Merge branch 'dev0.8.0' of github.com:fastnlp/fastNLP into dev0.8.0

This commit is contained in:
x54-729 2022-07-10 12:11:31 +00:00
commit 189050d25d
3 changed files with 6 additions and 3 deletions

View File

@ -51,7 +51,7 @@ from fastNLP.transformers.torch import BertTokenizer
# 该文件还存在,将自动读取缓存文件,而不再次运行预处理代码。
@cache_results('caches/cache.pkl')
def prepare_data():
# 会自动下载 SST2 数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
# 会自动下载数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
data_bundle = ChnSentiCorpLoader().load()
# 使用tokenizer对数据进行tokenize
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-bert-wwm')
@ -130,7 +130,7 @@ evaluator.run()
from fastNLP.io import ChnSentiCorpLoader
from functools import partial
# 会自动下载 SST2 数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
# 会自动下载数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
data_bundle = ChnSentiCorpLoader().load()
# 使用tokenizer对数据进行tokenize

View File

@ -50,6 +50,8 @@ class Saver:
self.save_fn_name = 'save_checkpoint' if save_object == 'trainer' else 'save_model'
self.timestamp_path = self.folder.joinpath(os.environ[FASTNLP_LAUNCH_TIME])
# 打印这次运行时 checkpoint 所保存在的文件夹,因为这个文件夹是根据时间实时生成的,因此需要打印出来防止用户混淆;
logger.info(f"The checkpoint will be saved in this folder for this time: {self.timestamp_path}.")
def save(self, trainer, folder_name):
"""

View File

@ -199,7 +199,8 @@ class TorchDriver(Driver):
f"`only_state_dict=False`")
if not isinstance(res, dict):
res = res.state_dict()
model.load_state_dict(res)
_strict = kwargs.get("strict", True)
model.load_state_dict(res, _strict)
@rank_zero_call
def save_checkpoint(self, folder: Path, states: Dict, dataloader, only_state_dict: bool = True, should_save_model: bool = True, **kwargs):