mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-02 04:07:35 +08:00
修复了 tutorial_2 的一些错误;增加了 tutorial_2 的 ipynb
This commit is contained in:
parent
24fe256917
commit
73fa4a1b15
@ -84,18 +84,18 @@ fastNLP中的Vocabulary
|
||||
# 将验证集或者测试集在建立词表是放入no_create_entry_dataset这个参数中。
|
||||
vocab.from_dataset(tr_data, field_name='chars', no_create_entry_dataset=[dev_data])
|
||||
|
||||
|
||||
:class:`~fastNLP.Vocabulary` 中的 `no_create_entry` , 建议在添加来自于测试集和验证集的词的时候将该参数置为True, 或将验证集和测试集
|
||||
:class:`~fastNLP.Vocabulary` 中的 `no_create_entry` , 建议在添加来自于测试集和验证集的词的时候将该参数置为True, 或将验证集和测试集
|
||||
传入 `no_create_entry_dataset` 参数。它们的意义是在接下来的模型会使用pretrain的embedding(包括glove, word2vec, elmo与bert)且会finetune的
|
||||
情况下,如果仅使用来自于train的数据建立vocabulary,会导致只出现在test与dev中的词语无法充分利用到来自于预训练embedding的信息(因为他们
|
||||
会被认为是unk),所以在建立词表的时候将test与dev考虑进来会使得最终的结果更好。通过与fastNLP中的各种Embedding配合使用,会有如下的效果,
|
||||
会被认为是unk),所以在建立词表的时候将test与dev考虑进来会使得最终的结果更好。
|
||||
|
||||
通过与fastNLP中的各种Embedding配合使用,会有如下的效果,
|
||||
如果一个词出现在了train中,但是没在预训练模型中,embedding会为随机初始化,且它单独的一个vector,如果finetune embedding的话,
|
||||
这个词在更新之后可能会有更好的表示; 而如果这个词仅出现在了dev或test中,那么就不能为它们单独建立vector,而应该让它指向unk这个vector的
|
||||
值(当unk的值更新时,这个词也使用的是更新之后的vector)。所以被认为是no_create_entry的token,将首先从预训练的词表中寻找它的表示,如
|
||||
果找到了,就使用该表示; 如果没有找到,则认为该词的表示应该为unk的表示。
|
||||
|
||||
下面我们结合部分 :class:`~fastNLP.embeddings.StaticEmbedding` 的例子来说明下该值造成的影响,如果您对
|
||||
:class:`~fastNLP.embeddings.StaticEmbedding` 不太了解,您可以先参考 :doc:`使用Embedding模块将文本转成向量 </tutorials/tutorial_3_embedding>` 部分再来阅读该部分
|
||||
下面我们结合部分 :class:`~fastNLP.embeddings.StaticEmbedding` 的例子来说明下该值造成的影响,如果您对 :class:`~fastNLP.embeddings.StaticEmbedding` 不太了解,您可以先参考 :doc:`使用Embedding模块将文本转成向量 </tutorials/tutorial_3_embedding>` 部分再来阅读该部分
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
@ -3,6 +3,10 @@
|
||||
|
||||
文本分类(Text classification)任务是将一句话或一段话划分到某个具体的类别。比如垃圾邮件识别,文本情绪分类等。这篇教程可以带你从零开始了解 fastNLP 的使用
|
||||
|
||||
.. note::
|
||||
|
||||
本教程推荐使用 GPU 进行实验
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
1, 商务大床房,房间很大,床有2M宽,整体感觉经济实惠不错!
|
||||
|
343
tutorials/tutorial_2_vocabulary.ipynb
Normal file
343
tutorials/tutorial_2_vocabulary.ipynb
Normal file
@ -0,0 +1,343 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# fastNLP中的 Vocabulary\n",
|
||||
"## 构建 Vocabulary"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastNLP import Vocabulary\n",
|
||||
"\n",
|
||||
"vocab = Vocabulary()\n",
|
||||
"vocab.add_word_lst(['复', '旦', '大', '学']) # 加入新的字\n",
|
||||
"vocab.add_word('上海') # `上海`会作为一个整体\n",
|
||||
"vocab.to_index('复') # 应该会为3\n",
|
||||
"vocab.to_index('我') # 会输出1,Vocabulary中默认pad的index为0, unk(没有找到的词)的index为1\n",
|
||||
"\n",
|
||||
"# 在构建target的Vocabulary时,词表中应该用不上pad和unk,可以通过以下的初始化\n",
|
||||
"vocab = Vocabulary(unknown=None, padding=None)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Vocabulary(['positive', 'negative']...)"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"vocab.add_word_lst(['positive', 'negative'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"vocab.to_index('positive')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 没有设置 unk 的情况"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "ValueError",
|
||||
"evalue": "word `neutral` not in vocabulary",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-4-c6d424040b45>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mvocab\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'neutral'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# 会报错,因为没有unk这种情况\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;32m~/anaconda3/envs/now/lib/python3.8/site-packages/FastNLP-0.5.0-py3.8.egg/fastNLP/core/vocabulary.py\u001b[0m in \u001b[0;36mto_index\u001b[0;34m(self, w)\u001b[0m\n\u001b[1;32m 414\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;32mreturn\u001b[0m \u001b[0mint\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mnumber\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 415\u001b[0m \"\"\"\n\u001b[0;32m--> 416\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 417\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 418\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/anaconda3/envs/now/lib/python3.8/site-packages/FastNLP-0.5.0-py3.8.egg/fastNLP/core/vocabulary.py\u001b[0m in \u001b[0;36m_wrapper\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_word2idx\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrebuild\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild_vocab\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 44\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 45\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_wrapper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/anaconda3/envs/now/lib/python3.8/site-packages/FastNLP-0.5.0-py3.8.egg/fastNLP/core/vocabulary.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, w)\u001b[0m\n\u001b[1;32m 272\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_word2idx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munknown\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 273\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 274\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"word `{}` not in vocabulary\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 275\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 276\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0m_check_build_vocab\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;31mValueError\u001b[0m: word `neutral` not in vocabulary"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"vocab.to_index('neutral') # 会报错,因为没有unk这种情况"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 设置 unk 的情况"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0, '<unk>')"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastNLP import Vocabulary\n",
|
||||
"\n",
|
||||
"vocab = Vocabulary(unknown='<unk>', padding=None)\n",
|
||||
"vocab.add_word_lst(['positive', 'negative'])\n",
|
||||
"vocab.to_index('neutral'), vocab.to_word(vocab.to_index('neutral'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Vocabulary(['positive', 'negative']...)"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"vocab"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"+---------------------------------------------------+--------+\n",
|
||||
"| chars | target |\n",
|
||||
"+---------------------------------------------------+--------+\n",
|
||||
"| [4, 2, 2, 5, 6, 7, 3] | 0 |\n",
|
||||
"| [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 3] | 1 |\n",
|
||||
"+---------------------------------------------------+--------+\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastNLP import Vocabulary\n",
|
||||
"from fastNLP import DataSet\n",
|
||||
"\n",
|
||||
"dataset = DataSet({'chars': [\n",
|
||||
" ['今', '天', '天', '气', '很', '好', '。'],\n",
|
||||
" ['被', '这', '部', '电', '影', '浪', '费', '了', '两', '个', '小', '时', '。']\n",
|
||||
" ],\n",
|
||||
" 'target': ['neutral', 'negative']\n",
|
||||
"})\n",
|
||||
"\n",
|
||||
"vocab = Vocabulary()\n",
|
||||
"vocab.from_dataset(dataset, field_name='chars')\n",
|
||||
"vocab.index_dataset(dataset, field_name='chars')\n",
|
||||
"\n",
|
||||
"target_vocab = Vocabulary(padding=None, unknown=None)\n",
|
||||
"target_vocab.from_dataset(dataset, field_name='target')\n",
|
||||
"target_vocab.index_dataset(dataset, field_name='target')\n",
|
||||
"print(dataset)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Vocabulary(['今', '天', '心', '情', '很']...)"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastNLP import Vocabulary\n",
|
||||
"from fastNLP import DataSet\n",
|
||||
"\n",
|
||||
"tr_data = DataSet({'chars': [\n",
|
||||
" ['今', '天', '心', '情', '很', '好', '。'],\n",
|
||||
" ['被', '这', '部', '电', '影', '浪', '费', '了', '两', '个', '小', '时', '。']\n",
|
||||
" ],\n",
|
||||
" 'target': ['positive', 'negative']\n",
|
||||
"})\n",
|
||||
"dev_data = DataSet({'chars': [\n",
|
||||
" ['住', '宿', '条', '件', '还', '不', '错'],\n",
|
||||
" ['糟', '糕', '的', '天', '气', ',', '无', '法', '出', '行', '。']\n",
|
||||
" ],\n",
|
||||
" 'target': ['positive', 'negative']\n",
|
||||
"})\n",
|
||||
"\n",
|
||||
"vocab = Vocabulary()\n",
|
||||
"# 将验证集或者测试集在建立词表是放入no_create_entry_dataset这个参数中。\n",
|
||||
"vocab.from_dataset(tr_data, field_name='chars', no_create_entry_dataset=[dev_data])\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 4%|▎ | 2.31M/63.5M [00:00<00:02, 22.9MB/s]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"http://212.129.155.247/embedding/glove.6B.50d.zip not found in cache, downloading to /tmp/tmpvziobj_e\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"100%|██████████| 63.5M/63.5M [00:01<00:00, 41.3MB/s]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Finish download from http://212.129.155.247/embedding/glove.6B.50d.zip\n",
|
||||
"Copy file to /remote-home/ynzheng/.fastNLP/embedding/glove.6B.50d\n",
|
||||
"Found 2 out of 6 words in the pre-training embedding.\n",
|
||||
"tensor([[ 0.9497, 0.3433, 0.8450, -0.8852, -0.7208, -0.2931, -0.7468, 0.6512,\n",
|
||||
" 0.4730, -0.7401, 0.1877, -0.3828, -0.5590, 0.4295, -0.2698, -0.4238,\n",
|
||||
" -0.3124, 1.3423, -0.7857, -0.6302, 0.9182, 0.2113, -0.5744, 1.4549,\n",
|
||||
" 0.7546, -1.6165, -0.0085, 0.0029, 0.5130, -0.4745, 2.5306, 0.8594,\n",
|
||||
" -0.3067, 0.0578, 0.6623, 0.2080, 0.6424, -0.5246, -0.0534, 1.1404,\n",
|
||||
" -0.1370, -0.1836, 0.4546, -0.5096, -0.0255, -0.0286, 0.1805, -0.4483,\n",
|
||||
" 0.4053, -0.3682]], grad_fn=<EmbeddingBackward>)\n",
|
||||
"tensor([[ 0.1320, -0.2392, 0.1732, -0.2390, -0.0463, 0.0494, 0.0488, -0.0886,\n",
|
||||
" 0.0224, -0.1300, 0.0369, 0.1800, 0.0750, -0.0183, 0.2264, 0.1628,\n",
|
||||
" 0.1261, -0.1259, 0.1663, -0.1230, -0.1904, -0.0532, 0.1397, -0.0259,\n",
|
||||
" -0.1799, 0.0226, 0.1858, 0.1981, 0.1338, 0.2394, 0.0248, 0.0203,\n",
|
||||
" -0.1722, -0.1683, -0.1892, 0.0874, 0.0562, -0.0394, 0.0306, -0.1761,\n",
|
||||
" 0.1015, -0.0171, 0.1172, 0.1357, 0.1519, -0.0011, 0.1572, 0.1265,\n",
|
||||
" -0.2391, -0.0258]], grad_fn=<EmbeddingBackward>)\n",
|
||||
"tensor([[ 0.1318, -0.2552, -0.0679, 0.2619, -0.2616, 0.2357, 0.1308, -0.0118,\n",
|
||||
" 1.7659, 0.2078, 0.2620, -0.1643, -0.8464, 0.0201, 0.0702, 0.3978,\n",
|
||||
" 0.1528, -0.2021, -1.6184, -0.5433, -0.1786, 0.5389, 0.4987, -0.1017,\n",
|
||||
" 0.6626, -1.7051, 0.0572, -0.3241, -0.6683, 0.2665, 2.8420, 0.2684,\n",
|
||||
" -0.5954, -0.5004, 1.5199, 0.0396, 1.6659, 0.9976, -0.5597, -0.7049,\n",
|
||||
" -0.0309, -0.2830, -0.1356, 0.6429, 0.4149, 1.2362, 0.7659, 0.9780,\n",
|
||||
" 0.5851, -0.3018]], grad_fn=<EmbeddingBackward>)\n",
|
||||
"tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
|
||||
" 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
|
||||
" 0., 0.]], grad_fn=<EmbeddingBackward>)\n",
|
||||
"tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
|
||||
" 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
|
||||
" 0., 0.]], grad_fn=<EmbeddingBackward>)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"from fastNLP.embeddings import StaticEmbedding\n",
|
||||
"from fastNLP import Vocabulary\n",
|
||||
"\n",
|
||||
"vocab = Vocabulary()\n",
|
||||
"vocab.add_word('train')\n",
|
||||
"vocab.add_word('only_in_train') # 仅在train出现,但肯定在预训练词表中不存在\n",
|
||||
"vocab.add_word('test', no_create_entry=True) # 该词只在dev或test中出现\n",
|
||||
"vocab.add_word('only_in_test', no_create_entry=True) # 这个词在预训练的词表中找不到\n",
|
||||
"\n",
|
||||
"embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-6b-50d')\n",
|
||||
"print(embed(torch.LongTensor([vocab.to_index('train')])))\n",
|
||||
"print(embed(torch.LongTensor([vocab.to_index('only_in_train')])))\n",
|
||||
"print(embed(torch.LongTensor([vocab.to_index('test')])))\n",
|
||||
"print(embed(torch.LongTensor([vocab.to_index('only_in_test')])))\n",
|
||||
"print(embed(torch.LongTensor([vocab.unknown_idx])))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python Now",
|
||||
"language": "python",
|
||||
"name": "now"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
Reference in New Issue
Block a user