Merge pull request #74 from 2017alan/master

Add weight initialization for models.
This commit is contained in:
Xipeng Qiu 2018-09-17 20:32:45 +08:00 committed by GitHub
commit 47772a88be
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 225 additions and 45 deletions

View File

@ -37,5 +37,7 @@ class Loss(object):
""" """
if loss_name == "cross_entropy": if loss_name == "cross_entropy":
return torch.nn.CrossEntropyLoss() return torch.nn.CrossEntropyLoss()
elif loss_name == 'nll':
return torch.nn.NLLLoss()
else: else:
raise NotImplementedError raise NotImplementedError

View File

@ -297,7 +297,7 @@ class ClassPreprocess(BasePreprocess):
# build vocabulary from scratch if nothing exists # build vocabulary from scratch if nothing exists
word2index = DEFAULT_WORD_TO_INDEX.copy() word2index = DEFAULT_WORD_TO_INDEX.copy()
label2index = DEFAULT_WORD_TO_INDEX.copy() label2index = {} # DEFAULT_WORD_TO_INDEX.copy()
# collect every word and label # collect every word and label
for sent, label in data: for sent, label in data:

View File

@ -1,8 +1,10 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
from torch.autograd import Variable from torch.autograd import Variable
import torch.nn.functional as F
from fastNLP.modules.utils import initial_parameter
class SelfAttention(nn.Module): class SelfAttention(nn.Module):
""" """
Self Attention Module. Self Attention Module.
@ -13,13 +15,18 @@ class SelfAttention(nn.Module):
num_vec: int, the number of encoded vectors num_vec: int, the number of encoded vectors
""" """
def __init__(self, input_size, dim=10, num_vec=10): def __init__(self, input_size, dim=10, num_vec=10 ,drop = 0.5 ,initial_method =None):
super(SelfAttention, self).__init__() super(SelfAttention, self).__init__()
self.W_s1 = nn.Parameter(torch.randn(dim, input_size), requires_grad=True) # self.W_s1 = nn.Parameter(torch.randn(dim, input_size), requires_grad=True)
self.W_s2 = nn.Parameter(torch.randn(num_vec, dim), requires_grad=True) # self.W_s2 = nn.Parameter(torch.randn(num_vec, dim), requires_grad=True)
self.attention_hops = num_vec
self.ws1 = nn.Linear(input_size, dim, bias=False)
self.ws2 = nn.Linear(dim, num_vec, bias=False)
self.drop = nn.Dropout(drop)
self.softmax = nn.Softmax(dim=2) self.softmax = nn.Softmax(dim=2)
self.tanh = nn.Tanh() self.tanh = nn.Tanh()
initial_parameter(self, initial_method)
def penalization(self, A): def penalization(self, A):
""" """
compute the penalization term for attention module compute the penalization term for attention module
@ -32,11 +39,33 @@ class SelfAttention(nn.Module):
M = M.view(M.size(0), -1) M = M.view(M.size(0), -1)
return torch.sum(M ** 2, dim=1) return torch.sum(M ** 2, dim=1)
def forward(self, x): def forward(self, outp ,inp):
inter = self.tanh(torch.matmul(self.W_s1, torch.transpose(x, 1, 2))) # the following code can not be use because some word are padding ,these is not such module!
A = self.softmax(torch.matmul(self.W_s2, inter))
out = torch.matmul(A, x) # inter = self.tanh(torch.matmul(self.W_s1, torch.transpose(x, 1, 2))) # []
out = out.view(out.size(0), -1) # A = self.softmax(torch.matmul(self.W_s2, inter))
penalty = self.penalization(A) # out = torch.matmul(A, x)
return out, penalty # out = out.view(out.size(0), -1)
# penalty = self.penalization(A)
# return out, penalty
outp = outp.contiguous()
size = outp.size() # [bsz, len, nhid]
compressed_embeddings = outp.view(-1, size[2]) # [bsz*len, nhid*2]
transformed_inp = torch.transpose(inp, 0, 1).contiguous() # [bsz, len]
transformed_inp = transformed_inp.view(size[0], 1, size[1]) # [bsz, 1, len]
concatenated_inp = [transformed_inp for i in range(self.attention_hops)]
concatenated_inp = torch.cat(concatenated_inp, 1) # [bsz, hop, len]
hbar = self.tanh(self.ws1(self.drop(compressed_embeddings))) # [bsz*len, attention-unit]
attention = self.ws2(hbar).view(size[0], size[1], -1) # [bsz, len, hop]
attention = torch.transpose(attention, 1, 2).contiguous() # [bsz, hop, len]
penalized_alphas = attention + (
-10000 * (concatenated_inp == 0).float())
# [bsz, hop, len] + [bsz, hop, len]
attention = self.softmax(penalized_alphas.view(-1, size[1])) # [bsz*hop, len]
attention = attention.view(size[0], self.attention_hops, size[1]) # [bsz, hop, len]
return torch.bmm(attention, outp), attention # output --> [baz ,hop ,nhid]

View File

@ -1,6 +1,7 @@
import torch import torch
from torch import nn from torch import nn
from fastNLP.modules.utils import initial_parameter
def log_sum_exp(x, dim=-1): def log_sum_exp(x, dim=-1):
max_value, _ = x.max(dim=dim, keepdim=True) max_value, _ = x.max(dim=dim, keepdim=True)
@ -19,7 +20,7 @@ def seq_len_to_byte_mask(seq_lens):
class ConditionalRandomField(nn.Module): class ConditionalRandomField(nn.Module):
def __init__(self, tag_size, include_start_end_trans=True): def __init__(self, tag_size, include_start_end_trans=True ,initial_method = None):
""" """
:param tag_size: int, num of tags :param tag_size: int, num of tags
:param include_start_end_trans: bool, whether to include start/end tag :param include_start_end_trans: bool, whether to include start/end tag
@ -35,8 +36,8 @@ class ConditionalRandomField(nn.Module):
self.start_scores = nn.Parameter(torch.randn(tag_size)) self.start_scores = nn.Parameter(torch.randn(tag_size))
self.end_scores = nn.Parameter(torch.randn(tag_size)) self.end_scores = nn.Parameter(torch.randn(tag_size))
self.reset_parameter() # self.reset_parameter()
initial_parameter(self, initial_method)
def reset_parameter(self): def reset_parameter(self):
nn.init.xavier_normal_(self.transition_m) nn.init.xavier_normal_(self.transition_m)
if self.include_start_end_trans: if self.include_start_end_trans:

View File

@ -1,8 +1,8 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
from fastNLP.modules.utils import initial_parameter
class MLP(nn.Module): class MLP(nn.Module):
def __init__(self, size_layer, num_class=2, activation='relu'): def __init__(self, size_layer, num_class=2, activation='relu' , initial_method = None):
"""Multilayer Perceptrons as a decoder """Multilayer Perceptrons as a decoder
Args: Args:
@ -36,7 +36,7 @@ class MLP(nn.Module):
self.hidden_active = activation self.hidden_active = activation
else: else:
raise ValueError("should set activation correctly: {}".format(activation)) raise ValueError("should set activation correctly: {}".format(activation))
initial_parameter(self, initial_method )
def forward(self, x): def forward(self, x):
for layer in self.hiddens: for layer in self.hiddens:
x = self.hidden_active(layer(x)) x = self.hidden_active(layer(x))

View File

@ -1,11 +1,12 @@
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from torch import nn from torch import nn
# from torch.nn.init import xavier_uniform
from fastNLP.modules.utils import initial_parameter
class ConvCharEmbedding(nn.Module): class ConvCharEmbedding(nn.Module):
def __init__(self, char_emb_size=50, feature_maps=(40, 30, 30), kernels=(3, 4, 5)): def __init__(self, char_emb_size=50, feature_maps=(40, 30, 30), kernels=(3, 4, 5),initial_method = None):
""" """
Character Level Word Embedding Character Level Word Embedding
:param char_emb_size: the size of character level embedding. Default: 50 :param char_emb_size: the size of character level embedding. Default: 50
@ -20,6 +21,8 @@ class ConvCharEmbedding(nn.Module):
nn.Conv2d(1, feature_maps[i], kernel_size=(char_emb_size, kernels[i]), bias=True, padding=(0, 4)) nn.Conv2d(1, feature_maps[i], kernel_size=(char_emb_size, kernels[i]), bias=True, padding=(0, 4))
for i in range(len(kernels))]) for i in range(len(kernels))])
initial_parameter(self,initial_method)
def forward(self, x): def forward(self, x):
""" """
:param x: [batch_size * sent_length, word_length, char_emb_size] :param x: [batch_size * sent_length, word_length, char_emb_size]
@ -53,7 +56,7 @@ class LSTMCharEmbedding(nn.Module):
:param hidden_size: int, the number of hidden units. Default: equal to char_emb_size. :param hidden_size: int, the number of hidden units. Default: equal to char_emb_size.
""" """
def __init__(self, char_emb_size=50, hidden_size=None): def __init__(self, char_emb_size=50, hidden_size=None , initial_method= None):
super(LSTMCharEmbedding, self).__init__() super(LSTMCharEmbedding, self).__init__()
self.hidden_size = char_emb_size if hidden_size is None else hidden_size self.hidden_size = char_emb_size if hidden_size is None else hidden_size
@ -62,7 +65,7 @@ class LSTMCharEmbedding(nn.Module):
num_layers=1, num_layers=1,
bias=True, bias=True,
batch_first=True) batch_first=True)
initial_parameter(self, initial_method)
def forward(self, x): def forward(self, x):
""" """
:param x:[ n_batch*n_word, word_length, char_emb_size] :param x:[ n_batch*n_word, word_length, char_emb_size]

View File

@ -6,6 +6,7 @@ import torch.nn as nn
from torch.nn.init import xavier_uniform_ from torch.nn.init import xavier_uniform_
# import torch.nn.functional as F # import torch.nn.functional as F
from fastNLP.modules.utils import initial_parameter
class Conv(nn.Module): class Conv(nn.Module):
""" """
@ -15,7 +16,7 @@ class Conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, def __init__(self, in_channels, out_channels, kernel_size,
stride=1, padding=0, dilation=1, stride=1, padding=0, dilation=1,
groups=1, bias=True, activation='relu'): groups=1, bias=True, activation='relu',initial_method = None ):
super(Conv, self).__init__() super(Conv, self).__init__()
self.conv = nn.Conv1d( self.conv = nn.Conv1d(
in_channels=in_channels, in_channels=in_channels,
@ -26,7 +27,7 @@ class Conv(nn.Module):
dilation=dilation, dilation=dilation,
groups=groups, groups=groups,
bias=bias) bias=bias)
xavier_uniform_(self.conv.weight) # xavier_uniform_(self.conv.weight)
activations = { activations = {
'relu': nn.ReLU(), 'relu': nn.ReLU(),
@ -37,6 +38,7 @@ class Conv(nn.Module):
raise Exception( raise Exception(
'Should choose activation function from: ' + 'Should choose activation function from: ' +
', '.join([x for x in activations])) ', '.join([x for x in activations]))
initial_parameter(self, initial_method)
def forward(self, x): def forward(self, x):
x = torch.transpose(x, 1, 2) # [N,L,C] -> [N,C,L] x = torch.transpose(x, 1, 2) # [N,L,C] -> [N,C,L]

View File

@ -5,7 +5,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.nn.init import xavier_uniform_ from torch.nn.init import xavier_uniform_
from fastNLP.modules.utils import initial_parameter
class ConvMaxpool(nn.Module): class ConvMaxpool(nn.Module):
""" """
@ -14,7 +14,7 @@ class ConvMaxpool(nn.Module):
def __init__(self, in_channels, out_channels, kernel_sizes, def __init__(self, in_channels, out_channels, kernel_sizes,
stride=1, padding=0, dilation=1, stride=1, padding=0, dilation=1,
groups=1, bias=True, activation='relu'): groups=1, bias=True, activation='relu',initial_method = None ):
super(ConvMaxpool, self).__init__() super(ConvMaxpool, self).__init__()
# convolution # convolution
@ -47,6 +47,8 @@ class ConvMaxpool(nn.Module):
raise Exception( raise Exception(
"Undefined activation function: choose from: relu") "Undefined activation function: choose from: relu")
initial_parameter(self, initial_method)
def forward(self, x): def forward(self, x):
# [N,L,C] -> [N,C,L] # [N,L,C] -> [N,C,L]
x = torch.transpose(x, 1, 2) x = torch.transpose(x, 1, 2)

View File

@ -1,6 +1,6 @@
import torch.nn as nn import torch.nn as nn
from fastNLP.modules.utils import initial_parameter
class Linear(nn.Module): class Linear(nn.Module):
""" """
Linear module Linear module
@ -12,10 +12,10 @@ class Linear(nn.Module):
bidirectional : If True, becomes a bidirectional RNN bidirectional : If True, becomes a bidirectional RNN
""" """
def __init__(self, input_size, output_size, bias=True): def __init__(self, input_size, output_size, bias=True,initial_method = None ):
super(Linear, self).__init__() super(Linear, self).__init__()
self.linear = nn.Linear(input_size, output_size, bias) self.linear = nn.Linear(input_size, output_size, bias)
initial_parameter(self, initial_method)
def forward(self, x): def forward(self, x):
x = self.linear(x) x = self.linear(x)
return x return x

View File

@ -1,6 +1,6 @@
import torch.nn as nn import torch.nn as nn
from fastNLP.modules.utils import initial_parameter
class Lstm(nn.Module): class Lstm(nn.Module):
""" """
LSTM module LSTM module
@ -13,11 +13,13 @@ class Lstm(nn.Module):
bidirectional : If True, becomes a bidirectional RNN. Default: False. bidirectional : If True, becomes a bidirectional RNN. Default: False.
""" """
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0, bidirectional=False): def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0, bidirectional=False , initial_method = None):
super(Lstm, self).__init__() super(Lstm, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=True, batch_first=True, self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=True, batch_first=True,
dropout=dropout, bidirectional=bidirectional) dropout=dropout, bidirectional=bidirectional)
initial_parameter(self, initial_method)
def forward(self, x): def forward(self, x):
x, _ = self.lstm(x) x, _ = self.lstm(x)
return x return x
if __name__ == "__main__":
lstm = Lstm(10)

View File

@ -4,7 +4,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from fastNLP.modules.utils import initial_parameter
def MaskedRecurrent(reverse=False): def MaskedRecurrent(reverse=False):
def forward(input, hidden, cell, mask, train=True, dropout=0): def forward(input, hidden, cell, mask, train=True, dropout=0):
""" """
@ -192,7 +192,7 @@ def AutogradMaskedStep(num_layers=1, dropout=0, train=True, lstm=False):
class MaskedRNNBase(nn.Module): class MaskedRNNBase(nn.Module):
def __init__(self, Cell, input_size, hidden_size, def __init__(self, Cell, input_size, hidden_size,
num_layers=1, bias=True, batch_first=False, num_layers=1, bias=True, batch_first=False,
layer_dropout=0, step_dropout=0, bidirectional=False, **kwargs): layer_dropout=0, step_dropout=0, bidirectional=False, initial_method = None , **kwargs):
""" """
:param Cell: :param Cell:
:param input_size: :param input_size:
@ -226,7 +226,7 @@ class MaskedRNNBase(nn.Module):
cell = self.Cell(layer_input_size, hidden_size, self.bias, **kwargs) cell = self.Cell(layer_input_size, hidden_size, self.bias, **kwargs)
self.all_cells.append(cell) self.all_cells.append(cell)
self.add_module('cell%d' % (layer * num_directions + direction), cell) # Max的代码写得真好看 self.add_module('cell%d' % (layer * num_directions + direction), cell) # Max的代码写得真好看
initial_parameter(self, initial_method)
def reset_parameters(self): def reset_parameters(self):
for cell in self.all_cells: for cell in self.all_cells:
cell.reset_parameters() cell.reset_parameters()

View File

@ -6,6 +6,7 @@ import torch.nn.functional as F
from torch.nn._functions.thnn import rnnFusedPointwise as fusedBackend from torch.nn._functions.thnn import rnnFusedPointwise as fusedBackend
from torch.nn.parameter import Parameter from torch.nn.parameter import Parameter
from fastNLP.modules.utils import initial_parameter
def default_initializer(hidden_size): def default_initializer(hidden_size):
stdv = 1.0 / math.sqrt(hidden_size) stdv = 1.0 / math.sqrt(hidden_size)
@ -172,7 +173,7 @@ def AutogradVarMaskedStep(num_layers=1, lstm=False):
class VarMaskedRNNBase(nn.Module): class VarMaskedRNNBase(nn.Module):
def __init__(self, Cell, input_size, hidden_size, def __init__(self, Cell, input_size, hidden_size,
num_layers=1, bias=True, batch_first=False, num_layers=1, bias=True, batch_first=False,
dropout=(0, 0), bidirectional=False, initializer=None, **kwargs): dropout=(0, 0), bidirectional=False, initializer=None,initial_method = None, **kwargs):
super(VarMaskedRNNBase, self).__init__() super(VarMaskedRNNBase, self).__init__()
self.Cell = Cell self.Cell = Cell
@ -193,7 +194,7 @@ class VarMaskedRNNBase(nn.Module):
cell = self.Cell(layer_input_size, hidden_size, self.bias, p=dropout, initializer=initializer, **kwargs) cell = self.Cell(layer_input_size, hidden_size, self.bias, p=dropout, initializer=initializer, **kwargs)
self.all_cells.append(cell) self.all_cells.append(cell)
self.add_module('cell%d' % (layer * num_directions + direction), cell) self.add_module('cell%d' % (layer * num_directions + direction), cell)
initial_parameter(self, initial_method)
def reset_parameters(self): def reset_parameters(self):
for cell in self.all_cells: for cell in self.all_cells:
cell.reset_parameters() cell.reset_parameters()
@ -284,7 +285,7 @@ class VarFastLSTMCell(VarRNNCellBase):
\end{array} \end{array}
""" """
def __init__(self, input_size, hidden_size, bias=True, p=(0.5, 0.5), initializer=None): def __init__(self, input_size, hidden_size, bias=True, p=(0.5, 0.5), initializer=None,initial_method =None):
super(VarFastLSTMCell, self).__init__() super(VarFastLSTMCell, self).__init__()
self.input_size = input_size self.input_size = input_size
self.hidden_size = hidden_size self.hidden_size = hidden_size
@ -311,7 +312,7 @@ class VarFastLSTMCell(VarRNNCellBase):
self.p_hidden = p_hidden self.p_hidden = p_hidden
self.noise_in = None self.noise_in = None
self.noise_hidden = None self.noise_hidden = None
initial_parameter(self, initial_method)
def reset_parameters(self): def reset_parameters(self):
for weight in self.parameters(): for weight in self.parameters():
if weight.dim() == 1: if weight.dim() == 1:

View File

@ -2,8 +2,8 @@ from collections import defaultdict
import numpy as np import numpy as np
import torch import torch
import torch.nn.init as init
import torch.nn as nn
def mask_softmax(matrix, mask): def mask_softmax(matrix, mask):
if mask is None: if mask is None:
result = torch.nn.functional.softmax(matrix, dim=-1) result = torch.nn.functional.softmax(matrix, dim=-1)
@ -11,6 +11,51 @@ def mask_softmax(matrix, mask):
raise NotImplementedError raise NotImplementedError
return result return result
def initial_parameter(net ,initial_method =None):
if initial_method == 'xavier_uniform':
init_method = init.xavier_uniform_
elif initial_method=='xavier_normal':
init_method = init.xavier_normal_
elif initial_method == 'kaiming_normal' or initial_method =='msra':
init_method = init.kaiming_normal
elif initial_method == 'kaiming_uniform':
init_method = init.kaiming_normal
elif initial_method == 'orthogonal':
init_method = init.orthogonal_
elif initial_method == 'sparse':
init_method = init.sparse_
elif initial_method =='normal':
init_method = init.normal_
elif initial_method =='uniform':
initial_method = init.uniform_
else:
init_method = init.xavier_normal_
def weights_init(m):
# classname = m.__class__.__name__
if isinstance(m, nn.Conv2d) or isinstance(m,nn.Conv1d) or isinstance(m,nn.Conv3d): # for all the cnn
if initial_method != None:
init_method(m.weight.data)
else:
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
elif isinstance(m, nn.LSTM):
for w in m.parameters():
if len(w.data.size())>1:
init_method(w.data) # weight
else:
init.normal_(w.data) # bias
elif hasattr(m, 'weight') and m.weight.requires_grad:
init_method(m.weight.data)
else:
for w in m.parameters() :
if w.requires_grad:
if len(w.data.size())>1:
init_method(w.data) # weight
else:
init.normal_(w.data) # bias
# print("init else")
net.apply(weights_init)
def seq_mask(seq_len, max_len): def seq_mask(seq_len, max_len):
mask = [torch.ge(torch.LongTensor(seq_len), i + 1) for i in range(max_len)] mask = [torch.ge(torch.LongTensor(seq_len), i + 1) for i in range(max_len)]

View File

@ -0,0 +1,13 @@
[train]
epochs = 30
batch_size = 32
pickle_path = "./save/"
validate = true
save_best_dev = true
model_saved_path = "./save/"
rnn_hidden_units = 300
word_emb_dim = 300
use_crf = true
use_cuda = false
loss_func = "cross_entropy"
num_classes = 5

View File

@ -0,0 +1,80 @@
import os
import torch.nn.functional as F
from fastNLP.loader.dataset_loader import ClassDatasetLoader as Dataset_loader
from fastNLP.loader.embed_loader import EmbedLoader as EmbedLoader
from fastNLP.loader.config_loader import ConfigSection
from fastNLP.loader.config_loader import ConfigLoader
from fastNLP.models.base_model import BaseModel
from fastNLP.core.preprocess import ClassPreprocess as Preprocess
from fastNLP.core.trainer import ClassificationTrainer
from fastNLP.modules.encoder.embedding import Embedding as Embedding
from fastNLP.modules.encoder.lstm import Lstm
from fastNLP.modules.aggregation.self_attention import SelfAttention
from fastNLP.modules.decoder.MLP import MLP
train_data_path = 'small_train_data.txt'
dev_data_path = 'small_dev_data.txt'
# emb_path = 'glove.txt'
lstm_hidden_size = 300
embeding_size = 300
attention_unit = 350
attention_hops = 10
class_num = 5
nfc = 3000
### data load ###
train_dataset = Dataset_loader(train_data_path)
train_data = train_dataset.load()
dev_args = Dataset_loader(dev_data_path)
dev_data = dev_args.load()
###### preprocess ####
preprocess = Preprocess()
word2index, label2index = preprocess.build_dict(train_data)
train_data, dev_data = preprocess.run(train_data, dev_data)
# emb = EmbedLoader(emb_path)
# embedding = emb.load_embedding(emb_dim= embeding_size , emb_file= emb_path ,word_dict= word2index)
### construct vocab ###
class SELF_ATTENTION_YELP_CLASSIFICATION(BaseModel):
def __init__(self, args=None):
super(SELF_ATTENTION_YELP_CLASSIFICATION,self).__init__()
self.embedding = Embedding(len(word2index) ,embeding_size , init_emb= None )
self.lstm = Lstm(input_size = embeding_size,hidden_size = lstm_hidden_size ,bidirectional = True)
self.attention = SelfAttention(lstm_hidden_size * 2 ,dim =attention_unit ,num_vec=attention_hops)
self.mlp = MLP(size_layer=[lstm_hidden_size * 2*attention_hops ,nfc ,class_num ] ,num_class=class_num ,)
def forward(self,x):
x_emb = self.embedding(x)
output = self.lstm(x_emb)
after_attention, penalty = self.attention(output,x)
after_attention =after_attention.view(after_attention.size(0),-1)
output = self.mlp(after_attention)
return output
def loss(self, predict, ground_truth):
print("predict:%s; g:%s" % (str(predict.size()), str(ground_truth.size())))
print(ground_truth)
return F.cross_entropy(predict, ground_truth)
train_args = ConfigSection()
ConfigLoader("good path").load_config('config.cfg',{"train": train_args})
train_args['vocab'] = len(word2index)
trainer = ClassificationTrainer(**train_args.data)
# for k in train_args.__dict__.keys():
# print(k, train_args[k])
model = SELF_ATTENTION_YELP_CLASSIFICATION(train_args)
trainer.train(model,train_data , dev_data)

View File

@ -2,18 +2,18 @@
# coding=utf-8 # coding=utf-8
from setuptools import setup, find_packages from setuptools import setup, find_packages
with open('README.md') as f: with open('README.md', encoding='utf-8') as f:
readme = f.read() readme = f.read()
with open('LICENSE') as f: with open('LICENSE', encoding='utf-8') as f:
license = f.read() license = f.read()
with open('requirements.txt') as f: with open('requirements.txt', encoding='utf-8') as f:
reqs = f.read() reqs = f.read()
setup( setup(
name='fastNLP', name='fastNLP',
version='0.0.1', version='0.0.3',
description='fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team', description='fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team',
long_description=readme, long_description=readme,
license=license, license=license,