[add] logger in trainer

This commit is contained in:
yunfan 2019-08-17 14:38:12 +08:00
parent 89142d9dc5
commit 287019450e
6 changed files with 98 additions and 63 deletions

View File

@ -164,7 +164,7 @@ class Callback(object):
@property
def is_master(self):
return self._trainer.is_master()
return self._trainer.is_master
@property
def disabled(self):
@ -172,7 +172,7 @@ class Callback(object):
@property
def logger(self):
return getattr(self._trainer, 'logger', logging)
return getattr(self._trainer, 'logger', logging.getLogger(__name__))
def on_train_begin(self):
"""
@ -405,11 +405,11 @@ class DistCallbackManager(CallbackManager):
def __init__(self, env, callbacks_all=None, callbacks_master=None):
super(DistCallbackManager, self).__init__(env)
assert 'trainer' in env
is_master = env['trainer'].is_master
self.patch_callback(callbacks_master, disabled=not is_master)
self.callbacks_all = self.prepare_callbacks(callbacks_all)
self.callbacks_master = self.prepare_callbacks(callbacks_master)
self.callbacks = self.callbacks_all + self.callbacks_master
self._trainer = env['trainer']
self.callbacks_master = []
self.callbacks_all = []
self.add_callback(callbacks_all, master=False)
self.add_callback(callbacks_master, master=True)
def patch_callback(self, callbacks, disabled):
if not callbacks:
@ -419,6 +419,14 @@ class DistCallbackManager(CallbackManager):
for cb in callbacks:
cb._disabled = disabled
def add_callback(self, cb, master=False):
if master:
self.patch_callback(cb, not self.is_master)
self.callbacks_master += self.prepare_callbacks(cb)
else:
self.callbacks_all += self.prepare_callbacks(cb)
self.callbacks = self.callbacks_all + self.callbacks_master
class GradientClipCallback(Callback):
"""
@ -1048,15 +1056,26 @@ class TesterCallback(Callback):
self.score = cur_score
return cur_score, is_better
def _get_score(self, metric_dict, key):
for metric in metric_dict.items():
if key in metric:
return metric[key]
return None
def compare_better(self, a):
if self.score is None:
return True
if self.metric_key is None:
self.metric_key = list(list(self.score.values())[0].keys())[0]
k = self.metric_key
is_increase = self.score[k] <= a[k] # if equal, prefer more recent results
score = self._get_score(self.score, k)
new_score = self._get_score(a, k)
if score is None or new_score is None:
return False
if self.increase_better:
return is_increase
return score <= new_score
else:
return not is_increase
return score >= new_score
def on_train_end(self):
self.logger.info('Evaluate on training ends.')

View File

@ -22,6 +22,7 @@ from .optimizer import Optimizer
from .utils import _build_args
from .utils import _move_dict_value_to_device
from .utils import _get_func_signature
from ..io.logger import initLogger
from pkg_resources import parse_version
__all__ = [
@ -40,7 +41,7 @@ def get_local_rank():
if 'local_rank' in args and args.local_rank:
os.environ['LOCAL_RANK'] = str(args.local_rank) # for multiple calls for this function
return args.local_rank
raise RuntimeError('Please use "python -m torch.distributed.launch train_script.py')
raise RuntimeError('Please use "python -m torch.distributed.launch --nproc_per_node=N train_script.py')
class DistTrainer():
@ -50,7 +51,7 @@ class DistTrainer():
def __init__(self, train_data, model, optimizer=None, loss=None,
callbacks_all=None, callbacks_master=None,
batch_size_per_gpu=8, n_epochs=1,
num_data_workers=1, drop_last=False,
num_workers=1, drop_last=False,
dev_data=None, metrics=None, metric_key=None,
update_every=1, print_every=10, validate_every=-1,
log_path=None,
@ -78,7 +79,7 @@ class DistTrainer():
self.train_data = train_data
self.batch_size_per_gpu = int(batch_size_per_gpu)
self.n_epochs = int(n_epochs)
self.num_data_workers = int(num_data_workers)
self.num_data_workers = int(num_workers)
self.drop_last = drop_last
self.update_every = int(update_every)
self.print_every = int(print_every)
@ -127,9 +128,8 @@ class DistTrainer():
if dev_data and metrics:
cb = TesterCallback(
dev_data, model, metrics,
batch_size=batch_size_per_gpu, num_workers=num_data_workers)
self.callback_manager.callbacks_master += \
self.callback_manager.prepare_callbacks([cb])
batch_size=batch_size_per_gpu, num_workers=num_workers)
self.callback_manager.add_callback([cb], master=True)
# Setup logging
dist.barrier()
@ -140,10 +140,7 @@ class DistTrainer():
self.cp_save_path = None
# use INFO in the master, WARN for others
logging.basicConfig(filename=log_path,
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if self.is_master else logging.WARN)
initLogger(log_path, level=logging.INFO if self.is_master else logging.WARNING)
self.logger = logging.getLogger(__name__)
self.logger.info("Setup Distributed Trainer")
self.logger.warning("Process pid: {}, rank: {}, local rank: {}, device: {}, fp16: {}".format(
@ -284,18 +281,8 @@ class DistTrainer():
self.callback_manager.on_batch_end()
if ((self.validate_every > 0 and self.step % self.validate_every == 0) or
(self.validate_every < 0 and self.step % len(data_iterator) == 0)):
self.callback_manager.on_valid_begin()
eval_res = self.callback_manager.on_validation()
eval_res = list(filter(lambda x: x is not None, eval_res))
if len(eval_res):
eval_res, is_better = list(zip(*eval_res))
else:
eval_res, is_better = None, None
self.callback_manager.on_valid_end(
eval_res, self.metric_key, self.optimizer, is_better)
dist.barrier()
if (self.validate_every > 0 and self.step % self.validate_every == 0):
self._do_validation()
if self.cp_save_path and \
self.save_every > 0 and \
@ -303,6 +290,9 @@ class DistTrainer():
self.save_check_point()
# ================= mini-batch end ==================== #
if self.validate_every < 0:
self._do_validation()
if self.save_every < 0 and self.cp_save_path:
self.save_check_point()
# lr decay; early stopping
@ -351,5 +341,17 @@ class DistTrainer():
model_to_save = model_to_save.state_dict()
torch.save(model_to_save, path)
def _do_validation(self):
self.callback_manager.on_valid_begin()
eval_res = self.callback_manager.on_validation()
eval_res = list(filter(lambda x: x is not None, eval_res))
if len(eval_res):
eval_res, is_better = list(zip(*eval_res))
else:
eval_res, is_better = None, None
self.callback_manager.on_valid_end(
eval_res, self.metric_key, self.optimizer, is_better)
dist.barrier()
def close(self):
dist.destroy_process_group()

View File

@ -353,6 +353,8 @@ from .utils import _get_func_signature
from .utils import _get_model_device
from .utils import _move_model_to_device
from ._parallel_utils import _model_contains_inner_module
from ..io.logger import initLogger
import logging
class Trainer(object):
@ -547,6 +549,12 @@ class Trainer(object):
else:
raise TypeError("optimizer can only be torch.optim.Optimizer type, not {}.".format(type(optimizer)))
log_path = None
if save_path is not None:
log_path = os.path.join(os.path.dirname(save_path), 'log')
initLogger(log_path)
self.logger = logging.getLogger(__name__)
self.use_tqdm = use_tqdm
self.pbar = None
self.print_every = abs(self.print_every)
@ -588,7 +596,7 @@ class Trainer(object):
"""
results = {}
if self.n_epochs <= 0:
print(f"training epoch is {self.n_epochs}, nothing was done.")
self.logger.info(f"training epoch is {self.n_epochs}, nothing was done.")
results['seconds'] = 0.
return results
try:
@ -597,7 +605,7 @@ class Trainer(object):
self._load_best_model = load_best_model
self.start_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S'))
start_time = time.time()
print("training epochs started " + self.start_time, flush=True)
self.logger.info("training epochs started " + self.start_time)
try:
self.callback_manager.on_train_begin()
@ -613,7 +621,7 @@ class Trainer(object):
raise e
if self.dev_data is not None and self.best_dev_perf is not None:
print(
self.logger.info(
"\nIn Epoch:{}/Step:{}, got best dev performance:".format(self.best_dev_epoch, self.best_dev_step) +
self.tester._format_eval_results(self.best_dev_perf), )
results['best_eval'] = self.best_dev_perf
@ -623,9 +631,9 @@ class Trainer(object):
model_name = "best_" + "_".join([self.model.__class__.__name__, self.metric_key, self.start_time])
load_succeed = self._load_model(self.model, model_name)
if load_succeed:
print("Reloaded the best model.")
self.logger.info("Reloaded the best model.")
else:
print("Fail to reload best model.")
self.logger.info("Fail to reload best model.")
finally:
pass
results['seconds'] = round(time.time() - start_time, 2)
@ -825,12 +833,12 @@ class Trainer(object):
self.best_metric_indicator = indicator_val
else:
if self.increase_better is True:
if indicator_val > self.best_metric_indicator:
if indicator_val >= self.best_metric_indicator:
self.best_metric_indicator = indicator_val
else:
is_better = False
else:
if indicator_val < self.best_metric_indicator:
if indicator_val <= self.best_metric_indicator:
self.best_metric_indicator = indicator_val
else:
is_better = False

View File

@ -17,6 +17,7 @@ import numpy as np
import torch
import torch.nn as nn
from typing import List
import logging
_CheckRes = namedtuple('_CheckRes', ['missing', 'unused', 'duplicated', 'required', 'all_needed',
'varargs'])
@ -659,15 +660,14 @@ class _pseudo_tqdm:
"""
当无法引入tqdm或者Trainer中设置use_tqdm为false的时候用该方法打印数据
"""
def __init__(self, **kwargs):
pass
self.logger = logging.getLogger()
def write(self, info):
print(info)
self.logger.info(info)
def set_postfix_str(self, info):
print(info)
self.logger.info(info)
def __getattr__(self, item):
def pass_func(*args, **kwargs):

View File

@ -1,6 +1,5 @@
import torch
import torch.nn as nn
from fastNLP.embeddings.utils import get_embeddings
from fastNLP.core import Const as C
@ -64,7 +63,8 @@ class RegionEmbedding(nn.Module):
kernel_sizes = [5, 9]
assert isinstance(
kernel_sizes, list), 'kernel_sizes should be List(int)'
self.embed = get_embeddings(init_embed)
# self.embed = nn.Embedding.from_pretrained(torch.tensor(init_embed).float(), freeze=False)
self.embed = init_embed
try:
embed_dim = self.embed.embedding_dim
except Exception:

View File

@ -13,10 +13,11 @@ from fastNLP.core.sampler import BucketSampler
from fastNLP.core import LRScheduler
from fastNLP.core.const import Const as C
from fastNLP.core.vocabulary import VocabularyOption
from fastNLP.core.dist_trainer import DistTrainer
from utils.util_init import set_rng_seeds
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
# os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
# os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
@ -64,27 +65,28 @@ def load_data():
ds.apply_field(len, C.INPUT, C.INPUT_LEN)
ds.set_input(C.INPUT, C.INPUT_LEN)
ds.set_target(C.TARGET)
embedding = StaticEmbedding(
datainfo.vocabs['words'], model_dir_or_name='en-glove-840b-300', requires_grad=ops.embedding_grad,
normalize=False
)
return datainfo, embedding
return datainfo
datainfo, embedding = load_data()
datainfo = load_data()
embedding = StaticEmbedding(
datainfo.vocabs['words'], model_dir_or_name='en-glove-6b-100d', requires_grad=ops.embedding_grad,
normalize=False)
embedding.embedding.weight.data /= embedding.embedding.weight.data.std()
print(embedding.embedding.weight.mean(), embedding.embedding.weight.std())
print(embedding.embedding.weight.data.mean(), embedding.embedding.weight.data.std())
# 2.或直接复用fastNLP的模型
# embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)])
datainfo.datasets['train'] = datainfo.datasets['train'][:1000]
datainfo.datasets['test'] = datainfo.datasets['test'][:1000]
print(datainfo)
print(datainfo.datasets['train'][0])
model = DPCNN(init_embed=embedding, num_cls=len(datainfo.vocabs[C.TARGET]),
embed_dropout=ops.embed_dropout, cls_dropout=ops.cls_dropout)
print(model)
# print(model)
# 3. 声明loss,metric,optimizer
loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET)
@ -109,13 +111,17 @@ device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
print(device)
# 4.定义train方法
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size),
metrics=[metric],
dev_data=datainfo.datasets['test'], device=device,
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks,
n_epochs=ops.train_epoch, num_workers=4)
# trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
# sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size),
# metrics=[metric],
# dev_data=datainfo.datasets['test'], device=device,
# check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks,
# n_epochs=ops.train_epoch, num_workers=4)
trainer = DistTrainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=[metric],
dev_data=datainfo.datasets['test'], device='cuda',
batch_size_per_gpu=ops.batch_size, callbacks_all=callbacks,
n_epochs=ops.train_epoch, num_workers=4)
if __name__ == "__main__":