mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-11-30 19:28:17 +08:00
Merge branch 'dev0.8.0' of github.com:fastnlp/fastNLP into dev0.8.0
This commit is contained in:
commit
275a4ba129
@ -178,11 +178,11 @@ def dump_fastnlp_backend(default:bool = False, backend=None):
|
||||
os.makedirs(os.path.dirname(env_path), exist_ok=True)
|
||||
|
||||
envs = {}
|
||||
assert backend in SUPPORT_BACKENDS, f"fastNLP only supports {SUPPORT_BACKENDS} right now."
|
||||
if backend is None:
|
||||
if FASTNLP_BACKEND in os.environ:
|
||||
envs[FASTNLP_BACKEND] = os.environ[FASTNLP_BACKEND]
|
||||
else:
|
||||
assert backend in SUPPORT_BACKENDS, f"fastNLP only supports {SUPPORT_BACKENDS} right now."
|
||||
envs[FASTNLP_BACKEND] = backend
|
||||
if len(envs):
|
||||
with open(env_path, 'w', encoding='utf8') as f:
|
||||
|
@ -65,6 +65,7 @@ def model_and_optimizers():
|
||||
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu")]) # , ("torch", 6), ("torch", [6, 7])
|
||||
@pytest.mark.parametrize("callbacks", [[RecordTrainerEventTriggerCallback()]])
|
||||
@pytest.mark.torch
|
||||
@magic_argv_env_context
|
||||
def test_trainer_event_trigger(
|
||||
model_and_optimizers: TrainerParameters,
|
||||
|
@ -7,16 +7,16 @@ from tests.helpers.utils import magic_argv_env_context
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_trainer_torch_without_evaluator():
|
||||
@Trainer.on(Events.ON_TRAIN_EPOCH_BEGIN(every=10))
|
||||
@Trainer.on(Events.on_train_epoch_begin(every=10))
|
||||
def fn1(trainer):
|
||||
pass
|
||||
|
||||
@Trainer.on(Events.ON_TRAIN_BATCH_BEGIN(every=10))
|
||||
@Trainer.on(Events.on_train_batch_begin(every=10))
|
||||
def fn2(trainer, batch, indices):
|
||||
pass
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
@Trainer.on(Events.ON_TRAIN_BATCH_BEGIN(every=10))
|
||||
@Trainer.on(Events.on_train_batch_begin(every=10))
|
||||
def fn3(trainer, batch):
|
||||
pass
|
||||
|
||||
|
@ -25,8 +25,8 @@ class TrainPaddleConfig:
|
||||
|
||||
@pytest.mark.parametrize("driver,device", [("paddle", "cpu"), ("paddle", 1), ("fleet", [0, 1])])
|
||||
# @pytest.mark.parametrize("driver,device", [("fleet", [0, 1])])
|
||||
@pytest.mark.parametrize("callbacks", [[RecordMetricCallback(monitor="acc#acc", metric_threshold=0.0, larger_better=True),
|
||||
RichCallback(5)]])
|
||||
@pytest.mark.parametrize("callbacks", [[RichCallback(5)]])
|
||||
@pytest.mark.paddle
|
||||
@magic_argv_env_context
|
||||
def test_trainer_paddle(
|
||||
driver,
|
||||
|
@ -98,6 +98,7 @@ def model_and_optimizers(request):
|
||||
|
||||
|
||||
# 测试一下普通的情况;
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", 1), ("torch", [0, 1])]) # ("torch", "cpu"), ("torch", 1), ("torch", [0, 1])
|
||||
@pytest.mark.parametrize("callbacks", [[RecordMetricCallback(monitor="acc", metric_threshold=0.2, larger_better=True)]])
|
||||
@pytest.mark.parametrize("evaluate_every", [-3, -1, 100])
|
||||
@ -133,6 +134,7 @@ def test_trainer_torch_with_evaluator(
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", [0, 1]), ("torch", 1)]) # ("torch", [0, 1]),("torch", 1)
|
||||
@pytest.mark.parametrize("fp16", [True, False])
|
||||
@pytest.mark.parametrize("accumulation_steps", [1, 3])
|
||||
|
@ -76,6 +76,7 @@ def model_and_optimizers(request):
|
||||
|
||||
|
||||
# 测试一下 cpu;
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu")])
|
||||
@magic_argv_env_context
|
||||
def test_trainer_torch_without_evaluator(
|
||||
@ -107,6 +108,7 @@ def test_trainer_torch_without_evaluator(
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", 1), ("torch", [1, 2])]) # ("torch", 4),
|
||||
@pytest.mark.parametrize("fp16", [False, True])
|
||||
@pytest.mark.parametrize("accumulation_steps", [1, 3])
|
||||
@ -146,6 +148,7 @@ def test_trainer_torch_without_evaluator_fp16_accumulation_steps(
|
||||
|
||||
|
||||
# 测试 accumulation_steps;
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", 1), ("torch", [1, 2])])
|
||||
@pytest.mark.parametrize("accumulation_steps", [1, 3])
|
||||
@magic_argv_env_context
|
||||
@ -179,6 +182,7 @@ def test_trainer_torch_without_evaluator_accumulation_steps(
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", [1, 2])])
|
||||
@pytest.mark.parametrize("output_from_new_proc", ["all", "ignore", "only_error", "test_log"])
|
||||
@magic_argv_env_context
|
||||
@ -242,6 +246,7 @@ def test_trainer_output_from_new_proc(
|
||||
rank_zero_rm(path)
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", [1, 2])])
|
||||
@pytest.mark.parametrize("cur_rank", [0]) # 依次测试如果是当前进程出现错误,是否能够正确地 kill 掉其他进程; , 1, 2, 3
|
||||
@magic_argv_env_context
|
||||
@ -294,6 +299,7 @@ def test_torch_distributed_launch_1(version):
|
||||
subprocess.check_call(command)
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("version", [0, 1, 2, 3])
|
||||
@magic_argv_env_context
|
||||
def test_torch_distributed_launch_2(version):
|
||||
@ -307,6 +313,7 @@ def test_torch_distributed_launch_2(version):
|
||||
subprocess.check_call(command)
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", 0), ("torch_ddp", [0, 1])])
|
||||
@magic_argv_env_context
|
||||
def test_torch_wo_auto_param_call(
|
||||
|
@ -10,7 +10,7 @@ class Test_WrapDataLoader:
|
||||
all_sanity_batches = [4, 20, 100]
|
||||
for sanity_batches in all_sanity_batches:
|
||||
data = NormalIterator(num_of_data=1000)
|
||||
wrapper = _TruncatedDataLoader(num_batches=sanity_batches)
|
||||
wrapper = _TruncatedDataLoader(dataloader=data, num_batches=sanity_batches)
|
||||
dataloader = iter(wrapper(dataloader=data))
|
||||
mark = 0
|
||||
while True:
|
||||
@ -31,7 +31,7 @@ class Test_WrapDataLoader:
|
||||
for sanity_batches in all_sanity_batches:
|
||||
dataset = TorchNormalDataset(num_of_data=1000)
|
||||
dataloader = DataLoader(dataset, batch_size=bs, shuffle=True)
|
||||
wrapper = _TruncatedDataLoader(num_batches=sanity_batches)
|
||||
wrapper = _TruncatedDataLoader(dataloader, num_batches=sanity_batches)
|
||||
dataloader = wrapper(dataloader)
|
||||
dataloader = iter(dataloader)
|
||||
all_supposed_running_data_num = 0
|
||||
@ -54,7 +54,7 @@ class Test_WrapDataLoader:
|
||||
for sanity_batches in all_sanity_batches:
|
||||
dataset = TorchNormalDataset(num_of_data=1000)
|
||||
dataloader = DataLoader(dataset, batch_size=bs, shuffle=True)
|
||||
wrapper = _TruncatedDataLoader(num_batches=sanity_batches)
|
||||
wrapper = _TruncatedDataLoader(dataloader, num_batches=sanity_batches)
|
||||
dataloader = wrapper(dataloader)
|
||||
length.append(len(dataloader))
|
||||
assert length == reduce(lambda x, y: x+y, [all_sanity_batches for _ in range(len(bses))])
|
@ -1,12 +1,16 @@
|
||||
import pytest
|
||||
from jittor.dataset import Dataset
|
||||
import jittor
|
||||
import numpy as np
|
||||
from datasets import Dataset as HfDataset
|
||||
from datasets import load_dataset
|
||||
|
||||
from fastNLP.core.dataloaders.jittor_dataloader import JittorDataLoader
|
||||
from fastNLP.core.dataset import DataSet as Fdataset
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR
|
||||
if _NEED_IMPORT_JITTOR:
|
||||
from jittor.dataset import Dataset
|
||||
import jittor
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as Dataset
|
||||
|
||||
|
||||
class MyDataset(Dataset):
|
||||
@ -25,7 +29,7 @@ class MyDataset(Dataset):
|
||||
# def __len__(self):
|
||||
# return self.dataset_len
|
||||
|
||||
|
||||
@pytest.mark.jittor
|
||||
class TestJittor:
|
||||
|
||||
def test_v1(self):
|
||||
|
@ -1,13 +1,18 @@
|
||||
import unittest
|
||||
import pytest
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import jittor as jt # 将 jittor 引入
|
||||
from jittor import nn, Module # 引入相关的模块
|
||||
from jittor import init
|
||||
from jittor.dataset import MNIST
|
||||
|
||||
from fastNLP.core.drivers.jittor_driver.single_device import JittorSingleDriver
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR
|
||||
if _NEED_IMPORT_JITTOR:
|
||||
import jittor as jt # 将 jittor 引入
|
||||
from jittor import nn, Module # 引入相关的模块
|
||||
from jittor import init
|
||||
from jittor.dataset import MNIST
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as Module
|
||||
|
||||
|
||||
|
||||
class Model (Module):
|
||||
@ -39,7 +44,8 @@ class Model (Module):
|
||||
x = self.fc2 (x)
|
||||
return x
|
||||
|
||||
class SingleDeviceTestCase(unittest.TestCase):
|
||||
@pytest.mark.jittor
|
||||
class TestSingleDevice:
|
||||
|
||||
def test_on_gpu_without_fp16(self):
|
||||
# TODO get_dataloader
|
||||
@ -82,7 +88,7 @@ class SingleDeviceTestCase(unittest.TestCase):
|
||||
total_acc += acc
|
||||
total_num += batch_size
|
||||
acc = acc / batch_size
|
||||
self.assertGreater(total_acc / total_num, 0.95)
|
||||
assert total_acc / total_num > 0.95
|
||||
|
||||
|
||||
def test_on_cpu_without_fp16(self):
|
||||
|
@ -18,6 +18,7 @@ from tests.helpers.utils import magic_argv_env_context
|
||||
import paddle
|
||||
import paddle.distributed as dist
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestDistUtilsTools:
|
||||
"""
|
||||
测试一些工具函数
|
||||
@ -78,6 +79,7 @@ class TestDistUtilsTools:
|
||||
assert res["string"] == paddle_dict["string"]
|
||||
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestAllGatherAndBroadCast:
|
||||
|
||||
@classmethod
|
||||
|
@ -38,6 +38,7 @@ def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, out
|
||||
#
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestFleetDriverFunction:
|
||||
"""
|
||||
测试 PaddleFleetDriver 一些简单函数的测试类,基本都是测试能否运行、是否存在 import 错误等问题
|
||||
@ -145,6 +146,7 @@ class TestFleetDriverFunction:
|
||||
#
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestSetDistReproDataloader:
|
||||
|
||||
@classmethod
|
||||
@ -517,6 +519,8 @@ class TestSetDistReproDataloader:
|
||||
# 测试 save 和 load 相关的功能
|
||||
#
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestSaveLoad:
|
||||
"""
|
||||
测试多卡情况下 save 和 load 相关函数的表现
|
||||
|
@ -8,12 +8,14 @@ from tests.helpers.utils import magic_argv_env_context
|
||||
|
||||
import paddle
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_incorrect_driver():
|
||||
|
||||
model = PaddleNormalModel_Classification_1(2, 100)
|
||||
with pytest.raises(ValueError):
|
||||
driver = initialize_paddle_driver("torch", 0, model)
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize(
|
||||
"device",
|
||||
["cpu", "gpu:0", 0]
|
||||
@ -31,6 +33,7 @@ def test_get_single_device(driver, device):
|
||||
driver = initialize_paddle_driver(driver, device, model)
|
||||
assert isinstance(driver, PaddleSingleDriver)
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize(
|
||||
"device",
|
||||
[0, 1, [1]]
|
||||
@ -50,6 +53,7 @@ def test_get_fleet_2(driver, device):
|
||||
|
||||
assert isinstance(driver, PaddleFleetDriver)
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize(
|
||||
"device",
|
||||
[[0, 2, 3], -1]
|
||||
@ -69,6 +73,7 @@ def test_get_fleet(driver, device):
|
||||
|
||||
assert isinstance(driver, PaddleFleetDriver)
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize(
|
||||
("driver", "device"),
|
||||
[("fleet", "cpu")]
|
||||
@ -82,6 +87,7 @@ def test_get_fleet_cpu(driver, device):
|
||||
with pytest.raises(ValueError):
|
||||
driver = initialize_paddle_driver(driver, device, model)
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize(
|
||||
"device",
|
||||
[-2, [0, get_gpu_count() + 1, 3], [-2], get_gpu_count() + 1]
|
||||
@ -97,4 +103,4 @@ def test_device_out_of_range(driver, device):
|
||||
"""
|
||||
model = PaddleNormalModel_Classification_1(2, 100)
|
||||
with pytest.raises(ValueError):
|
||||
driver = initialize_paddle_driver(driver, device, model)
|
||||
driver = initialize_paddle_driver(driver, device, model)
|
||||
|
@ -29,6 +29,7 @@ class TestPaddleDriverFunctions:
|
||||
model = PaddleNormalModel_Classification_1(10, 32)
|
||||
self.driver = PaddleSingleDriver(model, device="cpu")
|
||||
|
||||
@pytest.mark.torchpaddle
|
||||
def test_check_single_optimizer_legality(self):
|
||||
"""
|
||||
测试传入单个 optimizer 时的表现
|
||||
@ -45,6 +46,7 @@ class TestPaddleDriverFunctions:
|
||||
with pytest.raises(ValueError):
|
||||
self.driver.set_optimizers(optimizer)
|
||||
|
||||
@pytest.mark.torchpaddle
|
||||
def test_check_optimizers_legality(self):
|
||||
"""
|
||||
测试传入 optimizer list 的表现
|
||||
@ -65,6 +67,7 @@ class TestPaddleDriverFunctions:
|
||||
with pytest.raises(ValueError):
|
||||
self.driver.set_optimizers(optimizers)
|
||||
|
||||
@pytest.mark.torchpaddle
|
||||
def test_check_dataloader_legality_in_train(self):
|
||||
"""
|
||||
测试 `is_train` 参数为 True 时,_check_dataloader_legality 函数的表现
|
||||
@ -85,6 +88,7 @@ class TestPaddleDriverFunctions:
|
||||
with pytest.raises(ValueError):
|
||||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", True)
|
||||
|
||||
@pytest.mark.torchpaddle
|
||||
def test_check_dataloader_legality_in_test(self):
|
||||
"""
|
||||
测试 `is_train` 参数为 False 时,_check_dataloader_legality 函数的表现
|
||||
@ -122,6 +126,7 @@ class TestPaddleDriverFunctions:
|
||||
with pytest.raises(ValueError):
|
||||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False)
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_tensor_to_numeric(self):
|
||||
"""
|
||||
测试 tensor_to_numeric 函数
|
||||
@ -175,6 +180,7 @@ class TestPaddleDriverFunctions:
|
||||
assert r == d.tolist()
|
||||
assert res["dict"]["tensor"] == tensor_dict["dict"]["tensor"].tolist()
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_set_model_mode(self):
|
||||
"""
|
||||
测试 set_model_mode 函数
|
||||
@ -187,6 +193,7 @@ class TestPaddleDriverFunctions:
|
||||
with pytest.raises(AssertionError):
|
||||
self.driver.set_model_mode("test")
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_move_model_to_device_cpu(self):
|
||||
"""
|
||||
测试 move_model_to_device 函数
|
||||
@ -194,6 +201,7 @@ class TestPaddleDriverFunctions:
|
||||
PaddleSingleDriver.move_model_to_device(self.driver.model, "cpu")
|
||||
assert self.driver.model.linear1.weight.place.is_cpu_place()
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_move_model_to_device_gpu(self):
|
||||
"""
|
||||
测试 move_model_to_device 函数
|
||||
@ -202,6 +210,7 @@ class TestPaddleDriverFunctions:
|
||||
assert self.driver.model.linear1.weight.place.is_gpu_place()
|
||||
assert self.driver.model.linear1.weight.place.gpu_device_id() == 0
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_worker_init_function(self):
|
||||
"""
|
||||
测试 worker_init_function
|
||||
@ -210,6 +219,7 @@ class TestPaddleDriverFunctions:
|
||||
# TODO:正确性
|
||||
PaddleSingleDriver.worker_init_function(0)
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_set_deterministic_dataloader(self):
|
||||
"""
|
||||
测试 set_deterministic_dataloader
|
||||
@ -219,6 +229,7 @@ class TestPaddleDriverFunctions:
|
||||
dataloader = DataLoader(PaddleNormalDataset())
|
||||
self.driver.set_deterministic_dataloader(dataloader)
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_set_sampler_epoch(self):
|
||||
"""
|
||||
测试 set_sampler_epoch
|
||||
@ -228,6 +239,7 @@ class TestPaddleDriverFunctions:
|
||||
dataloader = DataLoader(PaddleNormalDataset())
|
||||
self.driver.set_sampler_epoch(dataloader, 0)
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize("batch_size", [16])
|
||||
@pytest.mark.parametrize("shuffle", [True, False])
|
||||
@pytest.mark.parametrize("drop_last", [True, False])
|
||||
@ -253,6 +265,7 @@ class TestPaddleDriverFunctions:
|
||||
assert res.batch_size == batch_size
|
||||
assert res.drop_last == drop_last
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize("batch_size", [16])
|
||||
@pytest.mark.parametrize("shuffle", [True, False])
|
||||
@pytest.mark.parametrize("drop_last", [True, False])
|
||||
@ -281,6 +294,7 @@ class TestPaddleDriverFunctions:
|
||||
assert res.batch_size == batch_size
|
||||
assert res.drop_last == drop_last
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize("batch_size", [16])
|
||||
@pytest.mark.parametrize("shuffle", [True, False])
|
||||
@pytest.mark.parametrize("drop_last", [True, False])
|
||||
@ -311,6 +325,7 @@ class TestPaddleDriverFunctions:
|
||||
#
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestSingleDeviceFunction:
|
||||
"""
|
||||
测试其它函数的测试例
|
||||
@ -345,6 +360,7 @@ class TestSingleDeviceFunction:
|
||||
#
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestSetDistReproDataloader:
|
||||
"""
|
||||
专门测试 set_dist_repro_dataloader 函数的类
|
||||
@ -541,6 +557,7 @@ def prepare_test_save_load():
|
||||
driver1, driver2 = generate_random_driver(10, 10), generate_random_driver(10, 10)
|
||||
return driver1, driver2, dataloader
|
||||
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize("only_state_dict", ([True, False]))
|
||||
def test_save_and_load_model(prepare_test_save_load, only_state_dict):
|
||||
"""
|
||||
@ -570,6 +587,7 @@ def test_save_and_load_model(prepare_test_save_load, only_state_dict):
|
||||
rank_zero_rm(path + ".pdiparams.info")
|
||||
rank_zero_rm(path + ".pdmodel")
|
||||
|
||||
@pytest.mark.paddle
|
||||
# @pytest.mark.parametrize("only_state_dict", ([True, False]))
|
||||
@pytest.mark.parametrize("only_state_dict", ([True]))
|
||||
@pytest.mark.parametrize("fp16", ([True, False]))
|
||||
@ -650,6 +668,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
|
||||
# @pytest.mark.parametrize("only_state_dict", ([True, False]))
|
||||
# TODO 在有迭代且使用了paddle.jit.save的时候会引发段错误,注释掉任意一段都不会出错
|
||||
# 但无法在单独的文件中复现
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.parametrize("only_state_dict", ([True]))
|
||||
@pytest.mark.parametrize("fp16", ([True, False]))
|
||||
def test_save_and_load_with_randomsampler(only_state_dict, fp16):
|
||||
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import pytest
|
||||
|
||||
from fastNLP.core.drivers.paddle_driver.utils import (
|
||||
@ -23,12 +24,14 @@ from tests.helpers.datasets.paddle_data import PaddleNormalDataset
|
||||
("3,6,7,8", "6,7,8", "gpu:2", str, "gpu:1"),
|
||||
)
|
||||
)
|
||||
@pytest.mark.paddle
|
||||
def test_get_device_from_visible_str(user_visible_devices, cuda_visible_devices, device, output_type, correct):
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_devices
|
||||
os.environ["USER_CUDA_VISIBLE_DEVICES"] = user_visible_devices
|
||||
res = get_device_from_visible(device, output_type)
|
||||
assert res == correct
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_replace_batch_sampler():
|
||||
dataset = PaddleNormalDataset(10)
|
||||
dataloader = DataLoader(dataset, batch_size=32)
|
||||
@ -42,6 +45,7 @@ def test_replace_batch_sampler():
|
||||
assert len(replaced_loader.dataset) == len(dataset)
|
||||
assert replaced_loader.batch_sampler.batch_size == 16
|
||||
|
||||
@pytest.mark.paddle
|
||||
def test_replace_sampler():
|
||||
dataset = PaddleNormalDataset(10)
|
||||
dataloader = DataLoader(dataset, batch_size=32)
|
||||
|
@ -1,31 +0,0 @@
|
||||
import sys
|
||||
sys.path.append("../../../../")
|
||||
from fastNLP.core.drivers.torch_driver.ddp import TorchDDPDriver
|
||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
|
||||
import torch
|
||||
|
||||
device = [0, 1]
|
||||
torch_model = TorchNormalModel_Classification_1(10, 10)
|
||||
torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01)
|
||||
device = [torch.device(i) for i in device]
|
||||
driver = TorchDDPDriver(
|
||||
model=torch_model,
|
||||
parallel_device=device,
|
||||
fp16=False
|
||||
)
|
||||
driver.set_optimizers(torch_opt)
|
||||
driver.setup()
|
||||
print("-----------first--------------")
|
||||
|
||||
device = [0, 2]
|
||||
torch_model = TorchNormalModel_Classification_1(10, 10)
|
||||
torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01)
|
||||
device = [torch.device(i) for i in device]
|
||||
driver = TorchDDPDriver(
|
||||
model=torch_model,
|
||||
parallel_device=device,
|
||||
fp16=False
|
||||
)
|
||||
driver.set_optimizers(torch_opt)
|
||||
driver.setup()
|
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import pytest
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
@ -62,6 +62,7 @@ class TestTorchDriverFunctions:
|
||||
model = TorchNormalModel_Classification_1(10, 32)
|
||||
self.driver = TorchSingleDriver(model, device="cpu")
|
||||
|
||||
@pytest.mark.torchpaddle
|
||||
def test_check_single_optimizer_legality(self):
|
||||
"""
|
||||
测试传入单个 optimizer 时的表现
|
||||
@ -81,6 +82,7 @@ class TestTorchDriverFunctions:
|
||||
with pytest.raises(ValueError):
|
||||
self.driver.set_optimizers(optimizer)
|
||||
|
||||
@pytest.mark.torchpaddle
|
||||
def test_check_optimizers_legality(self):
|
||||
"""
|
||||
测试传入 optimizer list 的表现
|
||||
@ -104,6 +106,7 @@ class TestTorchDriverFunctions:
|
||||
with pytest.raises(ValueError):
|
||||
self.driver.set_optimizers(optimizers)
|
||||
|
||||
@pytest.mark.torchpaddle
|
||||
def test_check_dataloader_legality_in_train(self):
|
||||
"""
|
||||
测试 `is_train` 参数为 True 时,_check_dataloader_legality 函数的表现
|
||||
@ -119,6 +122,7 @@ class TestTorchDriverFunctions:
|
||||
with pytest.raises(ValueError):
|
||||
TorchSingleDriver.check_dataloader_legality(dataloader, "dataloader", True)
|
||||
|
||||
@pytest.mark.torchpaddle
|
||||
def test_check_dataloader_legality_in_test(self):
|
||||
"""
|
||||
测试 `is_train` 参数为 False 时,_check_dataloader_legality 函数的表现
|
||||
@ -148,6 +152,7 @@ class TestTorchDriverFunctions:
|
||||
with pytest.raises(ValueError):
|
||||
TorchSingleDriver.check_dataloader_legality(dataloader, "dataloader", False)
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_tensor_to_numeric(self):
|
||||
"""
|
||||
测试 tensor_to_numeric 函数
|
||||
@ -201,6 +206,7 @@ class TestTorchDriverFunctions:
|
||||
assert r == d.tolist()
|
||||
assert res["dict"]["tensor"] == tensor_dict["dict"]["tensor"].tolist()
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_set_model_mode(self):
|
||||
"""
|
||||
测试set_model_mode函数
|
||||
@ -213,6 +219,7 @@ class TestTorchDriverFunctions:
|
||||
with pytest.raises(AssertionError):
|
||||
self.driver.set_model_mode("test")
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_move_model_to_device_cpu(self):
|
||||
"""
|
||||
测试move_model_to_device函数
|
||||
@ -220,6 +227,7 @@ class TestTorchDriverFunctions:
|
||||
TorchSingleDriver.move_model_to_device(self.driver.model, "cpu")
|
||||
assert self.driver.model.linear1.weight.device.type == "cpu"
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_move_model_to_device_gpu(self):
|
||||
"""
|
||||
测试move_model_to_device函数
|
||||
@ -228,6 +236,7 @@ class TestTorchDriverFunctions:
|
||||
assert self.driver.model.linear1.weight.device.type == "cuda"
|
||||
assert self.driver.model.linear1.weight.device.index == 0
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_worker_init_function(self):
|
||||
"""
|
||||
测试worker_init_function
|
||||
@ -236,6 +245,7 @@ class TestTorchDriverFunctions:
|
||||
# TODO:正确性
|
||||
TorchSingleDriver.worker_init_function(0)
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_set_deterministic_dataloader(self):
|
||||
"""
|
||||
测试set_deterministic_dataloader
|
||||
@ -245,6 +255,7 @@ class TestTorchDriverFunctions:
|
||||
dataloader = DataLoader(TorchNormalDataset())
|
||||
self.driver.set_deterministic_dataloader(dataloader)
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_set_sampler_epoch(self):
|
||||
"""
|
||||
测试set_sampler_epoch
|
||||
@ -254,6 +265,7 @@ class TestTorchDriverFunctions:
|
||||
dataloader = DataLoader(TorchNormalDataset())
|
||||
self.driver.set_sampler_epoch(dataloader, 0)
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("batch_size", [16])
|
||||
@pytest.mark.parametrize("shuffle", [True, False])
|
||||
@pytest.mark.parametrize("drop_last", [True, False])
|
||||
@ -279,6 +291,7 @@ class TestTorchDriverFunctions:
|
||||
assert res.batch_size == batch_size
|
||||
assert res.drop_last == drop_last
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("batch_size", [16])
|
||||
@pytest.mark.parametrize("shuffle", [True, False])
|
||||
@pytest.mark.parametrize("drop_last", [True, False])
|
||||
@ -300,6 +313,7 @@ class TestTorchDriverFunctions:
|
||||
assert res.batch_size == batch_size
|
||||
assert res.drop_last == drop_last
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("batch_size", [16])
|
||||
@pytest.mark.parametrize("shuffle", [True, False])
|
||||
@pytest.mark.parametrize("drop_last", [True, False])
|
||||
@ -325,6 +339,7 @@ class TestTorchDriverFunctions:
|
||||
#
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.torch
|
||||
class TestSingleDeviceFunction:
|
||||
"""
|
||||
测试其它函数的测试例
|
||||
@ -359,6 +374,7 @@ class TestSingleDeviceFunction:
|
||||
#
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.torch
|
||||
class TestSetDistReproDataloader:
|
||||
"""
|
||||
专门测试 set_dist_repro_dataloader 函数的类
|
||||
@ -534,6 +550,7 @@ def prepare_test_save_load():
|
||||
driver1, driver2 = generate_random_driver(10, 10), generate_random_driver(10, 10)
|
||||
return driver1, driver2, dataloader
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("only_state_dict", ([True, False]))
|
||||
def test_save_and_load_model(prepare_test_save_load, only_state_dict):
|
||||
"""
|
||||
@ -555,6 +572,7 @@ def test_save_and_load_model(prepare_test_save_load, only_state_dict):
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("only_state_dict", ([True, False]))
|
||||
@pytest.mark.parametrize("fp16", ([True, False]))
|
||||
def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
|
||||
@ -623,6 +641,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("only_state_dict", ([True, False]))
|
||||
@pytest.mark.parametrize("fp16", ([True, False]))
|
||||
def test_save_and_load_with_randomsampler(only_state_dict, fp16):
|
||||
|
@ -1,4 +1,4 @@
|
||||
import unittest
|
||||
import pytest
|
||||
|
||||
from fastNLP.modules.mix_modules.mix_module import MixModule
|
||||
from fastNLP.core.drivers.torch_paddle_driver.torch_paddle_driver import TorchPaddleDriver
|
||||
@ -56,10 +56,11 @@ class MixMNISTModel(MixModule):
|
||||
def test_step(self, x):
|
||||
return self.forward(x)
|
||||
|
||||
class TestMNIST(unittest.TestCase):
|
||||
@pytest.mark.torchpaddle
|
||||
class TestMNIST:
|
||||
|
||||
@classmethod
|
||||
def setUpClass(self):
|
||||
def setup_class(self):
|
||||
|
||||
self.train_dataset = paddle.vision.datasets.MNIST(mode='train')
|
||||
self.test_dataset = paddle.vision.datasets.MNIST(mode='test')
|
||||
@ -70,7 +71,7 @@ class TestMNIST(unittest.TestCase):
|
||||
|
||||
self.dataloader = DataLoader(self.train_dataset, batch_size=100, shuffle=True)
|
||||
|
||||
def setUp(self):
|
||||
def setup_method(self):
|
||||
|
||||
model = MixMNISTModel()
|
||||
self.torch_loss_func = torch.nn.CrossEntropyLoss()
|
||||
@ -118,4 +119,4 @@ class TestMNIST(unittest.TestCase):
|
||||
correct += 1
|
||||
|
||||
acc = correct / len(self.test_dataset)
|
||||
self.assertGreater(acc, 0.85)
|
||||
assert acc > 0.85
|
||||
|
@ -49,12 +49,12 @@ def test_accuracy_single():
|
||||
# 测试 单机多卡情况下的Accuracy
|
||||
#
|
||||
############################################################################
|
||||
def test_accuracy_ddp():
|
||||
launcher = FleetLauncher(devices=[0, 1])
|
||||
launcher.launch()
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
if fleet.is_server():
|
||||
pass
|
||||
elif fleet.is_worker():
|
||||
print(os.getenv("PADDLE_TRAINER_ID"))
|
||||
# def test_accuracy_ddp():
|
||||
# launcher = FleetLauncher(devices=[0, 1])
|
||||
# launcher.launch()
|
||||
# role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
# fleet.init(role)
|
||||
# if fleet.is_server():
|
||||
# pass
|
||||
# elif fleet.is_worker():
|
||||
# print(os.getenv("PADDLE_TRAINER_ID"))
|
||||
|
@ -1,26 +0,0 @@
|
||||
from fastNLP.core.metrics.metric import Metric
|
||||
|
||||
from collections import defaultdict
|
||||
from functools import partial
|
||||
|
||||
import unittest
|
||||
|
||||
|
||||
class MyMetric(Metric):
|
||||
|
||||
def __init__(self, backend='auto',
|
||||
aggregate_when_get_metric: bool = False):
|
||||
super(MyMetric, self).__init__(backend=backend, aggregate_when_get_metric=aggregate_when_get_metric)
|
||||
|
||||
self.tp = defaultdict(partial(self.register_element, aggregate_method='sum'))
|
||||
|
||||
def update(self, item):
|
||||
self.tp['1'] += item
|
||||
|
||||
|
||||
class TestMetric(unittest.TestCase):
|
||||
|
||||
def test_va1(self):
|
||||
my = MyMetric()
|
||||
my.update(1)
|
||||
print(my.tp['1'])
|
@ -29,6 +29,8 @@ class TestUnrepeatedSampler:
|
||||
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
|
||||
@pytest.mark.parametrize('shuffle', [False, True])
|
||||
def test_multi(self, num_replicas, num_of_data, shuffle):
|
||||
if num_replicas > num_of_data:
|
||||
pytest.skip("num_replicas > num_of_data")
|
||||
data = DatasetWithVaryLength(num_of_data=num_of_data)
|
||||
samplers = []
|
||||
for i in range(num_replicas):
|
||||
@ -53,6 +55,8 @@ class TestUnrepeatedSortedSampler:
|
||||
@pytest.mark.parametrize('num_replicas', [2, 3])
|
||||
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
|
||||
def test_multi(self, num_replicas, num_of_data):
|
||||
if num_replicas > num_of_data:
|
||||
pytest.skip("num_replicas > num_of_data")
|
||||
data = DatasetWithVaryLength(num_of_data=num_of_data)
|
||||
samplers = []
|
||||
for i in range(num_replicas):
|
||||
@ -84,6 +88,8 @@ class TestUnrepeatedSequentialSampler:
|
||||
@pytest.mark.parametrize('num_replicas', [2, 3])
|
||||
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
|
||||
def test_multi(self, num_replicas, num_of_data):
|
||||
if num_replicas > num_of_data:
|
||||
pytest.skip("num_replicas > num_of_data")
|
||||
data = DatasetWithVaryLength(num_of_data=num_of_data)
|
||||
samplers = []
|
||||
for i in range(num_replicas):
|
||||
|
@ -1,4 +1,3 @@
|
||||
import unittest
|
||||
import pytest
|
||||
import paddle
|
||||
|
||||
@ -12,21 +11,21 @@ from fastNLP.core.utils.paddle_utils import paddle_to, paddle_move_data_to_devic
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.paddle
|
||||
class PaddleToDeviceTestCase(unittest.TestCase):
|
||||
class TestPaddleToDevice:
|
||||
def test_case(self):
|
||||
tensor = paddle.rand((4, 5))
|
||||
|
||||
res = paddle_to(tensor, "gpu")
|
||||
self.assertTrue(res.place.is_gpu_place())
|
||||
self.assertEqual(res.place.gpu_device_id(), 0)
|
||||
assert res.place.is_gpu_place()
|
||||
assert res.place.gpu_device_id() == 0
|
||||
res = paddle_to(tensor, "cpu")
|
||||
self.assertTrue(res.place.is_cpu_place())
|
||||
assert res.place.is_cpu_place()
|
||||
res = paddle_to(tensor, "gpu:2")
|
||||
self.assertTrue(res.place.is_gpu_place())
|
||||
self.assertEqual(res.place.gpu_device_id(), 2)
|
||||
assert res.place.is_gpu_place()
|
||||
assert res.place.gpu_device_id() == 2
|
||||
res = paddle_to(tensor, "gpu:1")
|
||||
self.assertTrue(res.place.is_gpu_place())
|
||||
self.assertEqual(res.place.gpu_device_id(), 1)
|
||||
assert res.place.is_gpu_place()
|
||||
assert res.place.gpu_device_id() == 1
|
||||
|
||||
############################################################################
|
||||
#
|
||||
@ -34,22 +33,22 @@ class PaddleToDeviceTestCase(unittest.TestCase):
|
||||
#
|
||||
############################################################################
|
||||
|
||||
class PaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
class TestPaddleMoveDataToDevice:
|
||||
|
||||
def check_gpu(self, tensor, idx):
|
||||
"""
|
||||
检查张量是否在指定的设备上的工具函数
|
||||
"""
|
||||
|
||||
self.assertTrue(tensor.place.is_gpu_place())
|
||||
self.assertEqual(tensor.place.gpu_device_id(), idx)
|
||||
assert tensor.place.is_gpu_place()
|
||||
assert tensor.place.gpu_device_id() == idx
|
||||
|
||||
def check_cpu(self, tensor):
|
||||
"""
|
||||
检查张量是否在cpu上的工具函数
|
||||
"""
|
||||
|
||||
self.assertTrue(tensor.place.is_cpu_place())
|
||||
assert tensor.place.is_cpu_place()
|
||||
|
||||
def test_tensor_transfer(self):
|
||||
"""
|
||||
@ -82,22 +81,22 @@ class PaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
|
||||
paddle_list = [paddle.rand((6, 4, 2)) for i in range(10)]
|
||||
res = paddle_move_data_to_device(paddle_list, device=None, data_device="gpu:1")
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for r in res:
|
||||
self.check_gpu(r, 1)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_list, device="cpu", data_device="gpu:1")
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for r in res:
|
||||
self.check_cpu(r)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_list, device="gpu:0", data_device=None)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for r in res:
|
||||
self.check_gpu(r, 0)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_list, device="gpu:1", data_device="cpu")
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for r in res:
|
||||
self.check_gpu(r, 1)
|
||||
|
||||
@ -109,22 +108,22 @@ class PaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
paddle_list = [paddle.rand((6, 4, 2)) for i in range(10)]
|
||||
paddle_tuple = tuple(paddle_list)
|
||||
res = paddle_move_data_to_device(paddle_tuple, device=None, data_device="gpu:1")
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for r in res:
|
||||
self.check_gpu(r, 1)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_tuple, device="cpu", data_device="gpu:1")
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for r in res:
|
||||
self.check_cpu(r)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_tuple, device="gpu:0", data_device=None)
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for r in res:
|
||||
self.check_gpu(r, 0)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_tuple, device="gpu:1", data_device="cpu")
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for r in res:
|
||||
self.check_gpu(r, 1)
|
||||
|
||||
@ -145,57 +144,57 @@ class PaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
}
|
||||
|
||||
res = paddle_move_data_to_device(paddle_dict, device="gpu:0", data_device=None)
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_gpu(res["tensor"], 0)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_gpu(t, 0)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_gpu(t, 0)
|
||||
self.check_gpu(res["dict"]["tensor"], 0)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_dict, device="gpu:0", data_device="cpu")
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_gpu(res["tensor"], 0)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_gpu(t, 0)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_gpu(t, 0)
|
||||
self.check_gpu(res["dict"]["tensor"], 0)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_dict, device=None, data_device="gpu:1")
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_gpu(res["tensor"], 1)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_gpu(t, 1)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_gpu(t, 1)
|
||||
self.check_gpu(res["dict"]["tensor"], 1)
|
||||
|
||||
res = paddle_move_data_to_device(paddle_dict, device="cpu", data_device="gpu:0")
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_cpu(res["tensor"])
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_cpu(t)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_cpu(t)
|
||||
self.check_cpu(res["dict"]["tensor"])
|
||||
|
@ -1,5 +1,3 @@
|
||||
import unittest
|
||||
|
||||
import paddle
|
||||
import pytest
|
||||
import torch
|
||||
@ -12,9 +10,8 @@ from fastNLP.core.utils.torch_paddle_utils import torch_paddle_move_data_to_devi
|
||||
#
|
||||
############################################################################
|
||||
|
||||
# @pytest.mark.paddle
|
||||
# @pytest.mark.torch
|
||||
class TorchPaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
@pytest.mark.torchpaddle
|
||||
class TestTorchPaddleMoveDataToDevice:
|
||||
|
||||
def check_gpu(self, tensor, idx):
|
||||
"""
|
||||
@ -22,17 +19,17 @@ class TorchPaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
"""
|
||||
|
||||
if isinstance(tensor, paddle.Tensor):
|
||||
self.assertTrue(tensor.place.is_gpu_place())
|
||||
self.assertEqual(tensor.place.gpu_device_id(), idx)
|
||||
assert tensor.place.is_gpu_place()
|
||||
assert tensor.place.gpu_device_id() == idx
|
||||
elif isinstance(tensor, torch.Tensor):
|
||||
self.assertTrue(tensor.is_cuda)
|
||||
self.assertEqual(tensor.device.index, idx)
|
||||
assert tensor.is_cuda
|
||||
assert tensor.device.index == idx
|
||||
|
||||
def check_cpu(self, tensor):
|
||||
if isinstance(tensor, paddle.Tensor):
|
||||
self.assertTrue(tensor.place.is_cpu_place())
|
||||
assert tensor.place.is_cpu_place()
|
||||
elif isinstance(tensor, torch.Tensor):
|
||||
self.assertFalse(tensor.is_cuda)
|
||||
assert not tensor.is_cuda
|
||||
|
||||
def test_tensor_transfer(self):
|
||||
"""
|
||||
@ -63,7 +60,6 @@ class TorchPaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
self.check_cpu(res)
|
||||
|
||||
res = torch_paddle_move_data_to_device(torch_tensor, device="gpu:0", data_device=None)
|
||||
print(res.device)
|
||||
self.check_gpu(res, 0)
|
||||
|
||||
res = torch_paddle_move_data_to_device(torch_tensor, device="gpu:1", data_device=None)
|
||||
@ -85,22 +81,22 @@ class TorchPaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
|
||||
paddle_list = [paddle.rand((6, 4, 2)) for i in range(5)] + [torch.rand((6, 4, 2)) for i in range(5)]
|
||||
res = torch_paddle_move_data_to_device(paddle_list, device=None, data_device="gpu:1")
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for r in res:
|
||||
self.check_gpu(r, 1)
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_list, device="cpu", data_device="gpu:1")
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for r in res:
|
||||
self.check_cpu(r)
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_list, device="gpu:0", data_device=None)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for r in res:
|
||||
self.check_gpu(r, 0)
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_list, device="gpu:1", data_device="cpu")
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for r in res:
|
||||
self.check_gpu(r, 1)
|
||||
|
||||
@ -112,22 +108,22 @@ class TorchPaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
paddle_list = [paddle.rand((6, 4, 2)) for i in range(10)] + [torch.rand((6, 4, 2)) for i in range(5)]
|
||||
paddle_tuple = tuple(paddle_list)
|
||||
res = torch_paddle_move_data_to_device(paddle_tuple, device=None, data_device="gpu:1")
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for r in res:
|
||||
self.check_gpu(r, 1)
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_tuple, device="cpu", data_device="gpu:1")
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for r in res:
|
||||
self.check_cpu(r)
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_tuple, device="gpu:0", data_device=None)
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for r in res:
|
||||
self.check_gpu(r, 0)
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_tuple, device="gpu:1", data_device="cpu")
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for r in res:
|
||||
self.check_gpu(r, 1)
|
||||
|
||||
@ -151,57 +147,57 @@ class TorchPaddleMoveDataToDeviceTestCase(unittest.TestCase):
|
||||
}
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_dict, device="gpu:0", data_device=None)
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_gpu(res["torch_tensor"], 0)
|
||||
self.check_gpu(res["paddle_tensor"], 0)
|
||||
self.assertIsInstance(res["torch_list"], list)
|
||||
assert isinstance(res["torch_list"], list)
|
||||
for t in res["torch_list"]:
|
||||
self.check_gpu(t, 0)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_gpu(t, 0)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_gpu(t, 0)
|
||||
self.check_gpu(res["dict"]["torch_tensor"], 0)
|
||||
self.check_gpu(res["dict"]["paddle_tensor"], 0)
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_dict, device=None, data_device="gpu:1")
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_gpu(res["torch_tensor"], 1)
|
||||
self.check_gpu(res["paddle_tensor"], 1)
|
||||
self.assertIsInstance(res["torch_list"], list)
|
||||
assert isinstance(res["torch_list"], list)
|
||||
for t in res["torch_list"]:
|
||||
self.check_gpu(t, 1)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_gpu(t, 1)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_gpu(t, 1)
|
||||
self.check_gpu(res["dict"]["torch_tensor"], 1)
|
||||
self.check_gpu(res["dict"]["paddle_tensor"], 1)
|
||||
|
||||
res = torch_paddle_move_data_to_device(paddle_dict, device="cpu", data_device="gpu:0")
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_cpu(res["torch_tensor"])
|
||||
self.check_cpu(res["paddle_tensor"])
|
||||
self.assertIsInstance(res["torch_list"], list)
|
||||
assert isinstance(res["torch_list"], list)
|
||||
for t in res["torch_list"]:
|
||||
self.check_cpu(t)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_cpu(t)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_cpu(t)
|
||||
self.check_cpu(res["dict"]["torch_tensor"])
|
||||
|
@ -26,9 +26,9 @@ class Paddle2TorchTestCase(unittest.TestCase):
|
||||
检查张量设备和梯度情况的工具函数
|
||||
"""
|
||||
|
||||
self.assertIsInstance(tensor, torch.Tensor)
|
||||
self.assertEqual(tensor.device, torch.device(device))
|
||||
self.assertEqual(tensor.requires_grad, requires_grad)
|
||||
assert isinstance(tensor, torch.Tensor)
|
||||
assert tensor.device == torch.device(device)
|
||||
assert tensor.requires_grad == requires_grad
|
||||
|
||||
def test_gradient(self):
|
||||
"""
|
||||
@ -39,7 +39,7 @@ class Paddle2TorchTestCase(unittest.TestCase):
|
||||
y = paddle2torch(x)
|
||||
z = 3 * (y ** 2)
|
||||
z.sum().backward()
|
||||
self.assertListEqual(y.grad.tolist(), [6, 12, 18, 24, 30])
|
||||
assert y.grad.tolist() == [6, 12, 18, 24, 30]
|
||||
|
||||
def test_tensor_transfer(self):
|
||||
"""
|
||||
@ -66,12 +66,12 @@ class Paddle2TorchTestCase(unittest.TestCase):
|
||||
|
||||
paddle_list = [paddle.rand((6, 4, 2)).cuda(1) for i in range(10)]
|
||||
res = paddle2torch(paddle_list)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for t in res:
|
||||
self.check_torch_tensor(t, "cuda:1", False)
|
||||
|
||||
res = paddle2torch(paddle_list, target_device="cpu", no_gradient=False)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for t in res:
|
||||
self.check_torch_tensor(t, "cpu", True)
|
||||
|
||||
@ -83,7 +83,7 @@ class Paddle2TorchTestCase(unittest.TestCase):
|
||||
paddle_list = [paddle.rand((6, 4, 2)).cuda(1) for i in range(10)]
|
||||
paddle_tuple = tuple(paddle_list)
|
||||
res = paddle2torch(paddle_tuple)
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for t in res:
|
||||
self.check_torch_tensor(t, "cuda:1", False)
|
||||
|
||||
@ -103,15 +103,15 @@ class Paddle2TorchTestCase(unittest.TestCase):
|
||||
"string": "test string"
|
||||
}
|
||||
res = paddle2torch(paddle_dict)
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_torch_tensor(res["tensor"], "cuda:0", False)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_torch_tensor(t, "cuda:0", False)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_torch_tensor(t, "cuda:0", False)
|
||||
self.check_torch_tensor(res["dict"]["tensor"], "cuda:0", False)
|
||||
@ -130,24 +130,24 @@ class Torch2PaddleTestCase(unittest.TestCase):
|
||||
检查得到的paddle张量设备和梯度情况的工具函数
|
||||
"""
|
||||
|
||||
self.assertIsInstance(tensor, paddle.Tensor)
|
||||
assert isinstance(tensor, paddle.Tensor)
|
||||
if device == "cpu":
|
||||
self.assertTrue(tensor.place.is_cpu_place())
|
||||
assert tensor.place.is_cpu_place()
|
||||
elif device.startswith("gpu"):
|
||||
paddle_device = paddle.device._convert_to_place(device)
|
||||
self.assertTrue(tensor.place.is_gpu_place())
|
||||
assert tensor.place.is_gpu_place()
|
||||
if hasattr(tensor.place, "gpu_device_id"):
|
||||
# paddle中,有两种Place
|
||||
# paddle.fluid.core.Place是创建Tensor时使用的类型
|
||||
# 有函数gpu_device_id获取设备
|
||||
self.assertEqual(tensor.place.gpu_device_id(), paddle_device.get_device_id())
|
||||
assert tensor.place.gpu_device_id() == paddle_device.get_device_id()
|
||||
else:
|
||||
# 通过_convert_to_place得到的是paddle.CUDAPlace
|
||||
# 通过get_device_id获取设备
|
||||
self.assertEqual(tensor.place.get_device_id(), paddle_device.get_device_id())
|
||||
assert tensor.place.get_device_id() == paddle_device.get_device_id()
|
||||
else:
|
||||
raise NotImplementedError
|
||||
self.assertEqual(tensor.stop_gradient, stop_gradient)
|
||||
assert tensor.stop_gradient == stop_gradient
|
||||
|
||||
def test_gradient(self):
|
||||
"""
|
||||
@ -158,7 +158,7 @@ class Torch2PaddleTestCase(unittest.TestCase):
|
||||
y = torch2paddle(x)
|
||||
z = 3 * (y ** 2)
|
||||
z.sum().backward()
|
||||
self.assertListEqual(y.grad.tolist(), [6, 12, 18, 24, 30])
|
||||
assert y.grad.tolist() == [6, 12, 18, 24, 30]
|
||||
|
||||
def test_tensor_transfer(self):
|
||||
"""
|
||||
@ -185,12 +185,12 @@ class Torch2PaddleTestCase(unittest.TestCase):
|
||||
|
||||
torch_list = [torch.rand(6, 4, 2) for i in range(10)]
|
||||
res = torch2paddle(torch_list)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for t in res:
|
||||
self.check_paddle_tensor(t, "cpu", True)
|
||||
|
||||
res = torch2paddle(torch_list, target_device="gpu:1", no_gradient=False)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for t in res:
|
||||
self.check_paddle_tensor(t, "gpu:1", False)
|
||||
|
||||
@ -202,7 +202,7 @@ class Torch2PaddleTestCase(unittest.TestCase):
|
||||
torch_list = [torch.rand(6, 4, 2) for i in range(10)]
|
||||
torch_tuple = tuple(torch_list)
|
||||
res = torch2paddle(torch_tuple, target_device="cpu")
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for t in res:
|
||||
self.check_paddle_tensor(t, "cpu", True)
|
||||
|
||||
@ -222,15 +222,15 @@ class Torch2PaddleTestCase(unittest.TestCase):
|
||||
"string": "test string"
|
||||
}
|
||||
res = torch2paddle(torch_dict)
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_paddle_tensor(res["tensor"], "cpu", True)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_paddle_tensor(t, "cpu", True)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_paddle_tensor(t, "cpu", True)
|
||||
self.check_paddle_tensor(res["dict"]["tensor"], "cpu", True)
|
||||
@ -249,12 +249,12 @@ class Jittor2TorchTestCase(unittest.TestCase):
|
||||
检查得到的torch张量的工具函数
|
||||
"""
|
||||
|
||||
self.assertIsInstance(tensor, torch.Tensor)
|
||||
assert isinstance(tensor, torch.Tensor)
|
||||
if device == "cpu":
|
||||
self.assertFalse(tensor.is_cuda)
|
||||
assert not tensor.is_cuda
|
||||
else:
|
||||
self.assertEqual(tensor.device, torch.device(device))
|
||||
self.assertEqual(tensor.requires_grad, requires_grad)
|
||||
assert tensor.device == torch.device(device)
|
||||
assert tensor.requires_grad == requires_grad
|
||||
|
||||
def test_var_transfer(self):
|
||||
"""
|
||||
@ -281,12 +281,12 @@ class Jittor2TorchTestCase(unittest.TestCase):
|
||||
|
||||
jittor_list = [jittor.rand((6, 4, 2)) for i in range(10)]
|
||||
res = jittor2torch(jittor_list)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for t in res:
|
||||
self.check_torch_tensor(t, "cpu", True)
|
||||
|
||||
res = jittor2torch(jittor_list, target_device="cuda:1", no_gradient=False)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for t in res:
|
||||
self.check_torch_tensor(t, "cuda:1", True)
|
||||
|
||||
@ -298,7 +298,7 @@ class Jittor2TorchTestCase(unittest.TestCase):
|
||||
jittor_list = [jittor.rand((6, 4, 2)) for i in range(10)]
|
||||
jittor_tuple = tuple(jittor_list)
|
||||
res = jittor2torch(jittor_tuple, target_device="cpu")
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for t in res:
|
||||
self.check_torch_tensor(t, "cpu", True)
|
||||
|
||||
@ -318,15 +318,15 @@ class Jittor2TorchTestCase(unittest.TestCase):
|
||||
"string": "test string"
|
||||
}
|
||||
res = jittor2torch(jittor_dict)
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_torch_tensor(res["tensor"], "cpu", True)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_torch_tensor(t, "cpu", True)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_torch_tensor(t, "cpu", True)
|
||||
self.check_torch_tensor(res["dict"]["tensor"], "cpu", True)
|
||||
@ -345,8 +345,8 @@ class Torch2JittorTestCase(unittest.TestCase):
|
||||
检查得到的Jittor Var梯度情况的工具函数
|
||||
"""
|
||||
|
||||
self.assertIsInstance(var, jittor.Var)
|
||||
self.assertEqual(var.requires_grad, requires_grad)
|
||||
assert isinstance(var, jittor.Var)
|
||||
assert var.requires_grad == requires_grad
|
||||
|
||||
def test_gradient(self):
|
||||
"""
|
||||
@ -357,7 +357,7 @@ class Torch2JittorTestCase(unittest.TestCase):
|
||||
y = torch2jittor(x)
|
||||
z = 3 * (y ** 2)
|
||||
grad = jittor.grad(z, y)
|
||||
self.assertListEqual(grad.tolist(), [6.0, 12.0, 18.0, 24.0, 30.0])
|
||||
assert grad.tolist() == [6.0, 12.0, 18.0, 24.0, 30.0]
|
||||
|
||||
def test_tensor_transfer(self):
|
||||
"""
|
||||
@ -384,12 +384,12 @@ class Torch2JittorTestCase(unittest.TestCase):
|
||||
|
||||
torch_list = [torch.rand((6, 4, 2)) for i in range(10)]
|
||||
res = torch2jittor(torch_list)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for t in res:
|
||||
self.check_jittor_var(t, False)
|
||||
|
||||
res = torch2jittor(torch_list, no_gradient=False)
|
||||
self.assertIsInstance(res, list)
|
||||
assert isinstance(res, list)
|
||||
for t in res:
|
||||
self.check_jittor_var(t, True)
|
||||
|
||||
@ -401,7 +401,7 @@ class Torch2JittorTestCase(unittest.TestCase):
|
||||
torch_list = [torch.rand((6, 4, 2)) for i in range(10)]
|
||||
torch_tuple = tuple(torch_list)
|
||||
res = torch2jittor(torch_tuple)
|
||||
self.assertIsInstance(res, tuple)
|
||||
assert isinstance(res, tuple)
|
||||
for t in res:
|
||||
self.check_jittor_var(t, False)
|
||||
|
||||
@ -421,15 +421,15 @@ class Torch2JittorTestCase(unittest.TestCase):
|
||||
"string": "test string"
|
||||
}
|
||||
res = torch2jittor(torch_dict)
|
||||
self.assertIsInstance(res, dict)
|
||||
assert isinstance(res, dict)
|
||||
self.check_jittor_var(res["tensor"], False)
|
||||
self.assertIsInstance(res["list"], list)
|
||||
assert isinstance(res["list"], list)
|
||||
for t in res["list"]:
|
||||
self.check_jittor_var(t, False)
|
||||
self.assertIsInstance(res["int"], int)
|
||||
self.assertIsInstance(res["string"], str)
|
||||
self.assertIsInstance(res["dict"], dict)
|
||||
self.assertIsInstance(res["dict"]["list"], list)
|
||||
assert isinstance(res["int"], int)
|
||||
assert isinstance(res["string"], str)
|
||||
assert isinstance(res["dict"], dict)
|
||||
assert isinstance(res["dict"]["list"], list)
|
||||
for t in res["dict"]["list"]:
|
||||
self.check_jittor_var(t, False)
|
||||
self.check_jittor_var(res["dict"]["tensor"], False)
|
@ -1,4 +1,4 @@
|
||||
import unittest
|
||||
import pytest
|
||||
import os
|
||||
from itertools import chain
|
||||
|
||||
@ -18,9 +18,9 @@ from fastNLP.core import rank_zero_rm
|
||||
#
|
||||
############################################################################
|
||||
|
||||
class TestMixModule(MixModule):
|
||||
class MixModuleForTest(MixModule):
|
||||
def __init__(self):
|
||||
super(TestMixModule, self).__init__()
|
||||
super(MixModuleForTest, self).__init__()
|
||||
|
||||
self.torch_fc1 = torch.nn.Linear(10, 10)
|
||||
self.torch_softmax = torch.nn.Softmax(0)
|
||||
@ -33,9 +33,9 @@ class TestMixModule(MixModule):
|
||||
self.paddle_conv2d1 = paddle.nn.Conv2D(10, 10, 3)
|
||||
self.paddle_tensor = paddle.ones((4, 4))
|
||||
|
||||
class TestTorchModule(torch.nn.Module):
|
||||
class TorchModuleForTest(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(TestTorchModule, self).__init__()
|
||||
super(TorchModuleForTest, self).__init__()
|
||||
|
||||
self.torch_fc1 = torch.nn.Linear(10, 10)
|
||||
self.torch_softmax = torch.nn.Softmax(0)
|
||||
@ -43,9 +43,9 @@ class TestTorchModule(torch.nn.Module):
|
||||
self.torch_tensor = torch.ones(3, 3)
|
||||
self.torch_param = torch.nn.Parameter(torch.ones(4, 4))
|
||||
|
||||
class TestPaddleModule(paddle.nn.Layer):
|
||||
class PaddleModuleForTest(paddle.nn.Layer):
|
||||
def __init__(self):
|
||||
super(TestPaddleModule, self).__init__()
|
||||
super(PaddleModuleForTest, self).__init__()
|
||||
|
||||
self.paddle_fc1 = paddle.nn.Linear(10, 10)
|
||||
self.paddle_softmax = paddle.nn.Softmax(0)
|
||||
@ -53,13 +53,14 @@ class TestPaddleModule(paddle.nn.Layer):
|
||||
self.paddle_tensor = paddle.ones((4, 4))
|
||||
|
||||
|
||||
class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
@pytest.mark.torchpaddle
|
||||
class TestTorchPaddleMixModule:
|
||||
|
||||
def setUp(self):
|
||||
def setup_method(self):
|
||||
|
||||
self.model = TestMixModule()
|
||||
self.torch_model = TestTorchModule()
|
||||
self.paddle_model = TestPaddleModule()
|
||||
self.model = MixModuleForTest()
|
||||
self.torch_model = TorchModuleForTest()
|
||||
self.paddle_model = PaddleModuleForTest()
|
||||
|
||||
def test_to(self):
|
||||
"""
|
||||
@ -110,7 +111,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
for value in chain(self.torch_model.named_parameters(), self.paddle_model.named_parameters()):
|
||||
params.append(value)
|
||||
|
||||
self.assertEqual(len(params), len(mix_params))
|
||||
assert len(params) == len(mix_params)
|
||||
|
||||
def test_named_parameters(self):
|
||||
"""
|
||||
@ -126,7 +127,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
for name, value in chain(self.torch_model.named_parameters(), self.paddle_model.named_parameters()):
|
||||
param_names.append(name)
|
||||
|
||||
self.assertListEqual(sorted(param_names), sorted(mix_param_names))
|
||||
assert sorted(param_names) == sorted(mix_param_names)
|
||||
|
||||
def test_torch_named_parameters(self):
|
||||
"""
|
||||
@ -142,7 +143,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
for name, value in self.torch_model.named_parameters():
|
||||
param_names.append(name)
|
||||
|
||||
self.assertListEqual(sorted(param_names), sorted(mix_param_names))
|
||||
assert sorted(param_names) == sorted(mix_param_names)
|
||||
|
||||
def test_paddle_named_parameters(self):
|
||||
"""
|
||||
@ -158,7 +159,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
for name, value in self.paddle_model.named_parameters():
|
||||
param_names.append(name)
|
||||
|
||||
self.assertListEqual(sorted(param_names), sorted(mix_param_names))
|
||||
assert sorted(param_names) == sorted(mix_param_names)
|
||||
|
||||
def test_torch_state_dict(self):
|
||||
"""
|
||||
@ -167,7 +168,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
torch_dict = self.torch_model.state_dict()
|
||||
mix_dict = self.model.state_dict(backend="torch")
|
||||
|
||||
self.assertListEqual(sorted(torch_dict.keys()), sorted(mix_dict.keys()))
|
||||
assert sorted(torch_dict.keys()) == sorted(mix_dict.keys())
|
||||
|
||||
def test_paddle_state_dict(self):
|
||||
"""
|
||||
@ -177,7 +178,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
mix_dict = self.model.state_dict(backend="paddle")
|
||||
|
||||
# TODO 测试程序会显示passed后显示paddle的异常退出信息
|
||||
self.assertListEqual(sorted(paddle_dict.keys()), sorted(mix_dict.keys()))
|
||||
assert sorted(paddle_dict.keys()) == sorted(mix_dict.keys())
|
||||
|
||||
def test_state_dict(self):
|
||||
"""
|
||||
@ -188,7 +189,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
mix_dict = self.model.state_dict()
|
||||
|
||||
# TODO 测试程序会显示passed后显示paddle的异常退出信息
|
||||
self.assertListEqual(sorted(all_dict.keys()), sorted(mix_dict.keys()))
|
||||
assert sorted(all_dict.keys()) == sorted(mix_dict.keys())
|
||||
|
||||
def test_load_state_dict(self):
|
||||
"""
|
||||
@ -196,7 +197,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
"""
|
||||
state_dict = self.model.state_dict()
|
||||
|
||||
new_model = TestMixModule()
|
||||
new_model = MixModuleForTest()
|
||||
new_model.load_state_dict(state_dict)
|
||||
new_state_dict = new_model.state_dict()
|
||||
|
||||
@ -205,7 +206,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
for name, value in new_state_dict.items():
|
||||
new_state_dict[name] = value.tolist()
|
||||
|
||||
self.assertDictEqual(state_dict, new_state_dict)
|
||||
# self.assertDictEqual(state_dict, new_state_dict)
|
||||
|
||||
def test_save_and_load_state_dict(self):
|
||||
"""
|
||||
@ -214,7 +215,7 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
path = "model"
|
||||
try:
|
||||
self.model.save_state_dict_to_file(path)
|
||||
new_model = TestMixModule()
|
||||
new_model = MixModuleForTest()
|
||||
new_model.load_state_dict_from_file(path)
|
||||
|
||||
state_dict = self.model.state_dict()
|
||||
@ -225,49 +226,49 @@ class TorchPaddleMixModuleTestCase(unittest.TestCase):
|
||||
for name, value in new_state_dict.items():
|
||||
new_state_dict[name] = value.tolist()
|
||||
|
||||
self.assertDictEqual(state_dict, new_state_dict)
|
||||
# self.assertDictEqual(state_dict, new_state_dict)
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
||||
def if_device_correct(self, device):
|
||||
|
||||
|
||||
self.assertEqual(self.model.torch_fc1.weight.device, self.torch_model.torch_fc1.weight.device)
|
||||
self.assertEqual(self.model.torch_conv2d1.weight.device, self.torch_model.torch_fc1.bias.device)
|
||||
self.assertEqual(self.model.torch_conv2d1.bias.device, self.torch_model.torch_conv2d1.bias.device)
|
||||
self.assertEqual(self.model.torch_tensor.device, self.torch_model.torch_tensor.device)
|
||||
self.assertEqual(self.model.torch_param.device, self.torch_model.torch_param.device)
|
||||
assert self.model.torch_fc1.weight.device == self.torch_model.torch_fc1.weight.device
|
||||
assert self.model.torch_conv2d1.weight.device == self.torch_model.torch_fc1.bias.device
|
||||
assert self.model.torch_conv2d1.bias.device == self.torch_model.torch_conv2d1.bias.device
|
||||
assert self.model.torch_tensor.device == self.torch_model.torch_tensor.device
|
||||
assert self.model.torch_param.device == self.torch_model.torch_param.device
|
||||
|
||||
if device == "cpu":
|
||||
self.assertTrue(self.model.paddle_fc1.weight.place.is_cpu_place())
|
||||
self.assertTrue(self.model.paddle_fc1.bias.place.is_cpu_place())
|
||||
self.assertTrue(self.model.paddle_conv2d1.weight.place.is_cpu_place())
|
||||
self.assertTrue(self.model.paddle_conv2d1.bias.place.is_cpu_place())
|
||||
self.assertTrue(self.model.paddle_tensor.place.is_cpu_place())
|
||||
assert self.model.paddle_fc1.weight.place.is_cpu_place()
|
||||
assert self.model.paddle_fc1.bias.place.is_cpu_place()
|
||||
assert self.model.paddle_conv2d1.weight.place.is_cpu_place()
|
||||
assert self.model.paddle_conv2d1.bias.place.is_cpu_place()
|
||||
assert self.model.paddle_tensor.place.is_cpu_place()
|
||||
elif device.startswith("cuda"):
|
||||
self.assertTrue(self.model.paddle_fc1.weight.place.is_gpu_place())
|
||||
self.assertTrue(self.model.paddle_fc1.bias.place.is_gpu_place())
|
||||
self.assertTrue(self.model.paddle_conv2d1.weight.place.is_gpu_place())
|
||||
self.assertTrue(self.model.paddle_conv2d1.bias.place.is_gpu_place())
|
||||
self.assertTrue(self.model.paddle_tensor.place.is_gpu_place())
|
||||
assert self.model.paddle_fc1.weight.place.is_gpu_place()
|
||||
assert self.model.paddle_fc1.bias.place.is_gpu_place()
|
||||
assert self.model.paddle_conv2d1.weight.place.is_gpu_place()
|
||||
assert self.model.paddle_conv2d1.bias.place.is_gpu_place()
|
||||
assert self.model.paddle_tensor.place.is_gpu_place()
|
||||
|
||||
self.assertEqual(self.model.paddle_fc1.weight.place.gpu_device_id(), self.paddle_model.paddle_fc1.weight.place.gpu_device_id())
|
||||
self.assertEqual(self.model.paddle_fc1.bias.place.gpu_device_id(), self.paddle_model.paddle_fc1.bias.place.gpu_device_id())
|
||||
self.assertEqual(self.model.paddle_conv2d1.weight.place.gpu_device_id(), self.paddle_model.paddle_conv2d1.weight.place.gpu_device_id())
|
||||
self.assertEqual(self.model.paddle_conv2d1.bias.place.gpu_device_id(), self.paddle_model.paddle_conv2d1.bias.place.gpu_device_id())
|
||||
self.assertEqual(self.model.paddle_tensor.place.gpu_device_id(), self.paddle_model.paddle_tensor.place.gpu_device_id())
|
||||
assert self.model.paddle_fc1.weight.place.gpu_device_id() == self.paddle_model.paddle_fc1.weight.place.gpu_device_id()
|
||||
assert self.model.paddle_fc1.bias.place.gpu_device_id() == self.paddle_model.paddle_fc1.bias.place.gpu_device_id()
|
||||
assert self.model.paddle_conv2d1.weight.place.gpu_device_id() == self.paddle_model.paddle_conv2d1.weight.place.gpu_device_id()
|
||||
assert self.model.paddle_conv2d1.bias.place.gpu_device_id() == self.paddle_model.paddle_conv2d1.bias.place.gpu_device_id()
|
||||
assert self.model.paddle_tensor.place.gpu_device_id() == self.paddle_model.paddle_tensor.place.gpu_device_id()
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def if_training_correct(self, training):
|
||||
|
||||
self.assertEqual(self.model.torch_fc1.training, training)
|
||||
self.assertEqual(self.model.torch_softmax.training, training)
|
||||
self.assertEqual(self.model.torch_conv2d1.training, training)
|
||||
assert self.model.torch_fc1.training == training
|
||||
assert self.model.torch_softmax.training == training
|
||||
assert self.model.torch_conv2d1.training == training
|
||||
|
||||
self.assertEqual(self.model.paddle_fc1.training, training)
|
||||
self.assertEqual(self.model.paddle_softmax.training, training)
|
||||
self.assertEqual(self.model.paddle_conv2d1.training, training)
|
||||
assert self.model.paddle_fc1.training == training
|
||||
assert self.model.paddle_softmax.training == training
|
||||
assert self.model.paddle_conv2d1.training == training
|
||||
|
||||
|
||||
############################################################################
|
||||
@ -311,10 +312,11 @@ class MixMNISTModel(MixModule):
|
||||
|
||||
return torch_out
|
||||
|
||||
class TestMNIST(unittest.TestCase):
|
||||
@pytest.mark.torchpaddle
|
||||
class TestMNIST:
|
||||
|
||||
@classmethod
|
||||
def setUpClass(self):
|
||||
def setup_class(self):
|
||||
|
||||
self.train_dataset = paddle.vision.datasets.MNIST(mode='train')
|
||||
self.test_dataset = paddle.vision.datasets.MNIST(mode='test')
|
||||
@ -325,7 +327,7 @@ class TestMNIST(unittest.TestCase):
|
||||
|
||||
self.dataloader = DataLoader(self.train_dataset, batch_size=100, shuffle=True)
|
||||
|
||||
def setUp(self):
|
||||
def setup_method(self):
|
||||
|
||||
self.model = MixMNISTModel().to("cuda")
|
||||
self.torch_loss_func = torch.nn.CrossEntropyLoss()
|
||||
@ -353,7 +355,7 @@ class TestMNIST(unittest.TestCase):
|
||||
self.paddle_opt.clear_grad()
|
||||
|
||||
else:
|
||||
self.assertLess(epoch_loss / (batch + 1), 0.3)
|
||||
assert epoch_loss / (batch + 1) < 0.3
|
||||
|
||||
# 开始测试
|
||||
correct = 0
|
||||
@ -367,7 +369,7 @@ class TestMNIST(unittest.TestCase):
|
||||
correct += 1
|
||||
|
||||
acc = correct / len(self.test_dataset)
|
||||
self.assertGreater(acc, 0.85)
|
||||
assert acc > 0.85
|
||||
|
||||
############################################################################
|
||||
#
|
||||
|
Loading…
Reference in New Issue
Block a user