add tests

This commit is contained in:
FengZiYjun 2018-11-01 15:09:41 +08:00
parent 5133fe67b4
commit 325157b53f
3 changed files with 39 additions and 38 deletions

View File

@ -48,8 +48,6 @@ def simple_sort_bucketing(lengths):
"""
:param lengths: list of int, the lengths of all examples.
:param buckets: list of int. The length of the list is the number of buckets. Each integer is the maximum length
threshold for each bucket (This is usually None.).
:return data: 2-level list
::
@ -75,6 +73,7 @@ def k_means_1d(x, k, max_iter=100):
assignment: numpy array, 1-D, the bucket id assigned to each example.
"""
sorted_x = sorted(list(set(x)))
x = np.array(x)
if len(sorted_x) < k:
raise ValueError("too few buckets")
gap = len(sorted_x) / k
@ -119,34 +118,3 @@ def k_means_bucketing(lengths, buckets):
bucket_data[bucket_id].append(idx)
return bucket_data
class BucketSampler(BaseSampler):
"""Partition all samples into multiple buckets, each of which contains sentences of approximately the same length.
In sampling, first random choose a bucket. Then sample data from it.
The number of buckets is decided dynamically by the variance of sentence lengths.
"""
def __call__(self, data_set, batch_size, num_buckets):
return self._process(data_set, batch_size, num_buckets)
def _process(self, data_set, batch_size, num_buckets, use_kmeans=False):
"""
:param data_set: a DataSet object
:param batch_size: int
:param num_buckets: int, number of buckets for grouping these sequences.
:param use_kmeans: bool, whether to use k-means to create buckets.
"""
buckets = ([None] * num_buckets)
if use_kmeans is True:
buckets = k_means_bucketing(data_set, buckets)
else:
buckets = simple_sort_bucketing(data_set)
index_list = []
for _ in range(len(data_set) // batch_size):
chosen_bucket = buckets[np.random.randint(0, len(buckets))]
np.random.shuffle(chosen_bucket)
index_list += [idx for idx in chosen_bucket[:batch_size]]
return index_list

View File

@ -1,10 +1,10 @@
import unittest
from fastNLP.core.field import CharTextField
from fastNLP.core.field import CharTextField, LabelField, SeqLabelField
class TestField(unittest.TestCase):
def test_case(self):
def test_char_field(self):
text = "PhD applicants must submit a Research Plan and a resume " \
"specify your class ranking written in English and a list of research" \
" publications if any".split()
@ -21,3 +21,22 @@ class TestField(unittest.TestCase):
self.assertEqual(field.contents(), text)
tensor = field.to_tensor(50)
self.assertEqual(tuple(tensor.shape), (50, max_word_len))
def test_label_field(self):
label = LabelField("A", is_target=True)
self.assertEqual(label.get_length(), 1)
self.assertEqual(label.index({"A": 10}), 10)
label = LabelField(30, is_target=True)
self.assertEqual(label.get_length(), 1)
tensor = label.to_tensor(0)
self.assertEqual(tensor.shape, ())
self.assertEqual(int(tensor), 30)
def test_seq_label_field(self):
seq = ["a", "b", "c", "d", "a", "c", "a", "b"]
field = SeqLabelField(seq)
vocab = {"a": 10, "b": 20, "c": 30, "d": 40}
self.assertEqual(field.index(vocab), [vocab[x] for x in seq])
tensor = field.to_tensor(10)
self.assertEqual(tuple(tensor.shape), (10,))

View File

@ -1,6 +1,7 @@
import torch
from fastNLP.core.sampler import convert_to_torch_tensor, SequentialSampler, RandomSampler
from fastNLP.core.sampler import convert_to_torch_tensor, SequentialSampler, RandomSampler, \
k_means_1d, k_means_bucketing, simple_sort_bucketing
def test_convert_to_torch_tensor():
@ -26,5 +27,18 @@ def test_random_sampler():
assert d in data
if __name__ == "__main__":
test_sequential_sampler()
def test_k_means():
centroids, assign = k_means_1d([21, 3, 25, 7, 9, 22, 4, 6, 28, 10], 2, max_iter=5)
centroids, assign = list(centroids), list(assign)
assert len(centroids) == 2
assert len(assign) == 10
def test_k_means_bucketing():
res = k_means_bucketing([21, 3, 25, 7, 9, 22, 4, 6, 28, 10], [None, None])
assert len(res) == 2
def test_simple_sort_bucketing():
_ = simple_sort_bucketing([21, 3, 25, 7, 9, 22, 4, 6, 28, 10])
assert len(_) == 10