READY TO GO: test_charlm tested

This commit is contained in:
FengZiYjun 2018-05-25 17:40:28 +08:00
parent 3081a57ef9
commit 52b1337e8b
6 changed files with 70 additions and 56 deletions

View File

@ -27,8 +27,8 @@ class Action(object):
:return iteration:int, the number of step in each epoch
generator:generator, to generate batch inputs
"""
n_samples = X.shape[0]
num_iter = n_samples / batch_size
n_samples = X.size()[0]
num_iter = n_samples // batch_size
if Y is None:
generator = self._batch_generate(batch_size, num_iter, X)
else:
@ -39,8 +39,8 @@ class Action(object):
def _batch_generate(batch_size, num_iter, *data):
for step in range(num_iter):
start = batch_size * step
end = (batch_size + 1) * step
yield tuple([x[start:end, :] for x in data])
end = batch_size * (step + 1)
yield tuple([x[start:end] for x in data])
def make_log(self, *args):
return "log"

View File

@ -27,17 +27,18 @@ class Tester(Action):
self.batch_size = test_args.batch_size
def test(self, network, data):
print("testing")
network.mode(test=True) # turn on the testing mode
if not self.save_dev_input:
# transform into network input and label
if self.save_dev_input:
if self.valid_x is None:
valid_x, valid_y = network.prepare_input(data)
if self.validate_in_training:
self.valid_x = valid_x
self.valid_y = valid_y
else:
valid_x = self.valid_x
valid_y = self.valid_y
else:
valid_x, valid_y = network.prepare_input(data)
# split into batches by self.batch_size
iterations, test_batch_generator = self.batchify(self.batch_size, valid_x, valid_y)
@ -53,10 +54,10 @@ class Tester(Action):
# forward pass from tests input to predicted output
prediction = network.data_forward(batch_x)
loss = network.loss(batch_y, prediction)
loss = network.get_loss(prediction, batch_y)
if self.save_output:
batch_output.append(prediction)
batch_output.append(prediction.data)
if self.save_loss:
loss_history.append(loss)
self.log(self.make_log(step, loss))
@ -74,9 +75,10 @@ class Tester(Action):
def result(self):
return self.output
def make_output(self, batch_output):
@staticmethod
def make_output(batch_outputs):
# construct full prediction with batch outputs
return np.concatenate((batch_output[0], batch_output[1]), axis=0)
return np.concatenate(batch_outputs, axis=0)
def load_config(self, args):
raise NotImplementedError

View File

@ -8,7 +8,8 @@ class Trainer(Action):
"""
Trainer for common training logic of all models
"""
TrainConfig = namedtuple("config", ["epochs", "validate", "save_when_better", "log_per_step", "log_validation"])
TrainConfig = namedtuple("config", ["epochs", "validate", "save_when_better",
"log_per_step", "log_validation", "batch_size"])
def __init__(self, train_args):
"""
@ -20,6 +21,7 @@ class Trainer(Action):
self.save_when_better = train_args.save_when_better
self.log_per_step = train_args.log_per_step
self.log_validation = train_args.log_validation
self.batch_size = train_args.batch_size
def train(self, network, train_data, dev_data):
"""
@ -28,20 +30,19 @@ class Trainer(Action):
:param dev_data: raw data for validation
:return:
"""
train_x, train_y = network.prepare_input(train_data.train_set, train_data.train_label)
train_x, train_y = network.prepare_input(train_data)
network.mode(test=False) # turn on the train mode
iterations, train_batch_generator = self.batchify(train_x, train_y)
iterations, train_batch_generator = self.batchify(self.batch_size, train_x, train_y)
test_args = Tester.TestConfig(save_output=True, validate_in_training=True,
save_dev_input=True, save_loss=True, batch_size=16)
save_dev_input=True, save_loss=True, batch_size=self.batch_size)
evaluator = Tester(test_args)
best_loss = 1e10
loss_history = list()
for epoch in range(self.n_epochs):
network.mode(test=False) # turn on the train mode
network.define_optimizer()
for step in range(iterations):
@ -49,10 +50,11 @@ class Trainer(Action):
prediction = network.data_forward(batch_x)
loss = network.loss(batch_y, prediction)
loss = network.get_loss(prediction, batch_y)
network.grad_backward()
if step % self.log_per_step == 0:
print("step ", step)
loss_history.append(loss)
self.log(self.make_log(epoch, step, loss))

View File

@ -24,7 +24,7 @@ class BaseModel(object):
def grad_backward(self):
raise NotImplementedError
def loss(self, pred, truth):
def get_loss(self, pred, truth):
raise NotImplementedError
@ -50,7 +50,7 @@ class ToyModel(BaseModel):
def grad_backward(self):
print("loss gradient backward")
def loss(self, pred, truth):
def get_loss(self, pred, truth):
self._loss = np.mean(np.square(pred - truth))
return self._loss

View File

@ -10,6 +10,8 @@ from torch.autograd import Variable
from model.base_model import BaseModel
USE_GPU = True
class CharLM(BaseModel):
@ -20,16 +22,16 @@ class CharLM(BaseModel):
"""
DataTuple = namedtuple("DataTuple", ["feature", "label"])
def __init__(self):
def __init__(self, lstm_batch_size, lstm_seq_len):
super(CharLM, self).__init__()
"""
Settings: should come from config loader or pre-processing
"""
self.word_embed_dim = 100
self.word_embed_dim = 300
self.char_embedding_dim = 15
self.cnn_batch_size = 40
self.lstm_seq_len = 10
self.lstm_batch_size = 4
self.cnn_batch_size = lstm_batch_size * lstm_seq_len
self.lstm_seq_len = lstm_seq_len
self.lstm_batch_size = lstm_batch_size
self.num_epoch = 10
self.old_PPL = 100000
self.best_PPL = 100000
@ -45,8 +47,9 @@ class CharLM(BaseModel):
self.data = None # named tuple to store all data set
self.data_ready = False
self.criterion = nn.CrossEntropyLoss()
self.loss = None
self.use_gpu = False
self._loss = None
self.use_gpu = USE_GPU
# word_emb_dim == hidden_size / num of hidden units
self.hidden = (to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim)),
to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim)))
@ -64,7 +67,7 @@ class CharLM(BaseModel):
def prepare_input(self, raw_text):
"""
:param raw_text: raw input data
:param raw_text: raw input text consisting of words
:return: torch.Tensor, torch.Tensor
feature matrix, label vector
This function is only called once in Trainer.train, but may called multiple times in Tester.test
@ -78,17 +81,12 @@ class CharLM(BaseModel):
max_word_len = self.max_word_len
print("word/char dictionary built. Start making inputs.")
input_vec = np.array(text2vec(raw_text, char_dict, max_word_len))
words = raw_text
input_vec = np.array(text2vec(words, char_dict, max_word_len))
# Labels are next-word index in word_dict with the same length as inputs
input_label = np.array([word_dict[w] for w in raw_text[1:]] + [word_dict[raw_text[-1]]])
data = self.DataTuple(feature=input_vec, label=input_label)
feature_input = torch.from_numpy(data.feature)
label_input = torch.from_numpy(data.label)
num_seq = feature_input.size()[0] // self.lstm_seq_len
feature_input = feature_input[:num_seq * self.lstm_seq_len, :]
feature_input = feature_input.view(-1, self.lstm_seq_len, self.max_word_len + 2)
input_label = np.array([word_dict[w] for w in words[1:]] + [word_dict[words[-1]]])
feature_input = torch.from_numpy(input_vec)
label_input = torch.from_numpy(input_label)
return feature_input, label_input
def mode(self, test=False):
@ -98,6 +96,15 @@ class CharLM(BaseModel):
self.model.train()
def data_forward(self, x):
"""
:param x: Tensor of size [lstm_batch_size, lstm_seq_len, max_word_len+2]
:return: Tensor of size [num_words, ?]
"""
# additional processing of inputs after batching
num_seq = x.size()[0] // self.lstm_seq_len
x = x[:num_seq * self.lstm_seq_len, :]
x = x.view(-1, self.lstm_seq_len, self.max_word_len + 2)
# detach hidden state of LSTM from last batch
hidden = [state.detach() for state in self.hidden]
output, self.hidden = self.model(to_var(x), hidden)
@ -105,13 +112,13 @@ class CharLM(BaseModel):
def grad_backward(self):
self.model.zero_grad()
self.loss.backward()
self._loss.backward()
torch.nn.utils.clip_grad_norm(self.model.parameters(), 5, norm_type=2)
self.optimizer.step()
def loss(self, predict, truth):
self.loss = self.criterion(predict, to_var(truth))
return self.loss
def get_loss(self, predict, truth):
self._loss = self.criterion(predict, to_var(truth))
return self._loss.data # No pytorch data structure exposed outsides
def define_optimizer(self):
# redefine optimizer for every new epoch
@ -123,12 +130,13 @@ class CharLM(BaseModel):
def preprocess(self, all_text_files):
word_dict, char_dict = create_word_char_dict(all_text_files)
self.num_char = len(char_dict)
num_char = len(char_dict)
self.vocab_size = len(word_dict)
char_dict["BOW"] = self.num_char + 1
char_dict["EOW"] = self.num_char + 2
char_dict["BOW"] = num_char + 1
char_dict["EOW"] = num_char + 2
char_dict["PAD"] = 0
# dict of (int, string)
self.num_char = num_char + 3
# char_dict is a dict of (int, string), int counting from 0 to 47
reverse_word_dict = {value: key for key, value in word_dict.items()}
self.max_word_len = max([len(word) for word in word_dict])
objects = {
@ -194,7 +202,7 @@ def create_word_char_dict(*file_name):
def to_var(x):
if torch.cuda.is_available():
if torch.cuda.is_available() and USE_GPU:
x = x.cuda()
return Variable(x)
@ -246,7 +254,8 @@ class charLM(nn.Module):
self.convolutions = []
# list of tuples: (the number of filter, width)
self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)]
# self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)]
self.filter_num_width = [(25, 1), (50, 2), (75, 3)]
for out_channel, filter_width in self.filter_num_width:
self.convolutions.append(
@ -304,7 +313,7 @@ class charLM(nn.Module):
# [num_seq*seq_len, max_word_len+2, char_emb_dim]
x = torch.transpose(x.view(x.size()[0], 1, x.size()[1], -1), 2, 3)
# [num_seq*seq_len, 1, max_word_len+2, char_emb_dim]
# [num_seq*seq_len, 1, char_emb_dim, max_word_len+2]
x = self.conv_layers(x)
# [num_seq*seq_len, total_num_filters]

View File

@ -6,10 +6,11 @@ from model.char_language_model import CharLM
def test_charlm():
train_config = Trainer.TrainConfig(epochs=1, validate=True, save_when_better=True,
log_per_step=10, log_validation=True)
log_per_step=10, log_validation=True, batch_size=160)
trainer = Trainer(train_config)
model = CharLM()
model = CharLM(lstm_batch_size=16, lstm_seq_len=10)
train_data = ToyLoader0("load_train", "./data_for_tests/charlm.txt").load()
valid_data = ToyLoader0("load_valid", "./data_for_tests/charlm.txt").load()
@ -18,7 +19,7 @@ def test_charlm():
trainer.save_model(model)
test_config = Tester.TestConfig(save_output=True, validate_in_training=True,
save_dev_input=True, save_loss=True, batch_size=16)
save_dev_input=True, save_loss=True, batch_size=160)
tester = Tester(test_config)
test_data = ToyLoader0("load_test", "./data_for_tests/charlm.txt").load()