追加paddle和oneflow关于替换dataloader的改动

This commit is contained in:
x54-729 2022-10-12 15:01:36 +08:00
parent 28db704f70
commit 3d8214c783
6 changed files with 49 additions and 14 deletions

View File

@ -245,10 +245,15 @@ class OneflowDDPDriver(OneflowDriver):
# evaluator
elif dist == "unrepeatdist":
args = self.get_dataloader_args(dataloader)
if type(args.batch_sampler) != BatchSampler:
# TODO 这里的目的是判断用户的 batch_sampler 是定制的,可能需要完善
logger.warning("Note that you are using customized ``batch_sampler`` in evaluate dataloader or" \
"train dataloader while testing ``overfit_batches``, which may cause that" \
"the data for distributed evaluation is not unrepeated.")
if isinstance(args.sampler, ReproducibleSampler):
sampler = conversion_between_reproducible_and_unrepeated_sampler(args.sampler)
elif not isinstance(args.sampler, UnrepeatedSampler):
_check_dataloader_args_for_distributed(args, controller="Evaluator")
_check_dataloader_args_for_distributed(args, controller='Evaluator')
sampler = UnrepeatedSequentialSampler(
dataset=args.dataset
)
@ -258,6 +263,7 @@ class OneflowDDPDriver(OneflowDriver):
num_replicas=self.world_size,
rank=self.global_rank
)
# TODO 这里暂时统一替换为 BatchSampler
batch_sampler = BatchSampler(sampler, args.batch_size, drop_last=False)
return replace_batch_sampler(dataloader, batch_sampler)
else:

View File

@ -43,7 +43,6 @@ def initialize_oneflow_driver(driver: str, device: Optional[Union[str, "oneflow.
raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.")
device = [oneflow.device(f"cuda:{w}") for w in range(_could_use_device_num)]
elif device >= _could_use_device_num:
print(device, _could_use_device_num)
raise ValueError("The gpu device that parameter `device` specifies is not existed.")
else:
device = oneflow.device(f"cuda:{device}")

View File

@ -280,12 +280,23 @@ def optimizer_state_to_device(state, device):
def _check_dataloader_args_for_distributed(args, controller='Trainer'):
if type(args.batch_sampler) is not oneflowBatchSampler or (type(args.sampler) not in {oneflowRandomSampler,
oneflowSequentialSampler}):
mode = 'training' if controller == 'Trainer' else 'evaluation'
substitution = 'fastNLP.RandomSampler' if controller == 'Trainer' else 'fastNLP.UnrepeatedSequentialSampler'
"""
检查 dataloader sampler 情况如果用户替换了自己定制的 sampler 为了防止
在分布式训练中出现错误会报错
"""
error_flag = (type(args.sampler) not in {oneflowRandomSampler, oneflowSequentialSampler})
if controller == 'Trainer':
mode = 'training'
substitution = 'fastNLP.RandomSampler'
error_flag = (type(args.batch_sampler) != oneflowBatchSampler) or error_flag
else: # Evaluator
mode = 'evaluation'
substitution = 'fastNLP.UnrepeatedSequentialSampler'
if error_flag:
raise TypeError(f"Using customized ``batch_sampler`` or ``sampler`` for distributed {mode} may cause "
f"unpredictable problems, because fastNLP will substitute the dataloader's sampler into "
f"``{substitution}``. The customized sampler should set for distributed running "
f"before initializing ``{controller}`` , and then set the "
f"parameter ``use_dist_sampler`` of ``{controller}`` to ``False``.")
f"parameter ``use_dist_sampler`` of ``{controller}`` to ``False``."
f"\n Current batch_sampler: {type(args.batch_sampler)}"
f"\n Current sampler: {type(args.sampler)}")

View File

@ -112,6 +112,7 @@ if _NEED_IMPORT_PADDLE:
from paddle.optimizer import Optimizer
from paddle.fluid.reader import _DatasetKind
from paddle.fluid.dygraph import parallel_helper
from paddle.io import BatchSampler
__all__ = [
"PaddleFleetDriver",
@ -471,9 +472,15 @@ class PaddleFleetDriver(PaddleDriver):
# evaluator
elif dist == "unrepeatdist":
args = self.get_dataloader_args(dataloader)
if type(args.batch_sampler) != BatchSampler:
# TODO 这里的目的是判断用户的 batch_sampler 是定制的,可能需要完善
logger.warning("Note that you are using customized ``batch_sampler`` in evaluate dataloader or" \
"train dataloader while testing ``overfit_batches``, which may cause that" \
"the data for distributed evaluation is not unrepeated.")
if isinstance(args.sampler, ReproducibleSampler):
sampler = conversion_between_reproducible_and_unrepeated_sampler(args.sampler)
elif not isinstance(args.sampler, UnrepeatedSampler):
_check_dataloader_args_for_distributed(args, controller='Evaluator')
sampler = UnrepeatedSequentialSampler(
dataset=args.dataset
)
@ -483,7 +490,9 @@ class PaddleFleetDriver(PaddleDriver):
num_replicas=self.world_size,
rank=self.global_rank
)
return replace_sampler(dataloader, sampler)
# TODO 这里暂时统一替换为 BatchSampler
batch_sampler = BatchSampler(sampler, args.batch_size, drop_last=False)
return replace_batch_sampler(dataloader, batch_sampler)
else:
raise ValueError("Parameter `dist_sampler` can only be one of three values: ('dist', 'unrepeatdist', None).")

View File

@ -266,12 +266,23 @@ def optimizer_state_to_device(state, device):
return new_state
def _check_dataloader_args_for_distributed(args, controller='Trainer'):
if type(args.batch_sampler) is not BatchSampler or (type(args.sampler) not in {RandomSampler,
SequenceSampler}):
mode = 'training' if controller == 'Trainer' else 'evaluation'
substitution = 'fastNLP.RandomSampler' if controller == 'Trainer' else 'fastNLP.UnrepeatedSequentialSampler'
"""
检查 dataloader sampler 情况如果用户替换了自己定制的 sampler 为了防止
在分布式训练中出现错误会报错
"""
error_flag = (type(args.sampler) not in {RandomSampler, SequenceSampler})
if controller == 'Trainer':
mode = 'training'
substitution = 'fastNLP.RandomSampler'
error_flag = (type(args.batch_sampler) != BatchSampler) or error_flag
else: # Evaluator
mode = 'evaluation'
substitution = 'fastNLP.UnrepeatedSequentialSampler'
if error_flag:
raise TypeError(f"Using customized ``batch_sampler`` or ``sampler`` for distributed {mode} may cause "
f"unpredictable problems, because fastNLP will substitute the dataloader's sampler into "
f"``{substitution}``. The customized sampler should set for distributed running "
f"before initializing ``{controller}`` , and then set the "
f"parameter ``use_dist_sampler`` of ``{controller}`` to ``False``.")
f"parameter ``use_dist_sampler`` of ``{controller}`` to ``False``."
f"\n Current batch_sampler: {type(args.batch_sampler)}"
f"\n Current sampler: {type(args.sampler)}")

View File

@ -617,7 +617,6 @@ class TorchDDPDriver(TorchDriver):
if isinstance(args.sampler, ReproducibleSampler):
sampler = conversion_between_reproducible_and_unrepeated_sampler(args.sampler)
elif not isinstance(args.sampler, UnrepeatedSampler):
# TODO 避开 batch_sampler 的情况
_check_dataloader_args_for_distributed(args, controller='Evaluator')
sampler = UnrepeatedSequentialSampler(
dataset=args.dataset