Merge pull request #3 from xuyige/final

Final
This commit is contained in:
Coet 2018-09-30 21:47:44 +08:00 committed by GitHub
commit 1d4e406e6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
44 changed files with 1856 additions and 49944 deletions

View File

@ -18,7 +18,7 @@ pre-processing data, constructing model and training model.
from fastNLP.modules import aggregation
from fastNLP.modules import decoder
from fastNLP.loader.dataset_loader import ClassDatasetLoader
from fastNLP.loader.dataset_loader import ClassDataSetLoader
from fastNLP.loader.preprocess import ClassPreprocess
from fastNLP.core.trainer import ClassificationTrainer
from fastNLP.core.inference import ClassificationInfer
@ -50,7 +50,7 @@ pre-processing data, constructing model and training model.
train_path = 'test/data_for_tests/text_classify.txt' # training set file
# load dataset
ds_loader = ClassDatasetLoader("train", train_path)
ds_loader = ClassDataSetLoader("train", train_path)
data = ds_loader.load()
# pre-process dataset

View File

@ -3,7 +3,7 @@ from fastNLP.core.optimizer import Optimizer
from fastNLP.core.predictor import ClassificationInfer
from fastNLP.core.preprocess import ClassPreprocess
from fastNLP.core.trainer import ClassificationTrainer
from fastNLP.loader.dataset_loader import ClassDatasetLoader
from fastNLP.loader.dataset_loader import ClassDataSetLoader
from fastNLP.models.base_model import BaseModel
from fastNLP.modules import aggregator
from fastNLP.modules import decoder
@ -36,7 +36,7 @@ data_dir = 'save/' # directory to save data and model
train_path = './data_for_tests/text_classify.txt' # training set file
# load dataset
ds_loader = ClassDatasetLoader(train_path)
ds_loader = ClassDataSetLoader()
data = ds_loader.load()
# pre-process dataset

View File

@ -17,7 +17,7 @@ class Batch(object):
:param dataset: a DataSet object
:param batch_size: int, the size of the batch
:param sampler: a Sampler object
:param use_cuda: bool, whetjher to use GPU
:param use_cuda: bool, whether to use GPU
"""
self.dataset = dataset
@ -37,15 +37,12 @@ class Batch(object):
"""
:return batch_x: dict of (str: torch.LongTensor), which means (field name: tensor of shape [batch_size, padding_length])
batch_x also contains an item (str: list of int) about origin lengths,
which means ("field_name_origin_len": origin lengths).
E.g.
::
{'text': tensor([[ 0, 1, 2, 3, 0, 0, 0], 4, 5, 2, 6, 7, 8, 9]]), 'text_origin_len': [4, 7]})
batch_y: dict of (str: torch.LongTensor), which means (field name: tensor of shape [batch_size, padding_length])
All tensors in both batch_x and batch_y will be cuda tensors if use_cuda is True.
The names of fields are defined in preprocessor's convert_to_dataset method.
"""
if self.curidx >= len(self.idx_list):
@ -54,10 +51,9 @@ class Batch(object):
endidx = min(self.curidx + self.batch_size, len(self.idx_list))
padding_length = {field_name: max(field_length[self.curidx: endidx])
for field_name, field_length in self.lengths.items()}
origin_lengths = {field_name: field_length[self.curidx: endidx]
for field_name, field_length in self.lengths.items()}
batch_x, batch_y = defaultdict(list), defaultdict(list)
# transform index to tensor and do padding for sequences
for idx in range(self.curidx, endidx):
x, y = self.dataset.to_tensor(idx, padding_length)
for name, tensor in x.items():
@ -65,8 +61,7 @@ class Batch(object):
for name, tensor in y.items():
batch_y[name].append(tensor)
batch_origin_length = {}
# combine instances into a batch
# combine instances to form a batch
for batch in (batch_x, batch_y):
for name, tensor_list in batch.items():
if self.use_cuda:
@ -74,14 +69,6 @@ class Batch(object):
else:
batch[name] = torch.stack(tensor_list, dim=0)
# add origin lengths in batch_x
for name, tensor in batch_x.items():
if self.use_cuda:
batch_origin_length[name + "_origin_len"] = torch.LongTensor(origin_lengths[name]).cuda()
else:
batch_origin_length[name + "_origin_len"] = torch.LongTensor(origin_lengths[name])
batch_x.update(batch_origin_length)
self.curidx += endidx
self.curidx = endidx
return batch_x, batch_y

View File

@ -1,7 +1,11 @@
import random
from collections import defaultdict
from copy import deepcopy
from fastNLP.core.field import TextField
from fastNLP.core.field import TextField, LabelField
from fastNLP.core.instance import Instance
from fastNLP.core.vocabulary import Vocabulary
from fastNLP.loader.dataset_loader import POSDataSetLoader, ClassDataSetLoader
def create_dataset_from_lists(str_lists: list, word_vocab: dict, has_target: bool = False, label_vocab: dict = None):
@ -65,7 +69,8 @@ class DataSet(list):
"""A DataSet object is a list of Instance objects.
"""
def __init__(self, name="", instances=None):
def __init__(self, name="", instances=None, loader=None):
"""
:param name: str, the name of the dataset. (default: "")
@ -76,6 +81,7 @@ class DataSet(list):
self.name = name
if instances is not None:
self.extend(instances)
self.dataset_loader = loader
def index_all(self, vocab):
for ins in self:
@ -109,3 +115,180 @@ class DataSet(list):
for field_name, field_length in ins.get_length().items():
lengths[field_name].append(field_length)
return lengths
def convert(self, data):
"""Convert lists of strings into Instances with Fields"""
raise NotImplementedError
def convert_with_vocabs(self, data, vocabs):
"""Convert lists of strings into Instances with Fields, using existing Vocabulary. Useful in predicting."""
raise NotImplementedError
def convert_for_infer(self, data, vocabs):
"""Convert lists of strings into Instances with Fields."""
def load(self, data_path, vocabs=None, infer=False):
"""Load data from the given files.
:param data_path: str, the path to the data
:param infer: bool. If True, there is no label information in the data. Default: False.
:param vocabs: dict of (name: Vocabulary object), used to index data. If not provided, a new vocabulary will be constructed.
"""
raw_data = self.dataset_loader.load(data_path)
if infer is True:
self.convert_for_infer(raw_data, vocabs)
else:
if vocabs is not None:
self.convert_with_vocabs(raw_data, vocabs)
else:
self.convert(raw_data)
def load_raw(self, raw_data, vocabs):
"""
:param raw_data:
:param vocabs:
:return:
"""
self.convert_for_infer(raw_data, vocabs)
def split(self, ratio, shuffle=True):
"""Train/dev splitting
:param ratio: float, between 0 and 1. The ratio of development set in origin data set.
:param shuffle: bool, whether shuffle the data set before splitting. Default: True.
:return train_set: a DataSet object, representing the training set
dev_set: a DataSet object, representing the validation set
"""
assert 0 < ratio < 1
if shuffle:
random.shuffle(self)
split_idx = int(len(self) * ratio)
dev_set = deepcopy(self)
train_set = deepcopy(self)
del train_set[:split_idx]
del dev_set[split_idx:]
return train_set, dev_set
class SeqLabelDataSet(DataSet):
def __init__(self, instances=None, loader=POSDataSetLoader()):
super(SeqLabelDataSet, self).__init__(name="", instances=instances, loader=loader)
self.word_vocab = Vocabulary()
self.label_vocab = Vocabulary()
def convert(self, data):
"""Convert lists of strings into Instances with Fields.
:param data: 3-level lists. Entries are strings.
"""
for example in data:
word_seq, label_seq = example[0], example[1]
# list, list
self.word_vocab.update(word_seq)
self.label_vocab.update(label_seq)
x = TextField(word_seq, is_target=False)
x_len = LabelField(len(word_seq), is_target=False)
y = TextField(label_seq, is_target=False)
instance = Instance()
instance.add_field("word_seq", x)
instance.add_field("truth", y)
instance.add_field("word_seq_origin_len", x_len)
self.append(instance)
self.index_field("word_seq", self.word_vocab)
self.index_field("truth", self.label_vocab)
# no need to index "word_seq_origin_len"
def convert_with_vocabs(self, data, vocabs):
for example in data:
word_seq, label_seq = example[0], example[1]
# list, list
x = TextField(word_seq, is_target=False)
x_len = LabelField(len(word_seq), is_target=False)
y = TextField(label_seq, is_target=False)
instance = Instance()
instance.add_field("word_seq", x)
instance.add_field("truth", y)
instance.add_field("word_seq_origin_len", x_len)
self.append(instance)
self.index_field("word_seq", vocabs["word_vocab"])
self.index_field("truth", vocabs["label_vocab"])
# no need to index "word_seq_origin_len"
def convert_for_infer(self, data, vocabs):
for word_seq in data:
# list
x = TextField(word_seq, is_target=False)
x_len = LabelField(len(word_seq), is_target=False)
instance = Instance()
instance.add_field("word_seq", x)
instance.add_field("word_seq_origin_len", x_len)
self.append(instance)
self.index_field("word_seq", vocabs["word_vocab"])
# no need to index "word_seq_origin_len"
class TextClassifyDataSet(DataSet):
def __init__(self, instances=None, loader=ClassDataSetLoader()):
super(TextClassifyDataSet, self).__init__(name="", instances=instances, loader=loader)
self.word_vocab = Vocabulary()
self.label_vocab = Vocabulary(need_default=False)
def convert(self, data):
for example in data:
word_seq, label = example[0], example[1]
# list, str
self.word_vocab.update(word_seq)
self.label_vocab.update(label)
x = TextField(word_seq, is_target=False)
y = LabelField(label, is_target=True)
instance = Instance()
instance.add_field("word_seq", x)
instance.add_field("label", y)
self.append(instance)
self.index_field("word_seq", self.word_vocab)
self.index_field("label", self.label_vocab)
def convert_with_vocabs(self, data, vocabs):
for example in data:
word_seq, label = example[0], example[1]
# list, str
x = TextField(word_seq, is_target=False)
y = LabelField(label, is_target=True)
instance = Instance()
instance.add_field("word_seq", x)
instance.add_field("label", y)
self.append(instance)
self.index_field("word_seq", vocabs["word_vocab"])
self.index_field("label", vocabs["label_vocab"])
def convert_for_infer(self, data, vocabs):
for word_seq in data:
# list
x = TextField(word_seq, is_target=False)
instance = Instance()
instance.add_field("word_seq", x)
self.append(instance)
self.index_field("word_seq", vocabs["word_vocab"])
def change_field_is_target(data_set, field_name, new_target):
"""Change the flag of is_target in a field.
:param data_set: a DataSet object
:param field_name: str, the name of the field
:param new_target: one of (True, False, None), representing this field is batch_x / is batch_y / neither.
"""
for inst in data_set:
inst.fields[field_name].is_target = new_target
if __name__ == "__main__":
data_set = SeqLabelDataSet()
data_set.load("../../test/data_for_tests/people.txt")
a, b = data_set.split(0.3)
print(type(data_set), type(a), type(b))
print(len(data_set), len(a), len(b))

View File

@ -59,6 +59,9 @@ class TextField(Field):
class LabelField(Field):
"""The Field representing a single label. Can be a string or integer.
"""
def __init__(self, label, is_target=True):
super(LabelField, self).__init__(is_target)
self.label = label
@ -73,13 +76,14 @@ class LabelField(Field):
def index(self, vocab):
if self._index is None:
self._index = vocab[self.label]
if isinstance(self.label, str):
self._index = vocab[self.label]
return self._index
def to_tensor(self, padding_length):
if self._index is None:
if isinstance(self.label, int):
return torch.LongTensor([self.label])
return torch.tensor(self.label)
elif isinstance(self.label, str):
raise RuntimeError("Field {} not indexed. Call index method.".format(self.label))
else:

View File

@ -46,8 +46,11 @@ class Instance(object):
tensor_x = {}
tensor_y = {}
for name, field in self.fields.items():
if field.is_target:
if field.is_target is True:
tensor_y[name] = field.to_tensor(padding_length[name])
else:
elif field.is_target is False:
tensor_x[name] = field.to_tensor(padding_length[name])
else:
# is_target is None
continue
return tensor_x, tensor_y

View File

@ -33,10 +33,25 @@ class Loss(object):
"""Given a name of a loss function, return it from PyTorch.
:param loss_name: str, the name of a loss function
- cross_entropy: combines log softmax and nll loss in a single function.
- nll: negative log likelihood
:return loss: a PyTorch loss
"""
class InnerCrossEntropy:
"""A simple wrapper to guarantee input shapes."""
def __init__(self):
self.f = torch.nn.CrossEntropyLoss()
def __call__(self, predict, truth):
truth = truth.view(-1, )
return self.f(predict, truth)
if loss_name == "cross_entropy":
return torch.nn.CrossEntropyLoss()
return InnerCrossEntropy()
elif loss_name == 'nll':
return torch.nn.NLLLoss()
else:

View File

@ -4,6 +4,56 @@ import numpy as np
import torch
class Evaluator(object):
def __init__(self):
pass
def __call__(self, predict, truth):
"""
:param predict: list of tensors, the network outputs from all batches.
:param truth: list of dict, the ground truths from all batch_y.
:return:
"""
raise NotImplementedError
class ClassifyEvaluator(Evaluator):
def __init__(self):
super(ClassifyEvaluator, self).__init__()
def __call__(self, predict, truth):
y_prob = [torch.nn.functional.softmax(y_logit, dim=-1) for y_logit in predict]
y_prob = torch.cat(y_prob, dim=0)
y_pred = torch.argmax(y_prob, dim=-1)
y_true = torch.cat(truth, dim=0)
acc = float(torch.sum(y_pred == y_true)) / len(y_true)
return {"accuracy": acc}
class SeqLabelEvaluator(Evaluator):
def __init__(self):
super(SeqLabelEvaluator, self).__init__()
def __call__(self, predict, truth):
"""
:param predict: list of List, the network outputs from all batches.
:param truth: list of dict, the ground truths from all batch_y.
:return accuracy:
"""
truth = [item["truth"] for item in truth]
total_correct, total_count= 0., 0.
for x, y in zip(predict, truth):
mask = torch.Tensor(x).ge(1)
correct = torch.sum(torch.Tensor(x) * mask.float() == (y * mask.long()).float())
correct -= torch.sum(torch.Tensor(x).le(0))
total_correct += float(correct)
total_count += float(torch.sum(mask))
accuracy = total_correct / total_count
return {"accuracy": float(accuracy)}
def _conver_numpy(x):
"""convert input data to numpy array

View File

@ -16,43 +16,42 @@ class Predictor(object):
Currently, Predictor does not support GPU.
"""
def __init__(self, pickle_path, task):
def __init__(self, pickle_path, post_processor):
"""
:param pickle_path: str, the path to the pickle files.
:param task: str, specify which task the predictor will perform. One of ("seq_label", "text_classify").
:param post_processor: a function or callable object, that takes list of batch outputs as input
"""
self.batch_size = 1
self.batch_output = []
self.pickle_path = pickle_path
self._task = task # one of ("seq_label", "text_classify")
self.label_vocab = load_pickle(self.pickle_path, "class2id.pkl")
self._post_processor = post_processor
self.label_vocab = load_pickle(self.pickle_path, "label2id.pkl")
self.word_vocab = load_pickle(self.pickle_path, "word2id.pkl")
def predict(self, network, data):
"""Perform inference using the trained model.
:param network: a PyTorch model (cpu)
:param data: list of list of strings, [num_examples, seq_len]
:param data: a DataSet object.
:return: list of list of strings, [num_examples, tag_seq_length]
"""
# transform strings into DataSet object
data = self.prepare_input(data)
# data = self.prepare_input(data)
# turn on the testing mode; clean up the history
self.mode(network, test=True)
self.batch_output.clear()
batch_output = []
data_iterator = Batch(data, batch_size=self.batch_size, sampler=SequentialSampler(), use_cuda=False)
for batch_x, _ in data_iterator:
with torch.no_grad():
prediction = self.data_forward(network, batch_x)
batch_output.append(prediction)
self.batch_output.append(prediction)
return self.prepare_output(self.batch_output)
return self._post_processor(batch_output, self.label_vocab)
def mode(self, network, test=True):
if test:
@ -62,13 +61,7 @@ class Predictor(object):
def data_forward(self, network, x):
"""Forward through network."""
if self._task == "seq_label":
y = network(x["word_seq"], x["word_seq_origin_len"])
y = network.prediction(y)
elif self._task == "text_classify":
y = network(x["word_seq"])
else:
raise NotImplementedError("Unknown task type {}.".format(self._task))
y = network(**x)
return y
def prepare_input(self, data):
@ -88,39 +81,32 @@ class Predictor(object):
assert isinstance(data, list)
return create_dataset_from_lists(data, self.word_vocab, has_target=False)
def prepare_output(self, data):
"""Transform list of batch outputs into strings."""
if self._task == "seq_label":
return self._seq_label_prepare_output(data)
elif self._task == "text_classify":
return self._text_classify_prepare_output(data)
else:
raise NotImplementedError("Unknown task type {}".format(self._task))
def _seq_label_prepare_output(self, batch_outputs):
results = []
for batch in batch_outputs:
for example in np.array(batch):
results.append([self.label_vocab.to_word(int(x)) for x in example])
return results
def _text_classify_prepare_output(self, batch_outputs):
results = []
for batch_out in batch_outputs:
idx = np.argmax(batch_out.detach().numpy(), axis=-1)
results.extend([self.label_vocab.to_word(i) for i in idx])
return results
class SeqLabelInfer(Predictor):
def __init__(self, pickle_path):
print(
"[FastNLP Warning] SeqLabelInfer will be deprecated. Please use Predictor with argument 'task'='seq_label'.")
super(SeqLabelInfer, self).__init__(pickle_path, "seq_label")
"[FastNLP Warning] SeqLabelInfer will be deprecated. Please use Predictor directly.")
super(SeqLabelInfer, self).__init__(pickle_path, seq_label_post_processor)
class ClassificationInfer(Predictor):
def __init__(self, pickle_path):
print(
"[FastNLP Warning] ClassificationInfer will be deprecated. Please use Predictor with argument 'task'='text_classify'.")
super(ClassificationInfer, self).__init__(pickle_path, "text_classify")
"[FastNLP Warning] ClassificationInfer will be deprecated. Please use Predictor directly.")
super(ClassificationInfer, self).__init__(pickle_path, text_classify_post_processor)
def seq_label_post_processor(batch_outputs, label_vocab):
results = []
for batch in batch_outputs:
for example in np.array(batch):
results.append([label_vocab.to_word(int(x)) for x in example])
return results
def text_classify_post_processor(batch_outputs, label_vocab):
results = []
for batch_out in batch_outputs:
idx = np.argmax(batch_out.detach().numpy(), axis=-1)
results.extend([label_vocab.to_word(i) for i in idx])
return results

View File

@ -18,6 +18,9 @@ def save_pickle(obj, pickle_path, file_name):
:param pickle_path: str, the directory where the pickle file is to be saved
:param file_name: str, the name of the pickle file. In general, it should be ended by "pkl".
"""
if not os.path.exists(pickle_path):
os.mkdir(pickle_path)
print("make dir {} before saving pickle file".format(pickle_path))
with open(os.path.join(pickle_path, file_name), "wb") as f:
_pickle.dump(obj, f)
print("{} saved in {}".format(file_name, pickle_path))
@ -66,14 +69,26 @@ class Preprocessor(object):
Preprocessors will check if those files are already in the directory and will reuse them in future calls.
"""
def __init__(self, label_is_seq=False):
def __init__(self, label_is_seq=False, share_vocab=False, add_char_field=False):
"""
:param label_is_seq: bool, whether label is a sequence. If True, label vocabulary will preserve
several special tokens for sequence processing.
:param share_vocab: bool, whether word sequence and label sequence share the same vocabulary. Typically, this
is only available when label_is_seq is True. Default: False.
:param add_char_field: bool, whether to add character representations to all TextFields. Default: False.
"""
self.data_vocab = Vocabulary()
self.label_vocab = Vocabulary(need_default=label_is_seq)
if label_is_seq is True:
if share_vocab is True:
self.label_vocab = self.data_vocab
else:
self.label_vocab = Vocabulary()
else:
self.label_vocab = Vocabulary(need_default=False)
self.character_vocab = Vocabulary(need_default=False)
self.add_char_field = add_char_field
@property
def vocab_size(self):
@ -83,6 +98,12 @@ class Preprocessor(object):
def num_classes(self):
return len(self.label_vocab)
@property
def char_vocab_size(self):
if self.character_vocab is None:
self.build_char_dict()
return len(self.character_vocab)
def run(self, train_dev_data, test_data=None, pickle_path="./", train_dev_split=0, cross_val=False, n_fold=10):
"""Main pre-processing pipeline.
@ -96,7 +117,6 @@ class Preprocessor(object):
If train_dev_split > 0, return one more dataset - the dev set. If cross_val is True, each dataset
is a list of DataSet objects; Otherwise, each dataset is a DataSet object.
"""
if pickle_exist(pickle_path, "word2id.pkl") and pickle_exist(pickle_path, "class2id.pkl"):
self.data_vocab = load_pickle(pickle_path, "word2id.pkl")
self.label_vocab = load_pickle(pickle_path, "class2id.pkl")
@ -176,6 +196,16 @@ class Preprocessor(object):
self.label_vocab.update(label)
return self.data_vocab, self.label_vocab
def build_char_dict(self):
char_collection = set()
for word in self.data_vocab.word2idx:
if len(word) == 0:
continue
for ch in word:
if ch not in char_collection:
char_collection.add(ch)
self.character_vocab.update(list(char_collection))
def build_reverse_dict(self):
self.data_vocab.build_reverse_vocab()
self.label_vocab.build_reverse_vocab()

View File

@ -1,7 +1,7 @@
import numpy as np
import torch
from fastNLP.core.batch import Batch
from fastNLP.core.metrics import Evaluator
from fastNLP.core.sampler import RandomSampler
from fastNLP.saver.logger import create_logger
@ -22,28 +22,23 @@ class Tester(object):
"kwargs" must have the same type as "default_args" on corresponding keys.
Otherwise, error will raise.
"""
default_args = {"save_output": True, # collect outputs of validation set
"save_loss": True, # collect losses in validation
"save_best_dev": False, # save best model during validation
"batch_size": 8,
default_args = {"batch_size": 8,
"use_cuda": False,
"pickle_path": "./save/",
"model_name": "dev_best_model.pkl",
"print_every_step": 1,
"evaluator": Evaluator()
}
"""
"required_args" is the collection of arguments that users must pass to Trainer explicitly.
This is used to warn users of essential settings in the training.
Specially, "required_args" does not have default value, so they have nothing to do with "default_args".
"""
required_args = {"task" # one of ("seq_label", "text_classify")
}
required_args = {}
for req_key in required_args:
if req_key not in kwargs:
logger.error("Tester lacks argument {}".format(req_key))
raise ValueError("Tester lacks argument {}".format(req_key))
self._task = kwargs["task"]
for key in default_args:
if key in kwargs:
@ -59,17 +54,13 @@ class Tester(object):
pass
print(default_args)
self.save_output = default_args["save_output"]
self.save_best_dev = default_args["save_best_dev"]
self.save_loss = default_args["save_loss"]
self.batch_size = default_args["batch_size"]
self.pickle_path = default_args["pickle_path"]
self.use_cuda = default_args["use_cuda"]
self.print_every_step = default_args["print_every_step"]
self._evaluator = default_args["evaluator"]
self._model = None
self.eval_history = [] # evaluation results of all batches
self.batch_output = [] # outputs of all batches
def test(self, network, dev_data):
if torch.cuda.is_available() and self.use_cuda:
@ -80,26 +71,18 @@ class Tester(object):
# turn on the testing mode; clean up the history
self.mode(network, is_test=True)
self.eval_history.clear()
self.batch_output.clear()
output_list = []
truth_list = []
data_iterator = Batch(dev_data, self.batch_size, sampler=RandomSampler(), use_cuda=self.use_cuda)
step = 0
for batch_x, batch_y in data_iterator:
with torch.no_grad():
prediction = self.data_forward(network, batch_x)
eval_results = self.evaluate(prediction, batch_y)
if self.save_output:
self.batch_output.append(prediction)
if self.save_loss:
self.eval_history.append(eval_results)
print_output = "[test step {}] {}".format(step, eval_results)
logger.info(print_output)
if self.print_every_step > 0 and step % self.print_every_step == 0:
print(self.make_eval_output(prediction, eval_results))
step += 1
output_list.append(prediction)
truth_list.append(batch_y)
eval_results = self.evaluate(output_list, truth_list)
print("[tester] {}".format(self.print_eval_results(eval_results)))
def mode(self, model, is_test=False):
"""Train mode or Test mode. This is for PyTorch currently.
@ -121,104 +104,30 @@ class Tester(object):
def evaluate(self, predict, truth):
"""Compute evaluation metrics.
:param predict: Tensor
:param truth: Tensor
:param predict: list of Tensor
:param truth: list of dict
:return eval_results: can be anything. It will be stored in self.eval_history
"""
if "label_seq" in truth:
truth = truth["label_seq"]
elif "label" in truth:
truth = truth["label"]
else:
raise NotImplementedError("Unknown key {} in batch_y.".format(truth.keys()))
return self._evaluator(predict, truth)
if self._task == "seq_label":
return self._seq_label_evaluate(predict, truth)
elif self._task == "text_classify":
return self._text_classify_evaluate(predict, truth)
else:
raise NotImplementedError("Unknown task type {}.".format(self._task))
def print_eval_results(self, results):
"""Override this method to support more print formats.
def _seq_label_evaluate(self, predict, truth):
batch_size, max_len = predict.size(0), predict.size(1)
loss = self._model.loss(predict, truth) / batch_size
prediction = self._model.prediction(predict)
# pad prediction to equal length
for pred in prediction:
if len(pred) < max_len:
pred += [0] * (max_len - len(pred))
results = torch.Tensor(prediction).view(-1, )
:param results: dict, (str: float) is (metrics name: value)
# make sure "results" is in the same device as "truth"
results = results.to(truth)
accuracy = torch.sum(results == truth.view((-1,))).to(torch.float) / results.shape[0]
return [float(loss), float(accuracy)]
def _text_classify_evaluate(self, y_logit, y_true):
y_prob = torch.nn.functional.softmax(y_logit, dim=-1)
return [y_prob, y_true]
@property
def metrics(self):
"""Compute and return metrics.
Use self.eval_history to compute metrics over the whole dev set.
Please refer to metrics.py for common metric functions.
:return : variable number of outputs
"""
if self._task == "seq_label":
return self._seq_label_metrics
elif self._task == "text_classify":
return self._text_classify_metrics
else:
raise NotImplementedError("Unknown task type {}.".format(self._task))
@property
def _seq_label_metrics(self):
batch_loss = np.mean([x[0] for x in self.eval_history])
batch_accuracy = np.mean([x[1] for x in self.eval_history])
return batch_loss, batch_accuracy
@property
def _text_classify_metrics(self):
y_prob, y_true = zip(*self.eval_history)
y_prob = torch.cat(y_prob, dim=0)
y_pred = torch.argmax(y_prob, dim=-1)
y_true = torch.cat(y_true, dim=0)
acc = float(torch.sum(y_pred == y_true)) / len(y_true)
return y_true.cpu().numpy(), y_prob.cpu().numpy(), acc
def show_metrics(self):
"""Customize evaluation outputs in Trainer.
Called by Trainer to print evaluation results on dev set during training.
Use self.metrics to fetch available metrics.
:return print_str: str
"""
loss, accuracy = self.metrics
return "dev loss={:.2f}, accuracy={:.2f}".format(loss, accuracy)
def make_eval_output(self, predictions, eval_results):
"""Customize Tester outputs.
:param predictions: Tensor
:param eval_results: Tensor
:return: str, to be printed.
"""
return self.show_metrics()
return ", ".join([str(key) + "=" + str(value) for key, value in results.items()])
class SeqLabelTester(Tester):
def __init__(self, **test_args):
test_args.update({"task": "seq_label"})
print(
"[FastNLP Warning] SeqLabelTester will be deprecated. Please use Tester with argument 'task'='seq_label'.")
"[FastNLP Warning] SeqLabelTester will be deprecated. Please use Tester directly.")
super(SeqLabelTester, self).__init__(**test_args)
class ClassificationTester(Tester):
def __init__(self, **test_args):
test_args.update({"task": "text_classify"})
print(
"[FastNLP Warning] ClassificationTester will be deprecated. Please use Tester with argument 'task'='text_classify'.")
"[FastNLP Warning] ClassificationTester will be deprecated. Please use Tester directly.")
super(ClassificationTester, self).__init__(**test_args)

View File

@ -8,6 +8,7 @@ from tensorboardX import SummaryWriter
from fastNLP.core.batch import Batch
from fastNLP.core.loss import Loss
from fastNLP.core.metrics import Evaluator
from fastNLP.core.optimizer import Optimizer
from fastNLP.core.sampler import RandomSampler
from fastNLP.core.tester import SeqLabelTester, ClassificationTester
@ -43,21 +44,20 @@ class Trainer(object):
default_args = {"epochs": 1, "batch_size": 2, "validate": False, "use_cuda": False, "pickle_path": "./save/",
"save_best_dev": False, "model_name": "default_model_name.pkl", "print_every_step": 1,
"loss": Loss(None), # used to pass type check
"optimizer": Optimizer("Adam", lr=0.001, weight_decay=0)
"optimizer": Optimizer("Adam", lr=0.001, weight_decay=0),
"evaluator": Evaluator()
}
"""
"required_args" is the collection of arguments that users must pass to Trainer explicitly.
This is used to warn users of essential settings in the training.
Specially, "required_args" does not have default value, so they have nothing to do with "default_args".
"""
required_args = {"task" # one of ("seq_label", "text_classify")
}
required_args = {}
for req_key in required_args:
if req_key not in kwargs:
logger.error("Trainer lacks argument {}".format(req_key))
raise ValueError("Trainer lacks argument {}".format(req_key))
self._task = kwargs["task"]
for key in default_args:
if key in kwargs:
@ -86,6 +86,7 @@ class Trainer(object):
self._loss_func = default_args["loss"].get() # return a pytorch loss function or None
self._optimizer = None
self._optimizer_proto = default_args["optimizer"]
self._evaluator = default_args["evaluator"]
self._summary_writer = SummaryWriter(self.pickle_path + 'tensorboard_logs')
self._graph_summaried = False
self._best_accuracy = 0.0
@ -106,9 +107,8 @@ class Trainer(object):
# define Tester over dev data
if self.validate:
default_valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True,
"save_loss": True, "batch_size": self.batch_size, "pickle_path": self.pickle_path,
"use_cuda": self.use_cuda, "print_every_step": 0}
default_valid_args = {"batch_size": self.batch_size, "pickle_path": self.pickle_path,
"use_cuda": self.use_cuda, "evaluator": self._evaluator}
validator = self._create_validator(default_valid_args)
logger.info("validator defined as {}".format(str(validator)))
@ -229,18 +229,9 @@ class Trainer(object):
self._optimizer.step()
def data_forward(self, network, x):
if self._task == "seq_label":
y = network(x["word_seq"], x["word_seq_origin_len"])
elif self._task == "text_classify":
y = network(x["word_seq"])
else:
raise NotImplementedError("Unknown task type {}.".format(self._task))
y = network(**x)
if not self._graph_summaried:
if self._task == "seq_label":
self._summary_writer.add_graph(network, (x["word_seq"], x["word_seq_origin_len"]), verbose=False)
elif self._task == "text_classify":
self._summary_writer.add_graph(network, x["word_seq"], verbose=False)
# self._summary_writer.add_graph(network, x, verbose=False)
self._graph_summaried = True
return y
@ -261,13 +252,9 @@ class Trainer(object):
:param truth: ground truth label vector
:return: a scalar
"""
if "label_seq" in truth:
truth = truth["label_seq"]
elif "label" in truth:
truth = truth["label"]
truth = truth.view((-1,))
else:
raise NotImplementedError("Unknown key {} in batch_y.".format(truth.keys()))
if len(truth) > 1:
raise NotImplementedError("Not ready to handle multi-labels.")
truth = list(truth.values())[0] if len(truth) > 0 else None
return self._loss_func(predict, truth)
def define_loss(self):
@ -278,8 +265,8 @@ class Trainer(object):
These two losses cannot be defined at the same time.
Trainer does not handle loss definition or choose default losses.
"""
if hasattr(self._model, "loss") and self._loss_func is not None:
raise ValueError("Both the model and Trainer define loss. Please take out your loss.")
# if hasattr(self._model, "loss") and self._loss_func is not None:
# raise ValueError("Both the model and Trainer define loss. Please take out your loss.")
if hasattr(self._model, "loss"):
self._loss_func = self._model.loss
@ -322,9 +309,8 @@ class SeqLabelTrainer(Trainer):
"""
def __init__(self, **kwargs):
kwargs.update({"task": "seq_label"})
print(
"[FastNLP Warning] SeqLabelTrainer will be deprecated. Please use Trainer with argument 'task'='seq_label'.")
"[FastNLP Warning] SeqLabelTrainer will be deprecated. Please use Trainer directly.")
super(SeqLabelTrainer, self).__init__(**kwargs)
def _create_validator(self, valid_args):
@ -335,9 +321,8 @@ class ClassificationTrainer(Trainer):
"""Trainer for text classification."""
def __init__(self, **train_args):
train_args.update({"task": "text_classify"})
print(
"[FastNLP Warning] ClassificationTrainer will be deprecated. Please use Trainer with argument 'task'='text_classify'.")
"[FastNLP Warning] ClassificationTrainer will be deprecated. Please use Trainer directly.")
super(ClassificationTrainer, self).__init__(**train_args)
def _create_validator(self, valid_args):

View File

@ -10,13 +10,15 @@ DEFAULT_WORD_TO_INDEX = {DEFAULT_PADDING_LABEL: 0, DEFAULT_UNKNOWN_LABEL: 1,
DEFAULT_RESERVED_LABEL[0]: 2, DEFAULT_RESERVED_LABEL[1]: 3,
DEFAULT_RESERVED_LABEL[2]: 4}
def isiterable(p_object):
try:
it = iter(p_object)
except TypeError:
except TypeError:
return False
return True
class Vocabulary(object):
"""Use for word and index one to one mapping
@ -28,9 +30,11 @@ class Vocabulary(object):
vocab["word"]
vocab.to_word(5)
"""
def __init__(self, need_default=True):
"""
:param bool need_default: set if the Vocabulary has default labels reserved.
:param bool need_default: set if the Vocabulary has default labels reserved for sequences. Default: True.
"""
if need_default:
self.word2idx = deepcopy(DEFAULT_WORD_TO_INDEX)
@ -50,20 +54,19 @@ class Vocabulary(object):
def update(self, word):
"""add word or list of words into Vocabulary
:param word: a list of str or str
:param word: a list of string or a single string
"""
if not isinstance(word, str) and isiterable(word):
# it's a nested list
# it's a nested list
for w in word:
self.update(w)
else:
# it's a word to be added
# it's a word to be added
if word not in self.word2idx:
self.word2idx[word] = len(self)
if self.idx2word is not None:
self.idx2word = None
def __getitem__(self, w):
"""To support usage like::
@ -81,12 +84,12 @@ class Vocabulary(object):
:param str w:
"""
return self[w]
def unknown_idx(self):
if self.unknown_label is None:
if self.unknown_label is None:
return None
return self.word2idx[self.unknown_label]
def padding_idx(self):
if self.padding_label is None:
return None
@ -95,8 +98,8 @@ class Vocabulary(object):
def build_reverse_vocab(self):
"""build 'index to word' dict based on 'word to index' dict
"""
self.idx2word = {self.word2idx[w] : w for w in self.word2idx}
self.idx2word = {self.word2idx[w]: w for w in self.word2idx}
def to_word(self, idx):
"""given a word's index, return the word itself
@ -105,7 +108,7 @@ class Vocabulary(object):
if self.idx2word is None:
self.build_reverse_vocab()
return self.idx2word[idx]
def __getstate__(self):
"""use to prepare data for pickle
"""
@ -113,12 +116,9 @@ class Vocabulary(object):
# no need to pickle idx2word as it can be constructed from word2idx
del state['idx2word']
return state
def __setstate__(self, state):
"""use to restore state from pickle
"""
self.__dict__.update(state)
self.idx2word = None

View File

@ -4,6 +4,8 @@ from fastNLP.core.predictor import SeqLabelInfer, ClassificationInfer
from fastNLP.core.preprocess import load_pickle
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.core.dataset import SeqLabelDataSet, TextClassifyDataSet
"""
mapping from model name to [URL, file_name.class_name, model_pickle_name]
@ -76,6 +78,8 @@ class FastNLP(object):
self.model_dir = model_dir
self.model = None
self.infer_type = None # "seq_label"/"text_class"
self.word_vocab = None
self.label_vocab = None
def load(self, model_name, config_file="config", section_name="model"):
"""
@ -100,10 +104,10 @@ class FastNLP(object):
print("Restore model hyper-parameters {}".format(str(model_args.data)))
# fetch dictionary size and number of labels from pickle files
word_vocab = load_pickle(self.model_dir, "word2id.pkl")
model_args["vocab_size"] = len(word_vocab)
label_vocab = load_pickle(self.model_dir, "class2id.pkl")
model_args["num_classes"] = len(label_vocab)
self.word_vocab = load_pickle(self.model_dir, "word2id.pkl")
model_args["vocab_size"] = len(self.word_vocab)
self.label_vocab = load_pickle(self.model_dir, "label2id.pkl")
model_args["num_classes"] = len(self.label_vocab)
# Construct the model
model = model_class(model_args)
@ -130,8 +134,11 @@ class FastNLP(object):
# tokenize: list of string ---> 2-D list of string
infer_input = self.tokenize(raw_input, language="zh")
# 2-D list of string ---> 2-D list of tags
results = infer.predict(self.model, infer_input)
# create DataSet: 2-D list of strings ----> DataSet
infer_data = self._create_data_set(infer_input)
# DataSet ---> 2-D list of tags
results = infer.predict(self.model, infer_data)
# 2-D list of tags ---> list of final answers
outputs = self._make_output(results, infer_input)
@ -154,6 +161,11 @@ class FastNLP(object):
return module
def _create_inference(self, model_dir):
"""Specify which task to perform.
:param model_dir:
:return:
"""
if self.infer_type == "seq_label":
return SeqLabelInfer(model_dir)
elif self.infer_type == "text_class":
@ -161,6 +173,24 @@ class FastNLP(object):
else:
raise ValueError("fail to create inference instance")
def _create_data_set(self, infer_input):
"""Create a DataSet object given the raw inputs.
:param infer_input: 2-D lists of strings
:return data_set: a DataSet object
"""
if self.infer_type == "seq_label":
data_set = SeqLabelDataSet()
data_set.load_raw(infer_input, {"word_vocab": self.word_vocab})
return data_set
elif self.infer_type == "text_class":
data_set = TextClassifyDataSet()
data_set.load_raw(infer_input, {"word_vocab": self.word_vocab})
return data_set
else:
raise RuntimeError("fail to make outputs with infer type {}".format(self.infer_type))
def _load(self, model_dir, model_name):
# To do
return 0

View File

@ -1,27 +1,22 @@
class BaseLoader(object):
"""docstring for BaseLoader"""
def __init__(self, data_path):
def __init__(self):
super(BaseLoader, self).__init__()
self.data_path = data_path
def load(self):
"""
:return: string
"""
with open(self.data_path, "r", encoding="utf-8") as f:
text = f.read()
return text
def load_lines(self):
with open(self.data_path, "r", encoding="utf=8") as f:
def load_lines(self, data_path):
with open(data_path, "r", encoding="utf=8") as f:
text = f.readlines()
return [line.strip() for line in text]
def load(self, data_path):
with open(data_path, "r", encoding="utf-8") as f:
text = f.readlines()
return [[word for word in sent.strip()] for sent in text]
class ToyLoader0(BaseLoader):
"""
For charLM
For CharLM
"""
def __init__(self, data_path):

View File

@ -8,9 +8,9 @@ from fastNLP.loader.base_loader import BaseLoader
class ConfigLoader(BaseLoader):
"""loader for configuration files"""
def __int__(self, data_name, data_path):
super(ConfigLoader, self).__init__(data_path)
self.config = self.parse(super(ConfigLoader, self).load())
def __int__(self, data_path):
super(ConfigLoader, self).__init__()
self.config = self.parse(super(ConfigLoader, self).load(data_path))
@staticmethod
def parse(string):

View File

@ -3,14 +3,17 @@ import os
from fastNLP.loader.base_loader import BaseLoader
class DatasetLoader(BaseLoader):
class DataSetLoader(BaseLoader):
""""loader for data sets"""
def __init__(self, data_path):
super(DatasetLoader, self).__init__(data_path)
def __init__(self):
super(DataSetLoader, self).__init__()
def load(self, path):
raise NotImplementedError
class POSDatasetLoader(DatasetLoader):
class POSDataSetLoader(DataSetLoader):
"""Dataset Loader for POS Tag datasets.
In these datasets, each line are divided by '\t'
@ -31,16 +34,10 @@ class POSDatasetLoader(DatasetLoader):
to label5.
"""
def __init__(self, data_path):
super(POSDatasetLoader, self).__init__(data_path)
def __init__(self):
super(POSDataSetLoader, self).__init__()
def load(self):
assert os.path.exists(self.data_path)
with open(self.data_path, "r", encoding="utf-8") as f:
line = f.read()
return line
def load_lines(self):
def load(self, data_path):
"""
:return data: three-level list
[
@ -49,7 +46,7 @@ class POSDatasetLoader(DatasetLoader):
...
]
"""
with open(self.data_path, "r", encoding="utf-8") as f:
with open(data_path, "r", encoding="utf-8") as f:
lines = f.readlines()
return self.parse(lines)
@ -79,15 +76,15 @@ class POSDatasetLoader(DatasetLoader):
return data
class TokenizeDatasetLoader(DatasetLoader):
class TokenizeDataSetLoader(DataSetLoader):
"""
Data set loader for tokenization data sets
"""
def __init__(self, data_path):
super(TokenizeDatasetLoader, self).__init__(data_path)
def __init__(self):
super(TokenizeDataSetLoader, self).__init__()
def load_pku(self, max_seq_len=32):
def load(self, data_path, max_seq_len=32):
"""
load pku dataset for Chinese word segmentation
CWS (Chinese Word Segmentation) pku training dataset format:
@ -104,7 +101,7 @@ class TokenizeDatasetLoader(DatasetLoader):
:return: three-level lists
"""
assert isinstance(max_seq_len, int) and max_seq_len > 0
with open(self.data_path, "r", encoding="utf-8") as f:
with open(data_path, "r", encoding="utf-8") as f:
sentences = f.readlines()
data = []
for sent in sentences:
@ -135,15 +132,15 @@ class TokenizeDatasetLoader(DatasetLoader):
return data
class ClassDatasetLoader(DatasetLoader):
class ClassDataSetLoader(DataSetLoader):
"""Loader for classification data sets"""
def __init__(self, data_path):
super(ClassDatasetLoader, self).__init__(data_path)
def __init__(self):
super(ClassDataSetLoader, self).__init__()
def load(self):
assert os.path.exists(self.data_path)
with open(self.data_path, "r", encoding="utf-8") as f:
def load(self, data_path):
assert os.path.exists(data_path)
with open(data_path, "r", encoding="utf-8") as f:
lines = f.readlines()
return self.parse(lines)
@ -169,21 +166,21 @@ class ClassDatasetLoader(DatasetLoader):
return dataset
class ConllLoader(DatasetLoader):
class ConllLoader(DataSetLoader):
"""loader for conll format files"""
def __int__(self, data_path):
"""
:param str data_path: the path to the conll data set
"""
super(ConllLoader, self).__init__(data_path)
self.data_set = self.parse(self.load())
super(ConllLoader, self).__init__()
self.data_set = self.parse(self.load(data_path))
def load(self):
def load(self, data_path):
"""
:return: list lines: all lines in a conll file
"""
with open(self.data_path, "r", encoding="utf-8") as f:
with open(data_path, "r", encoding="utf-8") as f:
lines = f.readlines()
return lines
@ -207,28 +204,48 @@ class ConllLoader(DatasetLoader):
return sentences
class LMDatasetLoader(DatasetLoader):
def __init__(self, data_path):
super(LMDatasetLoader, self).__init__(data_path)
class LMDataSetLoader(DataSetLoader):
"""Language Model Dataset Loader
def load(self):
if not os.path.exists(self.data_path):
raise FileNotFoundError("file {} not found.".format(self.data_path))
with open(self.data_path, "r", encoding="utf=8") as f:
This loader produces data for language model training in a supervised way.
That means it has X and Y.
"""
def __init__(self):
super(LMDataSetLoader, self).__init__()
def load(self, data_path):
if not os.path.exists(data_path):
raise FileNotFoundError("file {} not found.".format(data_path))
with open(data_path, "r", encoding="utf=8") as f:
text = " ".join(f.readlines())
return text.strip().split()
tokens = text.strip().split()
return self.sentence_cut(tokens)
def sentence_cut(self, tokens, sentence_length=15):
start_idx = 0
data_set = []
for idx in range(len(tokens) // sentence_length):
x = tokens[start_idx * idx: start_idx * idx + sentence_length]
y = tokens[start_idx * idx + 1: start_idx * idx + sentence_length + 1]
if start_idx * idx + sentence_length + 1 >= len(tokens):
# ad hoc
y.extend(["<unk>"])
data_set.append([x, y])
return data_set
class PeopleDailyCorpusLoader(DatasetLoader):
class PeopleDailyCorpusLoader(DataSetLoader):
"""
People Daily Corpus: Chinese word segmentation, POS tag, NER
"""
def __init__(self, data_path):
super(PeopleDailyCorpusLoader, self).__init__(data_path)
def __init__(self):
super(PeopleDailyCorpusLoader, self).__init__()
def load(self):
with open(self.data_path, "r", encoding="utf-8") as f:
def load(self, data_path):
with open(data_path, "r", encoding="utf-8") as f:
sents = f.readlines()
pos_tag_examples = []

View File

@ -1,215 +1,8 @@
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from fastNLP.models.base_model import BaseModel
USE_GPU = True
"""
To be deprecated.
"""
class CharLM(BaseModel):
"""
Controller of the Character-level Neural Language Model
"""
def __init__(self, lstm_batch_size, lstm_seq_len):
super(CharLM, self).__init__()
"""
Settings: should come from config loader or pre-processing
"""
self.word_embed_dim = 300
self.char_embedding_dim = 15
self.cnn_batch_size = lstm_batch_size * lstm_seq_len
self.lstm_seq_len = lstm_seq_len
self.lstm_batch_size = lstm_batch_size
self.num_epoch = 10
self.old_PPL = 100000
self.best_PPL = 100000
"""
These parameters are set by pre-processing.
"""
self.max_word_len = None
self.num_char = None
self.vocab_size = None
self.preprocess("./data_for_tests/charlm.txt")
self.data = None # named tuple to store all data set
self.data_ready = False
self.criterion = nn.CrossEntropyLoss()
self._loss = None
self.use_gpu = USE_GPU
# word_emb_dim == hidden_size / num of hidden units
self.hidden = (to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim)),
to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim)))
self.model = charLM(self.char_embedding_dim,
self.word_embed_dim,
self.vocab_size,
self.num_char,
use_gpu=self.use_gpu)
for param in self.model.parameters():
nn.init.uniform(param.data, -0.05, 0.05)
self.learning_rate = 0.1
self.optimizer = None
def prepare_input(self, raw_text):
"""
:param raw_text: raw input text consisting of words
:return: torch.Tensor, torch.Tensor
feature matrix, label vector
This function is only called once in Trainer.train, but may called multiple times in Tester.test
So Tester will save test input for frequent calls.
"""
if os.path.exists("cache/prep.pt") is False:
self.preprocess("./data_for_tests/charlm.txt") # To do: This is not good. Need to fix..
objects = torch.load("cache/prep.pt")
word_dict = objects["word_dict"]
char_dict = objects["char_dict"]
max_word_len = self.max_word_len
print("word/char dictionary built. Start making inputs.")
words = raw_text
input_vec = np.array(text2vec(words, char_dict, max_word_len))
# Labels are next-word index in word_dict with the same length as inputs
input_label = np.array([word_dict[w] for w in words[1:]] + [word_dict[words[-1]]])
feature_input = torch.from_numpy(input_vec)
label_input = torch.from_numpy(input_label)
return feature_input, label_input
def mode(self, test=False):
if test:
self.model.eval()
else:
self.model.train()
def data_forward(self, x):
"""
:param x: Tensor of size [lstm_batch_size, lstm_seq_len, max_word_len+2]
:return: Tensor of size [num_words, ?]
"""
# additional processing of inputs after batching
num_seq = x.size()[0] // self.lstm_seq_len
x = x[:num_seq * self.lstm_seq_len, :]
x = x.view(-1, self.lstm_seq_len, self.max_word_len + 2)
# detach hidden state of LSTM from last batch
hidden = [state.detach() for state in self.hidden]
output, self.hidden = self.model(to_var(x), hidden)
return output
def grad_backward(self):
self.model.zero_grad()
self._loss.backward()
torch.nn.utils.clip_grad_norm(self.model.parameters(), 5, norm_type=2)
self.optimizer.step()
def get_loss(self, predict, truth):
self._loss = self.criterion(predict, to_var(truth))
return self._loss.data # No pytorch data structure exposed outsides
def define_optimizer(self):
# redefine optimizer for every new epoch
self.optimizer = optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.85)
def save(self):
print("network saved")
# torch.save(self.models, "cache/models.pkl")
def preprocess(self, all_text_files):
word_dict, char_dict = create_word_char_dict(all_text_files)
num_char = len(char_dict)
self.vocab_size = len(word_dict)
char_dict["BOW"] = num_char + 1
char_dict["EOW"] = num_char + 2
char_dict["PAD"] = 0
self.num_char = num_char + 3
# char_dict is a dict of (int, string), int counting from 0 to 47
reverse_word_dict = {value: key for key, value in word_dict.items()}
self.max_word_len = max([len(word) for word in word_dict])
objects = {
"word_dict": word_dict,
"char_dict": char_dict,
"reverse_word_dict": reverse_word_dict,
}
if not os.path.exists("cache"):
os.mkdir("cache")
torch.save(objects, "cache/prep.pt")
print("Preprocess done.")
"""
Global Functions
"""
def batch_generator(x, batch_size):
# x: [num_words, in_channel, height, width]
# partitions x into batches
num_step = x.size()[0] // batch_size
for t in range(num_step):
yield x[t * batch_size:(t + 1) * batch_size]
def text2vec(words, char_dict, max_word_len):
""" Return list of list of int """
word_vec = []
for word in words:
vec = [char_dict[ch] for ch in word]
if len(vec) < max_word_len:
vec += [char_dict["PAD"] for _ in range(max_word_len - len(vec))]
vec = [char_dict["BOW"]] + vec + [char_dict["EOW"]]
word_vec.append(vec)
return word_vec
def read_data(file_name):
with open(file_name, 'r') as f:
corpus = f.read().lower()
import re
corpus = re.sub(r"<unk>", "unk", corpus)
return corpus.split()
def get_char_dict(vocabulary):
char_dict = dict()
count = 1
for word in vocabulary:
for ch in word:
if ch not in char_dict:
char_dict[ch] = count
count += 1
return char_dict
def create_word_char_dict(*file_name):
text = []
for file in file_name:
text += read_data(file)
word_dict = {word: ix for ix, word in enumerate(set(text))}
char_dict = get_char_dict(word_dict)
return word_dict, char_dict
def to_var(x):
if torch.cuda.is_available() and USE_GPU:
x = x.cuda()
return Variable(x)
"""
Neural Network
"""
from fastNLP.modules.encoder.lstm import LSTM
class Highway(nn.Module):
@ -225,9 +18,8 @@ class Highway(nn.Module):
return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1 - t, x)
class charLM(nn.Module):
"""Character-level Neural Language Model
CNN + highway network + LSTM
class CharLM(nn.Module):
"""CNN + highway network + LSTM
# Input:
4D tensor with shape [batch_size, in_channel, height, width]
# Output:
@ -241,8 +33,8 @@ class charLM(nn.Module):
"""
def __init__(self, char_emb_dim, word_emb_dim,
vocab_size, num_char, use_gpu):
super(charLM, self).__init__()
vocab_size, num_char):
super(CharLM, self).__init__()
self.char_emb_dim = char_emb_dim
self.word_emb_dim = word_emb_dim
self.vocab_size = vocab_size
@ -254,8 +46,7 @@ class charLM(nn.Module):
self.convolutions = []
# list of tuples: (the number of filter, width)
# self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)]
self.filter_num_width = [(25, 1), (50, 2), (75, 3)]
self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)]
for out_channel, filter_width in self.filter_num_width:
self.convolutions.append(
@ -278,29 +69,13 @@ class charLM(nn.Module):
# LSTM
self.lstm_num_layers = 2
self.lstm = nn.LSTM(input_size=self.highway_input_dim,
hidden_size=self.word_emb_dim,
num_layers=self.lstm_num_layers,
bias=True,
dropout=0.5,
batch_first=True)
self.lstm = LSTM(self.highway_input_dim, hidden_size=self.word_emb_dim, num_layers=self.lstm_num_layers,
dropout=0.5)
# output layer
self.dropout = nn.Dropout(p=0.5)
self.linear = nn.Linear(self.word_emb_dim, self.vocab_size)
if use_gpu is True:
for x in range(len(self.convolutions)):
self.convolutions[x] = self.convolutions[x].cuda()
self.highway1 = self.highway1.cuda()
self.highway2 = self.highway2.cuda()
self.lstm = self.lstm.cuda()
self.dropout = self.dropout.cuda()
self.char_embed = self.char_embed.cuda()
self.linear = self.linear.cuda()
self.batch_norm = self.batch_norm.cuda()
def forward(self, x, hidden):
def forward(self, x):
# Input: Variable of Tensor with shape [num_seq, seq_len, max_word_len+2]
# Return: Variable of Tensor with shape [num_words, len(word_dict)]
lstm_batch_size = x.size()[0]
@ -313,7 +88,7 @@ class charLM(nn.Module):
# [num_seq*seq_len, max_word_len+2, char_emb_dim]
x = torch.transpose(x.view(x.size()[0], 1, x.size()[1], -1), 2, 3)
# [num_seq*seq_len, 1, char_emb_dim, max_word_len+2]
# [num_seq*seq_len, 1, max_word_len+2, char_emb_dim]
x = self.conv_layers(x)
# [num_seq*seq_len, total_num_filters]
@ -328,7 +103,7 @@ class charLM(nn.Module):
x = x.contiguous().view(lstm_batch_size, lstm_seq_len, -1)
# [num_seq, seq_len, total_num_filters]
x, hidden = self.lstm(x, hidden)
x, hidden = self.lstm(x)
# [seq_len, num_seq, hidden_size]
x = self.dropout(x)
@ -339,7 +114,7 @@ class charLM(nn.Module):
x = self.linear(x)
# [num_seq*seq_len, vocab_size]
return x, hidden
return x
def conv_layers(self, x):
chosen_list = list()

View File

@ -31,16 +31,18 @@ class SeqLabeling(BaseModel):
num_classes = args["num_classes"]
self.Embedding = encoder.embedding.Embedding(vocab_size, word_emb_dim)
self.Rnn = encoder.lstm.Lstm(word_emb_dim, hidden_dim)
self.Rnn = encoder.lstm.LSTM(word_emb_dim, hidden_dim)
self.Linear = encoder.linear.Linear(hidden_dim, num_classes)
self.Crf = decoder.CRF.ConditionalRandomField(num_classes)
self.mask = None
def forward(self, word_seq, word_seq_origin_len):
def forward(self, word_seq, word_seq_origin_len, truth=None):
"""
:param word_seq: LongTensor, [batch_size, mex_len]
:param word_seq_origin_len: LongTensor, [batch_size,], the origin lengths of the sequences.
:return y: [batch_size, mex_len, tag_size]
:param truth: LongTensor, [batch_size, max_len]
:return y: If truth is None, return list of [decode path(list)]. Used in testing and predicting.
If truth is not None, return loss, a scalar. Used in training.
"""
self.mask = self.make_mask(word_seq, word_seq_origin_len)
@ -50,9 +52,16 @@ class SeqLabeling(BaseModel):
# [batch_size, max_len, hidden_size * direction]
x = self.Linear(x)
# [batch_size, max_len, num_classes]
return x
if truth is not None:
return self._internal_loss(x, truth)
else:
return self.decode(x)
def loss(self, x, y):
""" Since the loss has been computed in forward(), this function simply returns x."""
return x
def _internal_loss(self, x, y):
"""
Negative log likelihood loss.
:param x: Tensor, [batch_size, max_len, tag_size]
@ -74,12 +83,19 @@ class SeqLabeling(BaseModel):
mask = mask.to(x)
return mask
def prediction(self, x):
def decode(self, x, pad=True):
"""
:param x: FloatTensor, [batch_size, max_len, tag_size]
:param pad: pad the output sequence to equal lengths
:return prediction: list of [decode path(list)]
"""
max_len = x.shape[1]
tag_seq = self.Crf.viterbi_decode(x, self.mask)
# pad prediction to equal length
if pad is True:
for pred in tag_seq:
if len(pred) < max_len:
pred += [0] * (max_len - len(pred))
return tag_seq
@ -97,7 +113,7 @@ class AdvSeqLabel(SeqLabeling):
num_classes = args["num_classes"]
self.Embedding = encoder.embedding.Embedding(vocab_size, word_emb_dim, init_emb=emb)
self.Rnn = encoder.lstm.Lstm(word_emb_dim, hidden_dim, num_layers=3, dropout=0.3, bidirectional=True)
self.Rnn = encoder.lstm.LSTM(word_emb_dim, hidden_dim, num_layers=3, dropout=0.3, bidirectional=True)
self.Linear1 = encoder.Linear(hidden_dim * 2, hidden_dim * 2 // 3)
self.batch_norm = torch.nn.BatchNorm1d(hidden_dim * 2 // 3)
self.relu = torch.nn.ReLU()
@ -106,11 +122,12 @@ class AdvSeqLabel(SeqLabeling):
self.Crf = decoder.CRF.ConditionalRandomField(num_classes)
def forward(self, word_seq, word_seq_origin_len):
def forward(self, word_seq, word_seq_origin_len, truth=None):
"""
:param word_seq: LongTensor, [batch_size, mex_len]
:param word_seq_origin_len: list of int.
:return y: [batch_size, mex_len, tag_size]
:param truth: LongTensor, [batch_size, max_len]
:return y:
"""
self.mask = self.make_mask(word_seq, word_seq_origin_len)
@ -129,4 +146,7 @@ class AdvSeqLabel(SeqLabeling):
x = self.Linear2(x)
x = x.view(batch_size, max_len, -1)
# [batch_size, max_len, num_classes]
return x
if truth is not None:
return self._internal_loss(x, truth)
else:
return self.decode(x)

View File

@ -55,14 +55,13 @@ class SelfAttention(nn.Module):
input = input.contiguous()
size = input.size() # [bsz, len, nhid]
input_origin = input_origin.expand(self.attention_hops, -1, -1) # [hops,baz, len]
input_origin = input_origin.transpose(0, 1).contiguous() # [baz, hops,len]
input_origin = input_origin.transpose(0, 1).contiguous() # [baz, hops,len]
y1 = self.tanh(self.ws1(self.drop(input))) # [baz,len,dim] -->[bsz,len, attention-unit]
attention = self.ws2(y1).transpose(1,2).contiguous() # [bsz,len, attention-unit]--> [bsz, len, hop]--> [baz,hop,len]
y1 = self.tanh(self.ws1(self.drop(input))) # [baz,len,dim] -->[bsz,len, attention-unit]
attention = self.ws2(y1).transpose(1,
2).contiguous() # [bsz,len, attention-unit]--> [bsz, len, hop]--> [baz,hop,len]
attention = attention + (-999999 * (input_origin == 0).float()) # remove the weight on padding token.
attention = F.softmax(attention,2) # [baz ,hop, len]
return torch.bmm(attention, input), self.penalization(attention) # output1 --> [baz ,hop ,nhid]
attention = F.softmax(attention, 2) # [baz ,hop, len]
return torch.bmm(attention, input), self.penalization(attention) # output1 --> [baz ,hop ,nhid]

View File

@ -1,10 +1,10 @@
from .embedding import Embedding
from .linear import Linear
from .lstm import Lstm
from .conv import Conv
from .conv_maxpool import ConvMaxpool
from .embedding import Embedding
from .linear import Linear
from .lstm import LSTM
__all__ = ["Lstm",
__all__ = ["LSTM",
"Embedding",
"Linear",
"Conv",

View File

@ -1,9 +1,10 @@
import torch.nn as nn
from fastNLP.modules.utils import initial_parameter
class Lstm(nn.Module):
"""
LSTM module
class LSTM(nn.Module):
"""Long Short Term Memory
Args:
input_size : input size
@ -13,13 +14,17 @@ class Lstm(nn.Module):
bidirectional : If True, becomes a bidirectional RNN. Default: False.
"""
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0, bidirectional=False , initial_method = None):
super(Lstm, self).__init__()
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, bidirectional=False,
initial_method=None):
super(LSTM, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=True, batch_first=True,
dropout=dropout, bidirectional=bidirectional)
initial_parameter(self, initial_method)
def forward(self, x):
x, _ = self.lstm(x)
return x
if __name__ == "__main__":
lstm = Lstm(10)
lstm = LSTM(10)

View File

@ -18,7 +18,7 @@ class ConfigSaver(object):
:return: The section.
"""
sect = ConfigSection()
ConfigLoader(self.file_path).load_config(self.file_path, {sect_name: sect})
ConfigLoader().load_config(self.file_path, {sect_name: sect})
return sect
def _read_section(self):

View File

@ -0,0 +1,25 @@
from fastNLP.core.loss import Loss
from fastNLP.core.preprocess import Preprocessor
from fastNLP.core.trainer import Trainer
from fastNLP.loader.dataset_loader import LMDataSetLoader
from fastNLP.models.char_language_model import CharLM
PICKLE = "./save/"
def train():
loader = LMDataSetLoader()
train_data = loader.load()
pre = Preprocessor(label_is_seq=True, share_vocab=True)
train_set = pre.run(train_data, pickle_path=PICKLE)
model = CharLM(50, 50, pre.vocab_size, pre.char_vocab_size)
trainer = Trainer(task="language_model", loss=Loss("cross_entropy"))
trainer.train(model, train_set)
if __name__ == "__main__":
train()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -4,12 +4,12 @@ from fastNLP.core.preprocess import ClassPreprocess as Preprocess
from fastNLP.core.trainer import ClassificationTrainer
from fastNLP.loader.config_loader import ConfigLoader
from fastNLP.loader.config_loader import ConfigSection
from fastNLP.loader.dataset_loader import ClassDatasetLoader as Dataset_loader
from fastNLP.loader.dataset_loader import ClassDataSetLoader as Dataset_loader
from fastNLP.models.base_model import BaseModel
from fastNLP.modules.aggregator.self_attention import SelfAttention
from fastNLP.modules.decoder.MLP import MLP
from fastNLP.modules.encoder.embedding import Embedding as Embedding
from fastNLP.modules.encoder.lstm import Lstm
from fastNLP.modules.encoder.lstm import LSTM
train_data_path = 'small_train_data.txt'
dev_data_path = 'small_dev_data.txt'
@ -43,7 +43,7 @@ class SELF_ATTENTION_YELP_CLASSIFICATION(BaseModel):
def __init__(self, args=None):
super(SELF_ATTENTION_YELP_CLASSIFICATION,self).__init__()
self.embedding = Embedding(len(word2index) ,embeding_size , init_emb= None )
self.lstm = Lstm(input_size = embeding_size,hidden_size = lstm_hidden_size ,bidirectional = True)
self.lstm = LSTM(input_size=embeding_size, hidden_size=lstm_hidden_size, bidirectional=True)
self.attention = SelfAttention(lstm_hidden_size * 2 ,dim =attention_unit ,num_vec=attention_hops)
self.mlp = MLP(size_layer=[lstm_hidden_size * 2*attention_hops ,nfc ,class_num ])
def forward(self,x):

View File

@ -5,7 +5,7 @@ sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.core.trainer import SeqLabelTrainer
from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, BaseLoader
from fastNLP.loader.dataset_loader import TokenizeDataSetLoader, BaseLoader
from fastNLP.core.preprocess import SeqLabelPreprocess, load_pickle
from fastNLP.saver.model_saver import ModelSaver
from fastNLP.loader.model_loader import ModelLoader
@ -66,8 +66,8 @@ def train():
ConfigLoader("good_path").load_config(cfgfile, {"train": train_args, "test": test_args})
# Data Loader
loader = TokenizeDatasetLoader(cws_data_path)
train_data = loader.load_pku()
loader = TokenizeDataSetLoader()
train_data = loader.load()
# Preprocessor
preprocessor = SeqLabelPreprocess()

View File

@ -66,7 +66,7 @@ def train():
ConfigLoader("good_name").load_config(cfgfile, {"train": train_args, "test": test_args})
# Data Loader
loader = PeopleDailyCorpusLoader(pos_tag_data_path)
loader = PeopleDailyCorpusLoader()
train_data, _ = loader.load()
# Preprocessor

View File

@ -43,8 +43,10 @@ class TestCase1(unittest.TestCase):
# use batch to iterate dataset
data_iterator = Batch(data, 2, SeqSampler(), False)
total_data = 0
for batch_x, batch_y in data_iterator:
self.assertEqual(len(batch_x), 2)
total_data += batch_x["text"].size(0)
self.assertTrue(batch_x["text"].size(0) == 2 or total_data == len(raw_texts))
self.assertTrue(isinstance(batch_x, dict))
self.assertTrue(isinstance(batch_x["text"], torch.LongTensor))
self.assertTrue(isinstance(batch_y, dict))

View File

@ -1,20 +1,42 @@
import sys, os
import os
import sys
sys.path = [os.path.join(os.path.dirname(__file__), '..')] + sys.path
from fastNLP.core import metrics
# from sklearn import metrics as skmetrics
import unittest
import numpy as np
from numpy import random
from fastNLP.core.metrics import SeqLabelEvaluator
import torch
def generate_fake_label(low, high, size):
return random.randint(low, high, size), random.randint(low, high, size)
class TestEvaluator(unittest.TestCase):
def test_a(self):
evaluator = SeqLabelEvaluator()
pred = [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]
truth = [{"truth": torch.LongTensor([1, 2, 3, 3, 3])}, {"truth": torch.LongTensor([1, 2, 3, 3, 4])}]
ans = evaluator(pred, truth)
print(ans)
def test_b(self):
evaluator = SeqLabelEvaluator()
pred = [[1, 2, 3, 4, 5, 0, 0], [1, 2, 3, 4, 5, 0, 0]]
truth = [{"truth": torch.LongTensor([1, 2, 3, 3, 3, 0, 0])}, {"truth": torch.LongTensor([1, 2, 3, 3, 4, 0, 0])}]
ans = evaluator(pred, truth)
print(ans)
class TestMetrics(unittest.TestCase):
delta = 1e-5
# test for binary, multiclass, multilabel
data_types = [((1000,), 2), ((1000,), 10), ((1000, 10), 2)]
fake_data = [generate_fake_label(0, high, shape) for shape, high in data_types]
def test_accuracy_score(self):
for y_true, y_pred in self.fake_data:
for normalize in [True, False]:
@ -22,7 +44,7 @@ class TestMetrics(unittest.TestCase):
test = metrics.accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight)
# ans = skmetrics.accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight)
# self.assertAlmostEqual(test, ans, delta=self.delta)
def test_recall_score(self):
for y_true, y_pred in self.fake_data:
# print(y_true.shape)
@ -73,5 +95,6 @@ class TestMetrics(unittest.TestCase):
# ans = skmetrics.f1_score(y_true, y_pred)
# self.assertAlmostEqual(ans, test, delta=self.delta)
if __name__ == '__main__':
unittest.main()

View File

@ -2,9 +2,12 @@ import os
import unittest
from fastNLP.core.predictor import Predictor
from fastNLP.core.dataset import TextClassifyDataSet, SeqLabelDataSet
from fastNLP.core.preprocess import save_pickle
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.core.vocabulary import Vocabulary
from fastNLP.loader.base_loader import BaseLoader
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.models.cnn_text_classification import CNNText
class TestPredictor(unittest.TestCase):
@ -28,23 +31,44 @@ class TestPredictor(unittest.TestCase):
vocab = Vocabulary()
vocab.word2idx = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9}
class_vocab = Vocabulary()
class_vocab.word2idx = {"0":0, "1":1, "2":2, "3":3, "4":4}
class_vocab.word2idx = {"0": 0, "1": 1, "2": 2, "3": 3, "4": 4}
os.system("mkdir save")
save_pickle(class_vocab, "./save/", "class2id.pkl")
save_pickle(class_vocab, "./save/", "label2id.pkl")
save_pickle(vocab, "./save/", "word2id.pkl")
model = SeqLabeling(model_args)
predictor = Predictor("./save/", task="seq_label")
model = CNNText(model_args)
import fastNLP.core.predictor as pre
predictor = Predictor("./save/", pre.text_classify_post_processor)
results = predictor.predict(network=model, data=infer_data)
# Load infer data
infer_data_set = TextClassifyDataSet(loader=BaseLoader())
infer_data_set.convert_for_infer(infer_data, vocabs={"word_vocab": vocab.word2idx})
results = predictor.predict(network=model, data=infer_data_set)
self.assertTrue(isinstance(results, list))
self.assertGreater(len(results), 0)
self.assertEqual(len(results), len(infer_data))
for res in results:
self.assertTrue(isinstance(res, str))
self.assertTrue(res in class_vocab.word2idx)
del model, predictor, infer_data_set
model = SeqLabeling(model_args)
predictor = Predictor("./save/", pre.seq_label_post_processor)
infer_data_set = SeqLabelDataSet(loader=BaseLoader())
infer_data_set.convert_for_infer(infer_data, vocabs={"word_vocab": vocab.word2idx})
results = predictor.predict(network=model, data=infer_data_set)
self.assertTrue(isinstance(results, list))
self.assertEqual(len(results), len(infer_data))
for i in range(len(infer_data)):
res = results[i]
self.assertTrue(isinstance(res, list))
self.assertEqual(len(res), 5)
self.assertTrue(isinstance(res[0], str))
self.assertEqual(len(res), len(infer_data[i]))
os.system("rm -rf save")
print("pickle path deleted")

View File

@ -1,8 +1,9 @@
import os
import unittest
from fastNLP.core.dataset import DataSet
from fastNLP.core.field import TextField
from fastNLP.core.dataset import SeqLabelDataSet
from fastNLP.core.metrics import SeqLabelEvaluator
from fastNLP.core.field import TextField, LabelField
from fastNLP.core.instance import Instance
from fastNLP.core.tester import SeqLabelTester
from fastNLP.models.sequence_modeling import SeqLabeling
@ -21,7 +22,7 @@ class TestTester(unittest.TestCase):
}
valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True,
"save_loss": True, "batch_size": 2, "pickle_path": "./save/",
"use_cuda": False, "print_every_step": 1}
"use_cuda": False, "print_every_step": 1, "evaluator": SeqLabelEvaluator()}
train_data = [
[['a', 'b', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']],
@ -34,16 +35,17 @@ class TestTester(unittest.TestCase):
vocab = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9}
label_vocab = {'a': 0, '@': 1, 'c': 2, 'd': 3, 'e': 4}
data_set = DataSet()
data_set = SeqLabelDataSet()
for example in train_data:
text, label = example[0], example[1]
x = TextField(text, False)
x_len = LabelField(len(text), is_target=False)
y = TextField(label, is_target=True)
ins = Instance(word_seq=x, label_seq=y)
ins = Instance(word_seq=x, truth=y, word_seq_origin_len=x_len)
data_set.append(ins)
data_set.index_field("word_seq", vocab)
data_set.index_field("label_seq", label_vocab)
data_set.index_field("truth", label_vocab)
model = SeqLabeling(model_args)

View File

@ -1,8 +1,9 @@
import os
import unittest
from fastNLP.core.dataset import DataSet
from fastNLP.core.field import TextField
from fastNLP.core.dataset import SeqLabelDataSet
from fastNLP.core.metrics import SeqLabelEvaluator
from fastNLP.core.field import TextField, LabelField
from fastNLP.core.instance import Instance
from fastNLP.core.loss import Loss
from fastNLP.core.optimizer import Optimizer
@ -12,14 +13,15 @@ from fastNLP.models.sequence_modeling import SeqLabeling
class TestTrainer(unittest.TestCase):
def test_case_1(self):
args = {"epochs": 3, "batch_size": 2, "validate": True, "use_cuda": False, "pickle_path": "./save/",
args = {"epochs": 3, "batch_size": 2, "validate": False, "use_cuda": False, "pickle_path": "./save/",
"save_best_dev": True, "model_name": "default_model_name.pkl",
"loss": Loss(None),
"loss": Loss("cross_entropy"),
"optimizer": Optimizer("Adam", lr=0.001, weight_decay=0),
"vocab_size": 10,
"word_emb_dim": 100,
"rnn_hidden_units": 100,
"num_classes": 5
"num_classes": 5,
"evaluator": SeqLabelEvaluator()
}
trainer = SeqLabelTrainer(**args)
@ -34,16 +36,17 @@ class TestTrainer(unittest.TestCase):
vocab = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9}
label_vocab = {'a': 0, '@': 1, 'c': 2, 'd': 3, 'e': 4}
data_set = DataSet()
data_set = SeqLabelDataSet()
for example in train_data:
text, label = example[0], example[1]
x = TextField(text, False)
y = TextField(label, is_target=True)
ins = Instance(word_seq=x, label_seq=y)
x_len = LabelField(len(text), is_target=False)
y = TextField(label, is_target=False)
ins = Instance(word_seq=x, truth=y, word_seq_origin_len=x_len)
data_set.append(ins)
data_set.index_field("word_seq", vocab)
data_set.index_field("label_seq", label_vocab)
data_set.index_field("truth", label_vocab)
model = SeqLabeling(args)

View File

@ -9,10 +9,54 @@ input = [1,2,3]
text = "this is text"
doubles = 0.5
doubles = 0.8
tt = 0.5
test = 105
str = "this is a str"
double = 0.5
[t]
x = "this is an test section"
[test-case-2]
double = 0.5
doubles = 0.8
tt = 0.5
test = 105
str = "this is a str"
[another-test]
doubles = 0.8
tt = 0.5
test = 105
str = "this is a str"
double = 0.5
[one-another-test]
doubles = 0.8
tt = 0.5
test = 105
str = "this is a str"
double = 0.5

View File

@ -31,7 +31,7 @@ class TestConfigLoader(unittest.TestCase):
return dict
test_arg = ConfigSection()
ConfigLoader("config").load_config(os.path.join("./test/loader", "config"), {"test": test_arg})
ConfigLoader().load_config(os.path.join("./test/loader", "config"), {"test": test_arg})
section = read_section_from_config(os.path.join("./test/loader", "config"), "test")

View File

@ -1,6 +1,7 @@
import os
import unittest
from fastNLP.loader.dataset_loader import POSDatasetLoader, LMDatasetLoader, TokenizeDatasetLoader, \
from fastNLP.loader.dataset_loader import POSDataSetLoader, LMDataSetLoader, TokenizeDataSetLoader, \
PeopleDailyCorpusLoader, ConllLoader
@ -8,34 +9,34 @@ class TestDatasetLoader(unittest.TestCase):
def test_case_1(self):
data = """Tom\tT\nand\tF\nJerry\tT\n.\tF\n\nHello\tT\nworld\tF\n!\tF"""
lines = data.split("\n")
answer = POSDatasetLoader.parse(lines)
answer = POSDataSetLoader.parse(lines)
truth = [[["Tom", "and", "Jerry", "."], ["T", "F", "T", "F"]], [["Hello", "world", "!"], ["T", "F", "F"]]]
self.assertListEqual(answer, truth, "POS Dataset Loader")
def test_case_TokenizeDatasetLoader(self):
loader = TokenizeDatasetLoader("./test/data_for_tests/cws_pku_utf_8")
data = loader.load_pku(max_seq_len=32)
print("pass TokenizeDatasetLoader test!")
loader = TokenizeDataSetLoader()
data = loader.load("./test/data_for_tests/cws_pku_utf_8", max_seq_len=32)
print("pass TokenizeDataSetLoader test!")
def test_case_POSDatasetLoader(self):
loader = POSDatasetLoader("./test/data_for_tests/people.txt")
data = loader.load()
datas = loader.load_lines()
print("pass POSDatasetLoader test!")
loader = POSDataSetLoader()
data = loader.load("./test/data_for_tests/people.txt")
datas = loader.load_lines("./test/data_for_tests/people.txt")
print("pass POSDataSetLoader test!")
def test_case_LMDatasetLoader(self):
loader = LMDatasetLoader("./test/data_for_tests/cws_pku_utf_8")
data = loader.load()
datas = loader.load_lines()
print("pass TokenizeDatasetLoader test!")
loader = LMDataSetLoader()
data = loader.load("./test/data_for_tests/charlm.txt")
datas = loader.load_lines("./test/data_for_tests/charlm.txt")
print("pass TokenizeDataSetLoader test!")
def test_PeopleDailyCorpusLoader(self):
loader = PeopleDailyCorpusLoader("./test/data_for_tests/people_daily_raw.txt")
_, _ = loader.load()
loader = PeopleDailyCorpusLoader()
_, _ = loader.load("./test/data_for_tests/people_daily_raw.txt")
def test_ConllLoader(self):
loader = ConllLoader("./test/data_for_tests/conll_example.txt")
_ = loader.load()
loader = ConllLoader()
_ = loader.load("./test/data_for_tests/conll_example.txt")
if __name__ == '__main__':

View File

@ -4,14 +4,16 @@ sys.path.append("..")
import argparse
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.core.trainer import SeqLabelTrainer
from fastNLP.loader.dataset_loader import POSDatasetLoader, BaseLoader
from fastNLP.core.preprocess import SeqLabelPreprocess, load_pickle
from fastNLP.loader.dataset_loader import BaseLoader
from fastNLP.saver.model_saver import ModelSaver
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.core.tester import SeqLabelTester
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.core.predictor import SeqLabelInfer
from fastNLP.core.optimizer import Optimizer
from fastNLP.core.dataset import SeqLabelDataSet, change_field_is_target
from fastNLP.core.metrics import SeqLabelEvaluator
from fastNLP.core.preprocess import save_pickle, load_pickle
parser = argparse.ArgumentParser()
parser.add_argument("-s", "--save", type=str, default="./seq_label/", help="path to save pickle files")
@ -33,24 +35,27 @@ data_infer_path = args.infer
def infer():
# Load infer configuration, the same as test
test_args = ConfigSection()
ConfigLoader("config.cfg").load_config(config_dir, {"POS_infer": test_args})
ConfigLoader().load_config(config_dir, {"POS_infer": test_args})
# fetch dictionary size and number of labels from pickle files
word2index = load_pickle(pickle_path, "word2id.pkl")
test_args["vocab_size"] = len(word2index)
index2label = load_pickle(pickle_path, "class2id.pkl")
test_args["num_classes"] = len(index2label)
word_vocab = load_pickle(pickle_path, "word2id.pkl")
label_vocab = load_pickle(pickle_path, "label2id.pkl")
test_args["vocab_size"] = len(word_vocab)
test_args["num_classes"] = len(label_vocab)
print("vocabularies loaded")
# Define the same model
model = SeqLabeling(test_args)
print("model defined")
# Dump trained parameters into the model
ModelLoader.load_pytorch(model, os.path.join(pickle_path, model_name))
print("model loaded!")
# Data Loader
raw_data_loader = BaseLoader(data_infer_path)
infer_data = raw_data_loader.load_lines()
infer_data = SeqLabelDataSet(loader=BaseLoader())
infer_data.load(data_infer_path, vocabs={"word_vocab": word_vocab, "label_vocab": label_vocab}, infer=True)
print("data set prepared")
# Inference interface
infer = SeqLabelInfer(pickle_path)
@ -65,24 +70,18 @@ def train_and_test():
# Config Loader
trainer_args = ConfigSection()
model_args = ConfigSection()
ConfigLoader("config.cfg").load_config(config_dir, {
ConfigLoader().load_config(config_dir, {
"test_seq_label_trainer": trainer_args, "test_seq_label_model": model_args})
# Data Loader
pos_loader = POSDatasetLoader(data_path)
train_data = pos_loader.load_lines()
data_set = SeqLabelDataSet()
data_set.load(data_path)
train_set, dev_set = data_set.split(0.3, shuffle=True)
model_args["vocab_size"] = len(data_set.word_vocab)
model_args["num_classes"] = len(data_set.label_vocab)
# Preprocessor
p = SeqLabelPreprocess()
data_train, data_dev = p.run(train_data, pickle_path=pickle_path, train_dev_split=0.5)
model_args["vocab_size"] = p.vocab_size
model_args["num_classes"] = p.num_classes
save_pickle(data_set.word_vocab, pickle_path, "word2id.pkl")
save_pickle(data_set.label_vocab, pickle_path, "label2id.pkl")
# Trainer: two definition styles
# 1
# trainer = SeqLabelTrainer(trainer_args.data)
# 2
trainer = SeqLabelTrainer(
epochs=trainer_args["epochs"],
batch_size=trainer_args["batch_size"],
@ -98,7 +97,7 @@ def train_and_test():
model = SeqLabeling(model_args)
# Start training
trainer.train(model, data_train, data_dev)
trainer.train(model, train_set, dev_set)
print("Training finished!")
# Saver
@ -106,7 +105,9 @@ def train_and_test():
saver.save_pytorch(model)
print("Model saved!")
del model, trainer, pos_loader
del model, trainer
change_field_is_target(dev_set, "truth", True)
# Define the same model
model = SeqLabeling(model_args)
@ -117,27 +118,21 @@ def train_and_test():
# Load test configuration
tester_args = ConfigSection()
ConfigLoader("config.cfg").load_config(config_dir, {"test_seq_label_tester": tester_args})
ConfigLoader().load_config(config_dir, {"test_seq_label_tester": tester_args})
# Tester
tester = SeqLabelTester(save_output=False,
save_loss=True,
save_best_dev=False,
batch_size=4,
tester = SeqLabelTester(batch_size=4,
use_cuda=False,
pickle_path=pickle_path,
model_name="seq_label_in_test.pkl",
print_every_step=1
evaluator=SeqLabelEvaluator()
)
# Start testing with validation data
tester.test(model, data_dev)
# print test results
print(tester.show_metrics())
tester.test(model, dev_set)
print("model tested!")
if __name__ == "__main__":
train_and_test()
# infer()
infer()

View File

@ -1,30 +1,32 @@
import os
from fastNLP.core.predictor import Predictor
from fastNLP.core.preprocess import Preprocessor, load_pickle
from fastNLP.core.dataset import SeqLabelDataSet, change_field_is_target
from fastNLP.core.metrics import SeqLabelEvaluator
from fastNLP.core.predictor import SeqLabelInfer
from fastNLP.core.preprocess import save_pickle, load_pickle
from fastNLP.core.tester import SeqLabelTester
from fastNLP.core.trainer import SeqLabelTrainer
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, BaseLoader
from fastNLP.loader.dataset_loader import TokenizeDataSetLoader, BaseLoader
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.saver.model_saver import ModelSaver
data_name = "pku_training.utf8"
cws_data_path = "test/data_for_tests/cws_pku_utf_8"
cws_data_path = "./test/data_for_tests/cws_pku_utf_8"
pickle_path = "./save/"
data_infer_path = "test/data_for_tests/people_infer.txt"
config_path = "test/data_for_tests/config"
data_infer_path = "./test/data_for_tests/people_infer.txt"
config_path = "./test/data_for_tests/config"
def infer():
# Load infer configuration, the same as test
test_args = ConfigSection()
ConfigLoader("config.cfg").load_config(config_path, {"POS_infer": test_args})
ConfigLoader().load_config(config_path, {"POS_infer": test_args})
# fetch dictionary size and number of labels from pickle files
word2index = load_pickle(pickle_path, "word2id.pkl")
test_args["vocab_size"] = len(word2index)
index2label = load_pickle(pickle_path, "class2id.pkl")
index2label = load_pickle(pickle_path, "label2id.pkl")
test_args["num_classes"] = len(index2label)
# Define the same model
@ -34,31 +36,29 @@ def infer():
ModelLoader.load_pytorch(model, "./save/saved_model.pkl")
print("model loaded!")
# Data Loader
raw_data_loader = BaseLoader(data_infer_path)
infer_data = raw_data_loader.load_lines()
# Load infer data
infer_data = SeqLabelDataSet(loader=BaseLoader())
infer_data.load(data_infer_path, vocabs={"word_vocab": word2index}, infer=True)
# Inference interface
infer = Predictor(pickle_path, "seq_label")
# inference
infer = SeqLabelInfer(pickle_path)
results = infer.predict(model, infer_data)
print(results)
def train_test():
# Config Loader
train_args = ConfigSection()
ConfigLoader("config.cfg").load_config(config_path, {"POS_infer": train_args})
ConfigLoader().load_config(config_path, {"POS_infer": train_args})
# Data Loader
loader = TokenizeDatasetLoader(cws_data_path)
train_data = loader.load_pku()
# define dataset
data_train = SeqLabelDataSet(loader=TokenizeDataSetLoader())
data_train.load(cws_data_path)
train_args["vocab_size"] = len(data_train.word_vocab)
train_args["num_classes"] = len(data_train.label_vocab)
# Preprocessor
p = Preprocessor(label_is_seq=True)
data_train = p.run(train_data, pickle_path=pickle_path)
train_args["vocab_size"] = p.vocab_size
train_args["num_classes"] = p.num_classes
save_pickle(data_train.word_vocab, pickle_path, "word2id.pkl")
save_pickle(data_train.label_vocab, pickle_path, "label2id.pkl")
# Trainer
trainer = SeqLabelTrainer(**train_args.data)
@ -73,7 +73,7 @@ def train_test():
saver = ModelSaver("./save/saved_model.pkl")
saver.save_pytorch(model)
del model, trainer, loader
del model, trainer
# Define the same model
model = SeqLabeling(train_args)
@ -83,17 +83,16 @@ def train_test():
# Load test configuration
test_args = ConfigSection()
ConfigLoader("config.cfg").load_config(config_path, {"POS_infer": test_args})
ConfigLoader().load_config(config_path, {"POS_infer": test_args})
test_args["evaluator"] = SeqLabelEvaluator()
# Tester
tester = SeqLabelTester(**test_args.data)
# Start testing
change_field_is_target(data_train, "truth", True)
tester.test(model, data_train)
# print test results
print(tester.show_metrics())
def test():
os.makedirs("save", exist_ok=True)

View File

@ -1,11 +1,12 @@
import os
from fastNLP.core.dataset import SeqLabelDataSet, change_field_is_target
from fastNLP.core.metrics import SeqLabelEvaluator
from fastNLP.core.optimizer import Optimizer
from fastNLP.core.preprocess import SeqLabelPreprocess
from fastNLP.core.preprocess import save_pickle
from fastNLP.core.tester import SeqLabelTester
from fastNLP.core.trainer import SeqLabelTrainer
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.loader.dataset_loader import POSDatasetLoader
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.saver.model_saver import ModelSaver
@ -21,18 +22,17 @@ def test_training():
# Config Loader
trainer_args = ConfigSection()
model_args = ConfigSection()
ConfigLoader("_").load_config(config_dir, {
ConfigLoader().load_config(config_dir, {
"test_seq_label_trainer": trainer_args, "test_seq_label_model": model_args})
# Data Loader
pos_loader = POSDatasetLoader(data_path)
train_data = pos_loader.load_lines()
data_set = SeqLabelDataSet()
data_set.load(data_path)
data_train, data_dev = data_set.split(0.3, shuffle=True)
model_args["vocab_size"] = len(data_set.word_vocab)
model_args["num_classes"] = len(data_set.label_vocab)
# Preprocessor
p = SeqLabelPreprocess()
data_train, data_dev = p.run(train_data, pickle_path=pickle_path, train_dev_split=0.5)
model_args["vocab_size"] = p.vocab_size
model_args["num_classes"] = p.num_classes
save_pickle(data_set.word_vocab, pickle_path, "word2id.pkl")
save_pickle(data_set.label_vocab, pickle_path, "label2id.pkl")
trainer = SeqLabelTrainer(
epochs=trainer_args["epochs"],
@ -55,7 +55,7 @@ def test_training():
saver = ModelSaver(os.path.join(pickle_path, model_name))
saver.save_pytorch(model)
del model, trainer, pos_loader
del model, trainer
# Define the same model
model = SeqLabeling(model_args)
@ -65,21 +65,16 @@ def test_training():
# Load test configuration
tester_args = ConfigSection()
ConfigLoader("config.cfg").load_config(config_dir, {"test_seq_label_tester": tester_args})
ConfigLoader().load_config(config_dir, {"test_seq_label_tester": tester_args})
# Tester
tester = SeqLabelTester(save_output=False,
save_loss=True,
save_best_dev=False,
batch_size=4,
tester = SeqLabelTester(batch_size=4,
use_cuda=False,
pickle_path=pickle_path,
model_name="seq_label_in_test.pkl",
print_every_step=1
evaluator=SeqLabelEvaluator()
)
# Start testing with validation data
change_field_is_target(data_dev, "truth", True)
tester.test(model, data_dev)
loss, accuracy = tester.metrics
assert 0 < accuracy < 1

View File

@ -9,13 +9,14 @@ sys.path.append("..")
from fastNLP.core.predictor import ClassificationInfer
from fastNLP.core.trainer import ClassificationTrainer
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.loader.dataset_loader import ClassDatasetLoader
from fastNLP.loader.dataset_loader import ClassDataSetLoader
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.core.preprocess import ClassPreprocess
from fastNLP.models.cnn_text_classification import CNNText
from fastNLP.saver.model_saver import ModelSaver
from fastNLP.core.optimizer import Optimizer
from fastNLP.core.loss import Loss
from fastNLP.core.dataset import TextClassifyDataSet
from fastNLP.core.preprocess import save_pickle, load_pickle
parser = argparse.ArgumentParser()
parser.add_argument("-s", "--save", type=str, default="./test_classification/", help="path to save pickle files")
@ -34,21 +35,18 @@ config_dir = args.config
def infer():
# load dataset
print("Loading data...")
ds_loader = ClassDatasetLoader(train_data_dir)
data = ds_loader.load()
unlabeled_data = [x[0] for x in data]
word_vocab = load_pickle(save_dir, "word2id.pkl")
label_vocab = load_pickle(save_dir, "label2id.pkl")
print("vocabulary size:", len(word_vocab))
print("number of classes:", len(label_vocab))
# pre-process data
pre = ClassPreprocess()
data = pre.run(data, pickle_path=save_dir)
print("vocabulary size:", pre.vocab_size)
print("number of classes:", pre.num_classes)
infer_data = TextClassifyDataSet(loader=ClassDataSetLoader())
infer_data.load(train_data_dir, vocabs={"word_vocab": word_vocab, "label_vocab": label_vocab})
model_args = ConfigSection()
# TODO: load from config file
model_args["vocab_size"] = pre.vocab_size
model_args["num_classes"] = pre.num_classes
# ConfigLoader.load_config(config_dir, {"text_class_model": model_args})
model_args["vocab_size"] = len(word_vocab)
model_args["num_classes"] = len(label_vocab)
ConfigLoader.load_config(config_dir, {"text_class_model": model_args})
# construct model
print("Building model...")
@ -59,7 +57,7 @@ def infer():
print("model loaded!")
infer = ClassificationInfer(pickle_path=save_dir)
results = infer.predict(cnn, unlabeled_data)
results = infer.predict(cnn, infer_data)
print(results)
@ -69,32 +67,23 @@ def train():
# load dataset
print("Loading data...")
ds_loader = ClassDatasetLoader(train_data_dir)
data = ds_loader.load()
print(data[0])
data = TextClassifyDataSet(loader=ClassDataSetLoader())
data.load(train_data_dir)
# pre-process data
pre = ClassPreprocess()
data_train = pre.run(data, pickle_path=save_dir)
print("vocabulary size:", pre.vocab_size)
print("number of classes:", pre.num_classes)
print("vocabulary size:", len(data.word_vocab))
print("number of classes:", len(data.label_vocab))
save_pickle(data.word_vocab, save_dir, "word2id.pkl")
save_pickle(data.label_vocab, save_dir, "label2id.pkl")
model_args["num_classes"] = pre.num_classes
model_args["vocab_size"] = pre.vocab_size
model_args["num_classes"] = len(data.label_vocab)
model_args["vocab_size"] = len(data.word_vocab)
# construct model
print("Building model...")
model = CNNText(model_args)
# ConfigSaver().save_config(config_dir, {"text_class_model": model_args})
# train
print("Training...")
# 1
# trainer = ClassificationTrainer(train_args)
# 2
trainer = ClassificationTrainer(epochs=train_args["epochs"],
batch_size=train_args["batch_size"],
validate=train_args["validate"],
@ -104,7 +93,7 @@ def train():
model_name=model_name,
loss=Loss("cross_entropy"),
optimizer=Optimizer("SGD", lr=0.001, momentum=0.9))
trainer.train(model, data_train)
trainer.train(model, data)
print("Training finished!")
@ -115,4 +104,4 @@ def train():
if __name__ == "__main__":
train()
# infer()
infer()

View File

@ -21,7 +21,7 @@ class TestConfigSaver(unittest.TestCase):
standard_section = ConfigSection()
t_section = ConfigSection()
ConfigLoader(config_file_path).load_config(config_file_path, {"test": standard_section, "t": t_section})
ConfigLoader().load_config(config_file_path, {"test": standard_section, "t": t_section})
config_saver = ConfigSaver(config_file_path)
@ -48,11 +48,11 @@ class TestConfigSaver(unittest.TestCase):
one_another_test_section = ConfigSection()
a_test_case_2_section = ConfigSection()
ConfigLoader(config_file_path).load_config(config_file_path, {"test": test_section,
"another-test": another_test_section,
"t": at_section,
"one-another-test": one_another_test_section,
"test-case-2": a_test_case_2_section})
ConfigLoader().load_config(config_file_path, {"test": test_section,
"another-test": another_test_section,
"t": at_section,
"one-another-test": one_another_test_section,
"test-case-2": a_test_case_2_section})
assert test_section == standard_section
assert at_section == t_section

View File

@ -54,7 +54,7 @@ def mock_cws():
class2id = Vocabulary(need_default=False)
label_list = ['B', 'M', 'E', 'S']
class2id.update(label_list)
save_pickle(class2id, "./mock/", "class2id.pkl")
save_pickle(class2id, "./mock/", "label2id.pkl")
model_args = {"vocab_size": len(word2id), "word_emb_dim": 50, "rnn_hidden_units": 50, "num_classes": len(class2id)}
config_file = """
@ -115,7 +115,7 @@ def mock_pos_tag():
idx2label = Vocabulary(need_default=False)
label_list = ['B-n', 'M-v', 'E-nv', 'S-adj', 'B-v', 'M-vn', 'S-adv']
idx2label.update(label_list)
save_pickle(idx2label, "./mock/", "class2id.pkl")
save_pickle(idx2label, "./mock/", "label2id.pkl")
model_args = {"vocab_size": len(vocab), "word_emb_dim": 50, "rnn_hidden_units": 50, "num_classes": len(idx2label)}
config_file = """
@ -163,7 +163,7 @@ def mock_text_classify():
idx2label = Vocabulary(need_default=False)
label_list = ['class_A', 'class_B', 'class_C', 'class_D', 'class_E', 'class_F']
idx2label.update(label_list)
save_pickle(idx2label, "./mock/", "class2id.pkl")
save_pickle(idx2label, "./mock/", "label2id.pkl")
model_args = {"vocab_size": len(vocab), "word_emb_dim": 50, "rnn_hidden_units": 50, "num_classes": len(idx2label)}
config_file = """