||||
config = BertConfig(pretrained_model_dir)
|
||||
model = cls(num_labels=num_labels, config=config, bert_dir=pretrained_model_dir)
|
||||
return model
|
||||
|
||||
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
|
||||
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
|
||||
pooled_output = self.dropout(pooled_output)
|
||||
@ -151,11 +129,17 @@ class BertForMultipleChoice(BaseModel):
|
||||
self.bert = BertModel.from_pretrained(bert_dir)
|
||||
else:
|
||||
if config is None:
|
||||
config = BertConfig()
|
||||
self.bert = BertModel(**config.__dict__)
|
||||
config = BertConfig(30522)
|
||||
self.bert = BertModel(config)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
self.classifier = nn.Linear(config.hidden_size, 1)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, num_choices, pretrained_model_dir):
|
||||
config = BertConfig(pretrained_model_dir)
|
||||
model = cls(num_choices=num_choices, config=config, bert_dir=pretrained_model_dir)
|
||||
return model
|
||||
|
||||
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
|
||||
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
||||
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
|
||||
@ -224,11 +208,17 @@ class BertForTokenClassification(BaseModel):
|
||||
self.bert = BertModel.from_pretrained(bert_dir)
|
||||
else:
|
||||
if config is None:
|
||||
config = BertConfig()
|
||||
self.bert = BertModel(**config.__dict__)
|
||||
config = BertConfig(30522)
|
||||
self.bert = BertModel(config)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
self.classifier = nn.Linear(config.hidden_size, num_labels)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, num_labels, pretrained_model_dir):
|
||||
config = BertConfig(pretrained_model_dir)
|
||||
model = cls(num_labels=num_labels, config=config, bert_dir=pretrained_model_dir)
|
||||
return model
|
||||
|
||||
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
|
||||
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
|
||||
sequence_output = self.dropout(sequence_output)
|
||||
@ -302,12 +292,18 @@ class BertForQuestionAnswering(BaseModel):
|
||||
self.bert = BertModel.from_pretrained(bert_dir)
|
||||
else:
|
||||
if config is None:
|
||||
config = BertConfig()
|
||||
self.bert = BertModel(**config.__dict__)
|
||||
config = BertConfig(30522)
|
||||
self.bert = BertModel(config)
|
||||
# TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
|
||||
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_dir):
|
||||
config = BertConfig(pretrained_model_dir)
|
||||
model = cls(config=config, bert_dir=pretrained_model_dir)
|
||||
return model
|
||||
|
||||
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None):
|
||||
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
|
||||
logits = self.qa_outputs(sequence_output)
|
||||
|
@ -15,7 +15,8 @@ class MLP(nn.Module):
|
||||
多层感知器
|
||||
|
||||
:param List[int] size_layer: 一个int的列表,用来定义MLP的层数,列表中的数字为每一层是hidden数目。MLP的层数为 len(size_layer) - 1
|
||||
:param Union[str,func,List[str]] activation: 一个字符串或者函数的列表,用来定义每一个隐层的激活函数,字符串包括relu,tanh和sigmoid,默认值为relu
|
||||
:param Union[str,func,List[str]] activation: 一个字符串或者函数的列表,用来定义每一个隐层的激活函数,字符串包括relu,tanh和
|
||||
sigmoid,默认值为relu
|
||||
:param Union[str,func] output_activation: 字符串或者函数,用来定义输出层的激活函数,默认值为None,表示输出层没有激活函数
|
||||
:param str initial_method: 参数初始化方式
|
||||
:param float dropout: dropout概率,默认值为0
|
||||
|
@ -26,6 +26,7 @@ import sys
|
||||
|
||||
CONFIG_FILE = 'bert_config.json'
|
||||
|
||||
|
||||
class BertConfig(object):
|
||||
"""Configuration class to store the configuration of a `BertModel`.
|
||||
"""
|
||||
@ -339,13 +340,19 @@ class BertModel(nn.Module):
|
||||
如果你想使用预训练好的权重矩阵,请在以下网址下载.
|
||||
sources::
|
||||
|
||||
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
|
||||
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
|
||||
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
|
||||
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
|
||||
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
|
||||
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
|
||||
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
|
||||
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
|
||||
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
|
||||
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
|
||||
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
|
||||
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
|
||||
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
|
||||
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
|
||||
'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-pytorch_model.bin",
|
||||
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
|
||||
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
|
||||
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
|
||||
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
|
||||
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin"
|
||||
|
||||
|
||||
用预训练权重矩阵来建立BERT模型::
|
||||
@ -562,6 +569,7 @@ class WordpieceTokenizer(object):
|
||||
output_tokens.extend(sub_tokens)
|
||||
return output_tokens
|
||||
|
||||
|
||||
def load_vocab(vocab_file):
|
||||
"""Loads a vocabulary file into a dictionary."""
|
||||
vocab = collections.OrderedDict()
|
||||
@ -692,6 +700,7 @@ class BasicTokenizer(object):
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
|
||||
def _is_whitespace(char):
|
||||
"""Checks whether `chars` is a whitespace character."""
|
||||
# \t, \n, and \r are technically contorl characters but we treat them
|
||||
|
@ -3,6 +3,8 @@
|
||||
|
||||
复现的模型有:
|
||||
- [Star-Transformer](Star_transformer/)
|
||||
- [Biaffine](https://github.com/fastnlp/fastNLP/blob/999a14381747068e9e6a7cc370037b320197db00/fastNLP/models/biaffine_parser.py#L239)
|
||||
- [CNNText](https://github.com/fastnlp/fastNLP/blob/999a14381747068e9e6a7cc370037b320197db00/fastNLP/models/cnn_text_classification.py#L12)
|
||||
- ...
|
||||
|
||||
# 任务复现
|
||||
@ -11,11 +13,11 @@
|
||||
|
||||
|
||||
## Matching (自然语言推理/句子匹配)
|
||||
- [Matching 任务复现](matching/)
|
||||
- [Matching 任务复现](matching)
|
||||
|
||||
|
||||
## Sequence Labeling (序列标注)
|
||||
- still in progress
|
||||
- [NER](seqence_labelling/ner)
|
||||
|
||||
|
||||
## Coreference resolution (指代消解)
|
||||
|
@ -2,7 +2,8 @@ import torch
|
||||
import json
|
||||
import os
|
||||
from fastNLP import Vocabulary
|
||||
from fastNLP.io.dataset_loader import ConllLoader, SSTLoader, SNLILoader
|
||||
from fastNLP.io.dataset_loader import ConllLoader
|
||||
from fastNLP.io.data_loader import SSTLoader, SNLILoader
|
||||
from fastNLP.core import Const as C
|
||||
import numpy as np
|
||||
|
||||
|
@ -16,12 +16,11 @@ class MatchingLoader(DataSetLoader):
|
||||
别名::class:`fastNLP.io.MatchingLoader` :class:`fastNLP.io.dataset_loader.MatchingLoader`
|
||||
|
||||
读取Matching任务的数据集
|
||||
|
||||
:param dict paths: key是数据集名称(如train、dev、test),value是对应的文件名
|
||||
"""
|
||||
|
||||
def __init__(self, paths: dict=None):
|
||||
"""
|
||||
:param dict paths: key是数据集名称(如train、dev、test),value是对应的文件名
|
||||
"""
|
||||
self.paths = paths
|
||||
|
||||
def _load(self, path):
|
||||
@ -173,7 +172,7 @@ class MatchingLoader(DataSetLoader):
|
||||
new_field_name=Const.INPUT_LENS(1), is_input=auto_set_input)
|
||||
|
||||
if auto_pad_length is not None:
|
||||
cut_text = min(auto_pad_length, cut_text if cut_text is not None else 0)
|
||||
cut_text = min(auto_pad_length, cut_text if cut_text is not None else auto_pad_length)
|
||||
|
||||
if cut_text is not None:
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
@ -209,15 +208,18 @@ class MatchingLoader(DataSetLoader):
|
||||
is_input=auto_set_input, is_target=auto_set_target)
|
||||
|
||||
if auto_pad_length is not None:
|
||||
if seq_len_type == 'seq_len':
|
||||
raise RuntimeError(f'the sequence will be padded with the length {auto_pad_length}, '
|
||||
f'so the seq_len_type cannot be `{seq_len_type}`!')
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
for fields in data_set.get_field_names():
|
||||
if Const.INPUT in fields:
|
||||
data_set.apply(lambda x: x[fields] + [words_vocab.padding] * (auto_pad_length - len(x[fields])),
|
||||
new_field_name=fields, is_input=auto_set_input)
|
||||
elif (Const.INPUT_LEN in fields) and (seq_len_type != 'seq_len'):
|
||||
data_set.apply(lambda x: x[fields] + [words_vocab.to_index(words_vocab.padding)] *
|
||||
(auto_pad_length - len(x[fields])), new_field_name=fields,
|
||||
is_input=auto_set_input)
|
||||
elif (Const.INPUT_LEN in fields) and (seq_len_type != 'seq_len'):
|
||||
data_set.apply(lambda x: x[fields] + [0] * (auto_pad_length - len(x[fields])),
|
||||
new_field_name=fields, is_input=auto_set_input)
|
||||
|
||||
for data_name, data_set in data_info.datasets.items():
|
||||
if isinstance(set_input, list):
|
||||
@ -284,7 +286,7 @@ class RTELoader(MatchingLoader, CSVLoader):
|
||||
paths = paths if paths is not None else {
|
||||
'train': 'train.tsv',
|
||||
'dev': 'dev.tsv',
|
||||
# 'test': 'test.tsv' # test set has not label
|
||||
'test': 'test.tsv' # test set has not label
|
||||
}
|
||||
MatchingLoader.__init__(self, paths=paths)
|
||||
self.fields = {
|
||||
@ -298,7 +300,8 @@ class RTELoader(MatchingLoader, CSVLoader):
|
||||
ds = CSVLoader._load(self, path)
|
||||
|
||||
for k, v in self.fields.items():
|
||||
ds.rename_field(k, v)
|
||||
if v in ds.get_field_names():
|
||||
ds.rename_field(k, v)
|
||||
for fields in ds.get_all_fields():
|
||||
if Const.INPUT in fields:
|
||||
ds.apply(lambda x: x[fields].strip().split(), new_field_name=fields)
|
||||
@ -323,7 +326,7 @@ class QNLILoader(MatchingLoader, CSVLoader):
|
||||
paths = paths if paths is not None else {
|
||||
'train': 'train.tsv',
|
||||
'dev': 'dev.tsv',
|
||||
# 'test': 'test.tsv' # test set has not label
|
||||
'test': 'test.tsv' # test set has not label
|
||||
}
|
||||
MatchingLoader.__init__(self, paths=paths)
|
||||
self.fields = {
|
||||
@ -337,7 +340,8 @@ class QNLILoader(MatchingLoader, CSVLoader):
|
||||
ds = CSVLoader._load(self, path)
|
||||
|
||||
for k, v in self.fields.items():
|
||||
ds.rename_field(k, v)
|
||||
if v in ds.get_field_names():
|
||||
ds.rename_field(k, v)
|
||||
for fields in ds.get_all_fields():
|
||||
if Const.INPUT in fields:
|
||||
ds.apply(lambda x: x[fields].strip().split(), new_field_name=fields)
|
||||
@ -349,7 +353,7 @@ class MNLILoader(MatchingLoader, CSVLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.MNLILoader` :class:`fastNLP.io.dataset_loader.MNLILoader`
|
||||
|
||||
读取SNLI数据集,读取的DataSet包含fields::
|
||||
读取MNLI数据集,读取的DataSet包含fields::
|
||||
|
||||
words1: list(str),第一句文本, premise
|
||||
words2: list(str), 第二句文本, hypothesis
|
||||
@ -367,6 +371,7 @@ class MNLILoader(MatchingLoader, CSVLoader):
|
||||
'test_mismatched': 'test_mismatched.tsv',
|
||||
# 'test_0.9_matched': 'multinli_0.9_test_matched_unlabeled.txt',
|
||||
# 'test_0.9_mismatched': 'multinli_0.9_test_mismatched_unlabeled.txt',
|
||||
|
||||
# test_0.9_mathed与mismatched是MNLI0.9版本的(数据来源:kaggle)
|
||||
}
|
||||
MatchingLoader.__init__(self, paths=paths)
|
||||
@ -400,6 +405,17 @@ class MNLILoader(MatchingLoader, CSVLoader):
|
||||
|
||||
|
||||
class QuoraLoader(MatchingLoader, CSVLoader):
|
||||
"""
|
||||
别名::class:`fastNLP.io.QuoraLoader` :class:`fastNLP.io.dataset_loader.QuoraLoader`
|
||||
|
||||
读取MNLI数据集,读取的DataSet包含fields::
|
||||
|
||||
words1: list(str),第一句文本, premise
|
||||
words2: list(str), 第二句文本, hypothesis
|
||||
target: str, 真实标签
|
||||
|
||||
数据来源:
|
||||
"""
|
||||
|
||||
def __init__(self, paths: dict=None):
|
||||
paths = paths if paths is not None else {
|
||||
|
@ -1,5 +1,5 @@
|
||||
numpy
|
||||
torch>=0.4.0
|
||||
tqdm
|
||||
nltk
|
||||
numpy>=1.14.2
|
||||
torch>=1.0.0
|
||||
tqdm>=4.28.1
|
||||
nltk>=3.4.1
|
||||
requests
|
||||
|
@ -1,7 +1,7 @@
|
||||
import unittest
|
||||
import os
|
||||
from fastNLP.io import Conll2003Loader, PeopleDailyCorpusLoader, CSVLoader, SNLILoader, JsonLoader
|
||||
from fastNLP.io.dataset_loader import SSTLoader
|
||||
from fastNLP.io import Conll2003Loader, PeopleDailyCorpusLoader, CSVLoader, JsonLoader
|
||||
from fastNLP.io.data_loader import SSTLoader, SNLILoader
|
||||
from reproduction.text_classification.data.yelpLoader import yelpLoader
|
||||
|
||||
|
||||
@ -61,3 +61,12 @@ class TestDatasetLoader(unittest.TestCase):
|
||||
print(info.vocabs)
|
||||
print(info.datasets)
|
||||
os.remove(train), os.remove(test)
|
||||
|
||||
def test_import(self):
|
||||
import fastNLP
|
||||
from fastNLP.io import SNLILoader
|
||||
ds = SNLILoader().process('test/data_for_tests/sample_snli.jsonl', to_lower=True,
|
||||
get_index=True, seq_len_type='seq_len')
|
||||
assert 'train' in ds.datasets
|
||||
assert len(ds.datasets) == 1
|
||||
assert len(ds.datasets['train']) == 3
|
||||
|
@ -8,8 +8,9 @@ from fastNLP.models.bert import *
|
||||
class TestBert(unittest.TestCase):
|
||||
def test_bert_1(self):
|
||||
from fastNLP.core.const import Const
|
||||
from fastNLP.modules.encoder._bert import BertConfig
|
||||
|
||||
model = BertForSequenceClassification(2)
|
||||
model = BertForSequenceClassification(2, BertConfig(32000))
|
||||
|
||||
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
||||
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
||||
@ -22,8 +23,9 @@ class TestBert(unittest.TestCase):
|
||||
|
||||
def test_bert_2(self):
|
||||
from fastNLP.core.const import Const
|
||||
from fastNLP.modules.encoder._bert import BertConfig
|
||||
|
||||
model = BertForMultipleChoice(2)
|
||||
model = BertForMultipleChoice(2, BertConfig(32000))
|
||||
|
||||
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
||||
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
||||
@ -36,8 +38,9 @@ class TestBert(unittest.TestCase):
|
||||
|
||||
def test_bert_3(self):
|
||||
from fastNLP.core.const import Const
|
||||
from fastNLP.modules.encoder._bert import BertConfig
|
||||
|
||||
model = BertForTokenClassification(7)
|
||||
model = BertForTokenClassification(7, BertConfig(32000))
|
||||
|
||||
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
||||
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
||||
@ -50,8 +53,9 @@ class TestBert(unittest.TestCase):
|
||||
|
||||
def test_bert_4(self):
|
||||
from fastNLP.core.const import Const
|
||||
from fastNLP.modules.encoder._bert import BertConfig
|
||||
|
||||
model = BertForQuestionAnswering()
|
||||
model = BertForQuestionAnswering(BertConfig(32000))
|
||||
|
||||
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
||||
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
||||
|
@ -8,8 +8,9 @@ from fastNLP.models.bert import BertModel
|
||||
|
||||
class TestBert(unittest.TestCase):
|
||||
def test_bert_1(self):
|
||||
model = BertModel(vocab_size=32000, hidden_size=768,
|
||||
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
||||
from fastNLP.modules.encoder._bert import BertConfig
|
||||
config = BertConfig(32000)
|
||||
model = BertModel(config)
|
||||
|
||||
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
||||
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
||||
@ -18,4 +19,4 @@ class TestBert(unittest.TestCase):
|
||||
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
||||
for layer in all_encoder_layers:
|
||||
self.assertEqual(tuple(layer.shape), (2, 3, 768))
|
||||
self.assertEqual(tuple(pooled_output.shape), (2, 768))
|
||||
self.assertEqual(tuple(pooled_output.shape), (2, 768))
|
||||
|
Loading…
Reference in New Issue
Block a user