mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-03 04:37:37 +08:00
Introduce Field concept to optimize data representation.
- add DataSet, Instance, Field to represent data in different levels - encapsulate batching method in Batch class - modify samplers in action.py to fit Batch - preprocessor.run returns DataSet, instead of list - Use Batch in Trainer/Tester - add required_arg "task" in Trainer/Tester - remove SeqLabelTrainer/SeqLabelTester dependencies successfully. They empty classes to deprecate. - modify SeqLabeling model, add another argument in forward, in order to compute mask inside model - test\model\seq_labeling.py works
This commit is contained in:
parent
bc04b3e7fd
commit
758f0c0bd6
@ -168,19 +168,7 @@ class BaseSampler(object):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, data_set):
|
||||
"""
|
||||
|
||||
:param data_set: multi-level list, of shape [num_example, *]
|
||||
|
||||
"""
|
||||
self.data_set_length = len(data_set)
|
||||
self.data = data_set
|
||||
|
||||
def __len__(self):
|
||||
return self.data_set_length
|
||||
|
||||
def __iter__(self):
|
||||
def __call__(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@ -189,16 +177,8 @@ class SequentialSampler(BaseSampler):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, data_set):
|
||||
"""
|
||||
|
||||
:param data_set: multi-level list
|
||||
|
||||
"""
|
||||
super(SequentialSampler, self).__init__(data_set)
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.data)
|
||||
def __call__(self, data_set):
|
||||
return list(range(len(data_set)))
|
||||
|
||||
|
||||
class RandomSampler(BaseSampler):
|
||||
@ -206,17 +186,9 @@ class RandomSampler(BaseSampler):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, data_set):
|
||||
"""
|
||||
def __call__(self, data_set):
|
||||
return list(np.random.permutation(len(data_set)))
|
||||
|
||||
:param data_set: multi-level list
|
||||
|
||||
"""
|
||||
super(RandomSampler, self).__init__(data_set)
|
||||
self.order = np.random.permutation(self.data_set_length)
|
||||
|
||||
def __iter__(self):
|
||||
return iter((self.data[idx] for idx in self.order))
|
||||
|
||||
|
||||
class Batchifier(object):
|
||||
|
126
fastNLP/core/batch.py
Normal file
126
fastNLP/core/batch.py
Normal file
@ -0,0 +1,126 @@
|
||||
from collections import defaultdict
|
||||
|
||||
import torch
|
||||
|
||||
from fastNLP.core.dataset import DataSet
|
||||
from fastNLP.core.field import TextField, LabelField
|
||||
from fastNLP.core.instance import Instance
|
||||
|
||||
|
||||
class Batch(object):
|
||||
"""Batch is an iterable object which iterates over mini-batches.
|
||||
|
||||
::
|
||||
for batch_x, batch_y in Batch(data_set):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, batch_size, sampler, use_cuda):
|
||||
self.dataset = dataset
|
||||
self.batch_size = batch_size
|
||||
self.sampler = sampler
|
||||
self.use_cuda = use_cuda
|
||||
self.idx_list = None
|
||||
self.curidx = 0
|
||||
|
||||
def __iter__(self):
|
||||
self.idx_list = self.sampler(self.dataset)
|
||||
self.curidx = 0
|
||||
self.lengths = self.dataset.get_length()
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
"""
|
||||
|
||||
:return batch_x: dict of (str: torch.LongTensor), which means (field name: tensor of shape [batch_size, padding_length])
|
||||
batch_x also contains an item (str: list of int) about origin lengths,
|
||||
which means ("field_name_origin_len": origin lengths).
|
||||
E.g.
|
||||
::
|
||||
{'text': tensor([[ 0, 1, 2, 3, 0, 0, 0], 4, 5, 2, 6, 7, 8, 9]]), 'text_origin_len': [4, 7]})
|
||||
|
||||
batch_y: dict of (str: torch.LongTensor), which means (field name: tensor of shape [batch_size, padding_length])
|
||||
All tensors in both batch_x and batch_y will be cuda tensors if use_cuda is True.
|
||||
The names of fields are defined in preprocessor's convert_to_dataset method.
|
||||
|
||||
"""
|
||||
if self.curidx >= len(self.idx_list):
|
||||
raise StopIteration
|
||||
else:
|
||||
endidx = min(self.curidx + self.batch_size, len(self.idx_list))
|
||||
padding_length = {field_name: max(field_length[self.curidx: endidx])
|
||||
for field_name, field_length in self.lengths.items()}
|
||||
origin_lengths = {field_name: field_length[self.curidx: endidx]
|
||||
for field_name, field_length in self.lengths.items()}
|
||||
|
||||
batch_x, batch_y = defaultdict(list), defaultdict(list)
|
||||
for idx in range(self.curidx, endidx):
|
||||
x, y = self.dataset.to_tensor(idx, padding_length)
|
||||
for name, tensor in x.items():
|
||||
batch_x[name].append(tensor)
|
||||
for name, tensor in y.items():
|
||||
batch_y[name].append(tensor)
|
||||
|
||||
batch_origin_length = {}
|
||||
# combine instances into a batch
|
||||
for batch in (batch_x, batch_y):
|
||||
for name, tensor_list in batch.items():
|
||||
if self.use_cuda:
|
||||
batch[name] = torch.stack(tensor_list, dim=0).cuda()
|
||||
else:
|
||||
batch[name] = torch.stack(tensor_list, dim=0)
|
||||
|
||||
# add origin lengths in batch_x
|
||||
for name, tensor in batch_x.items():
|
||||
if self.use_cuda:
|
||||
batch_origin_length[name + "_origin_len"] = torch.LongTensor(origin_lengths[name]).cuda()
|
||||
else:
|
||||
batch_origin_length[name + "_origin_len"] = torch.LongTensor(origin_lengths[name])
|
||||
batch_x.update(batch_origin_length)
|
||||
|
||||
self.curidx += endidx
|
||||
return batch_x, batch_y
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""simple running example
|
||||
"""
|
||||
texts = ["i am a cat",
|
||||
"this is a test of new batch",
|
||||
"haha"
|
||||
]
|
||||
labels = [0, 1, 0]
|
||||
|
||||
# prepare vocabulary
|
||||
vocab = {}
|
||||
for text in texts:
|
||||
for tokens in text.split():
|
||||
if tokens not in vocab:
|
||||
vocab[tokens] = len(vocab)
|
||||
print("vocabulary: ", vocab)
|
||||
|
||||
# prepare input dataset
|
||||
data = DataSet()
|
||||
for text, label in zip(texts, labels):
|
||||
x = TextField(text.split(), False)
|
||||
y = LabelField(label, is_target=True)
|
||||
ins = Instance(text=x, label=y)
|
||||
data.append(ins)
|
||||
|
||||
# use vocabulary to index data
|
||||
data.index_field("text", vocab)
|
||||
|
||||
|
||||
# define naive sampler for batch class
|
||||
class SeqSampler:
|
||||
def __call__(self, dataset):
|
||||
return list(range(len(dataset)))
|
||||
|
||||
|
||||
# use batch to iterate dataset
|
||||
data_iterator = Batch(data, 2, SeqSampler(), False)
|
||||
for epoch in range(1):
|
||||
for batch_x, batch_y in data_iterator:
|
||||
print(batch_x)
|
||||
print(batch_y)
|
||||
# do stuff
|
@ -7,23 +7,36 @@ class DataSet(list):
|
||||
self.name = name
|
||||
if instances is not None:
|
||||
self.extend(instances)
|
||||
|
||||
|
||||
def index_all(self, vocab):
|
||||
for ins in self:
|
||||
ins.index_all(vocab)
|
||||
|
||||
|
||||
def index_field(self, field_name, vocab):
|
||||
for ins in self:
|
||||
ins.index_field(field_name, vocab)
|
||||
|
||||
def to_tensor(self, idx: int, padding_length: dict):
|
||||
"""Convert an instance in a dataset to tensor.
|
||||
|
||||
:param idx: int, the index of the instance in the dataset.
|
||||
:param padding_length: int
|
||||
:return tensor_x: dict of (str: torch.LongTensor), which means (field name: tensor of shape [padding_length, ])
|
||||
tensor_y: dict of (str: torch.LongTensor), which means (field name: tensor of shape [padding_length, ])
|
||||
|
||||
"""
|
||||
ins = self[idx]
|
||||
return ins.to_tensor(padding_length)
|
||||
|
||||
|
||||
def get_length(self):
|
||||
"""Fetch lengths of all fields in all instances in a dataset.
|
||||
|
||||
:return lengths: dict of (str: list). The str is the field name.
|
||||
The list contains lengths of this field in all instances.
|
||||
|
||||
"""
|
||||
lengths = defaultdict(list)
|
||||
for ins in self:
|
||||
for field_name, field_length in ins.get_length().items():
|
||||
lengths[field_name].append(field_length)
|
||||
return lengths
|
||||
|
@ -1,18 +1,23 @@
|
||||
import torch
|
||||
|
||||
|
||||
class Field(object):
|
||||
"""A field defines a data type.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, is_target: bool):
|
||||
self.is_target = is_target
|
||||
|
||||
def index(self, vocab):
|
||||
pass
|
||||
|
||||
raise NotImplementedError
|
||||
|
||||
def get_length(self):
|
||||
pass
|
||||
raise NotImplementedError
|
||||
|
||||
def to_tensor(self, padding_length):
|
||||
pass
|
||||
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TextField(Field):
|
||||
def __init__(self, text: list, is_target):
|
||||
@ -31,25 +36,38 @@ class TextField(Field):
|
||||
return self._index
|
||||
|
||||
def get_length(self):
|
||||
"""Fetch the length of the text field.
|
||||
|
||||
:return length: int, the length of the text.
|
||||
|
||||
"""
|
||||
return len(self.text)
|
||||
|
||||
def to_tensor(self, padding_length: int):
|
||||
"""Convert text field to tensor.
|
||||
|
||||
:param padding_length: int
|
||||
:return tensor: torch.LongTensor, of shape [padding_length, ]
|
||||
"""
|
||||
pads = []
|
||||
if self._index is None:
|
||||
print('error')
|
||||
raise RuntimeError("Indexing not done before to_tensor in TextField.")
|
||||
if padding_length > self.get_length():
|
||||
pads = [0 for i in range(padding_length - self.get_length())]
|
||||
# (length, )
|
||||
pads = [0] * (padding_length - self.get_length())
|
||||
return torch.LongTensor(self._index + pads)
|
||||
|
||||
|
||||
|
||||
class LabelField(Field):
|
||||
def __init__(self, label, is_target=True):
|
||||
super(LabelField, self).__init__(is_target)
|
||||
self.label = label
|
||||
self._index = None
|
||||
|
||||
|
||||
def get_length(self):
|
||||
"""Fetch the length of the label field.
|
||||
|
||||
:return length: int, the length of the label, always 1.
|
||||
"""
|
||||
return 1
|
||||
|
||||
def index(self, vocab):
|
||||
@ -58,13 +76,13 @@ class LabelField(Field):
|
||||
else:
|
||||
pass
|
||||
return self._index
|
||||
|
||||
|
||||
def to_tensor(self, padding_length):
|
||||
if self._index is None:
|
||||
return torch.LongTensor([self.label])
|
||||
else:
|
||||
return torch.LongTensor([self._index])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf = TextField("test the code".split())
|
||||
|
||||
tf = TextField("test the code".split(), is_target=False)
|
53
fastNLP/core/instance.py
Normal file
53
fastNLP/core/instance.py
Normal file
@ -0,0 +1,53 @@
|
||||
class Instance(object):
|
||||
"""An instance which consists of Fields is an example in the DataSet.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, **fields):
|
||||
self.fields = fields
|
||||
self.has_index = False
|
||||
self.indexes = {}
|
||||
|
||||
def add_field(self, field_name, field):
|
||||
self.fields[field_name] = field
|
||||
|
||||
def get_length(self):
|
||||
"""Fetch the length of all fields in the instance.
|
||||
|
||||
:return length: dict of (str: int), which means (field name: field length).
|
||||
|
||||
"""
|
||||
length = {name: field.get_length() for name, field in self.fields.items()}
|
||||
return length
|
||||
|
||||
def index_field(self, field_name, vocab):
|
||||
"""use `vocab` to index certain field
|
||||
"""
|
||||
self.indexes[field_name] = self.fields[field_name].index(vocab)
|
||||
|
||||
def index_all(self, vocab):
|
||||
"""use `vocab` to index all fields
|
||||
"""
|
||||
if self.has_index:
|
||||
print("error")
|
||||
return self.indexes
|
||||
indexes = {name: field.index(vocab) for name, field in self.fields.items()}
|
||||
self.indexes = indexes
|
||||
return indexes
|
||||
|
||||
def to_tensor(self, padding_length: dict):
|
||||
"""Convert instance to tensor.
|
||||
|
||||
:param padding_length: dict of (str: int), which means (field name: padding_length of this field)
|
||||
:return tensor_x: dict of (str: torch.LongTensor), which means (field name: tensor of shape [padding_length, ])
|
||||
tensor_y: dict of (str: torch.LongTensor), which means (field name: tensor of shape [padding_length, ])
|
||||
|
||||
"""
|
||||
tensor_x = {}
|
||||
tensor_y = {}
|
||||
for name, field in self.fields.items():
|
||||
if field.is_target:
|
||||
tensor_y[name] = field.to_tensor(padding_length[name])
|
||||
else:
|
||||
tensor_x[name] = field.to_tensor(padding_length[name])
|
||||
return tensor_x, tensor_y
|
@ -3,6 +3,10 @@ import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
from fastNLP.core.dataset import DataSet
|
||||
from fastNLP.core.field import TextField, LabelField
|
||||
from fastNLP.core.instance import Instance
|
||||
|
||||
DEFAULT_PADDING_LABEL = '<pad>' # dict index = 0
|
||||
DEFAULT_UNKNOWN_LABEL = '<unk>' # dict index = 1
|
||||
DEFAULT_RESERVED_LABEL = ['<reserved-2>',
|
||||
@ -84,7 +88,7 @@ class BasePreprocess(object):
|
||||
return len(self.label2index)
|
||||
|
||||
def run(self, train_dev_data, test_data=None, pickle_path="./", train_dev_split=0, cross_val=False, n_fold=10):
|
||||
"""Main preprocessing pipeline.
|
||||
"""Main pre-processing pipeline.
|
||||
|
||||
:param train_dev_data: three-level list, with either single label or multiple labels in a sample.
|
||||
:param test_data: three-level list, with either single label or multiple labels in a sample. (optional)
|
||||
@ -92,7 +96,9 @@ class BasePreprocess(object):
|
||||
:param train_dev_split: float, between [0, 1]. The ratio of training data used as validation set.
|
||||
:param cross_val: bool, whether to do cross validation.
|
||||
:param n_fold: int, the number of folds of cross validation. Only useful when cross_val is True.
|
||||
:return results: a tuple of datasets after preprocessing.
|
||||
:return results: multiple datasets after pre-processing. If test_data is provided, return one more dataset.
|
||||
If train_dev_split > 0, return one more dataset - the dev set. If cross_val is True, each dataset
|
||||
is a list of DataSet objects; Otherwise, each dataset is a DataSet object.
|
||||
"""
|
||||
|
||||
if pickle_exist(pickle_path, "word2id.pkl") and pickle_exist(pickle_path, "class2id.pkl"):
|
||||
@ -111,68 +117,87 @@ class BasePreprocess(object):
|
||||
index2label = self.build_reverse_dict(self.label2index)
|
||||
save_pickle(index2label, pickle_path, "id2class.pkl")
|
||||
|
||||
data_train = []
|
||||
data_dev = []
|
||||
train_set = []
|
||||
dev_set = []
|
||||
if not cross_val:
|
||||
if not pickle_exist(pickle_path, "data_train.pkl"):
|
||||
data_train.extend(self.to_index(train_dev_data))
|
||||
if train_dev_split > 0 and not pickle_exist(pickle_path, "data_dev.pkl"):
|
||||
split = int(len(data_train) * train_dev_split)
|
||||
data_dev = data_train[: split]
|
||||
data_train = data_train[split:]
|
||||
save_pickle(data_dev, pickle_path, "data_dev.pkl")
|
||||
split = int(len(train_dev_data) * train_dev_split)
|
||||
data_dev = train_dev_data[: split]
|
||||
data_train = train_dev_data[split:]
|
||||
train_set = self.convert_to_dataset(data_train, self.word2index, self.label2index)
|
||||
dev_set = self.convert_to_dataset(data_dev, self.word2index, self.label2index)
|
||||
|
||||
save_pickle(dev_set, pickle_path, "data_dev.pkl")
|
||||
print("{} of the training data is split for validation. ".format(train_dev_split))
|
||||
save_pickle(data_train, pickle_path, "data_train.pkl")
|
||||
else:
|
||||
train_set = self.convert_to_dataset(train_dev_data, self.word2index, self.label2index)
|
||||
save_pickle(train_set, pickle_path, "data_train.pkl")
|
||||
else:
|
||||
data_train = load_pickle(pickle_path, "data_train.pkl")
|
||||
train_set = load_pickle(pickle_path, "data_train.pkl")
|
||||
if pickle_exist(pickle_path, "data_dev.pkl"):
|
||||
data_dev = load_pickle(pickle_path, "data_dev.pkl")
|
||||
dev_set = load_pickle(pickle_path, "data_dev.pkl")
|
||||
else:
|
||||
# cross_val is True
|
||||
if not pickle_exist(pickle_path, "data_train_0.pkl"):
|
||||
# cross validation
|
||||
data_idx = self.to_index(train_dev_data)
|
||||
data_cv = self.cv_split(data_idx, n_fold)
|
||||
data_cv = self.cv_split(train_dev_data, n_fold)
|
||||
for i, (data_train_cv, data_dev_cv) in enumerate(data_cv):
|
||||
data_train_cv = self.convert_to_dataset(data_train_cv, self.word2index, self.label2index)
|
||||
data_dev_cv = self.convert_to_dataset(data_dev_cv, self.word2index, self.label2index)
|
||||
save_pickle(
|
||||
data_train_cv, pickle_path,
|
||||
"data_train_{}.pkl".format(i))
|
||||
save_pickle(
|
||||
data_dev_cv, pickle_path,
|
||||
"data_dev_{}.pkl".format(i))
|
||||
data_train.append(data_train_cv)
|
||||
data_dev.append(data_dev_cv)
|
||||
train_set.append(data_train_cv)
|
||||
dev_set.append(data_dev_cv)
|
||||
print("{}-fold cross validation.".format(n_fold))
|
||||
else:
|
||||
for i in range(n_fold):
|
||||
data_train_cv = load_pickle(pickle_path, "data_train_{}.pkl".format(i))
|
||||
data_dev_cv = load_pickle(pickle_path, "data_dev_{}.pkl".format(i))
|
||||
data_train.append(data_train_cv)
|
||||
data_dev.append(data_dev_cv)
|
||||
train_set.append(data_train_cv)
|
||||
dev_set.append(data_dev_cv)
|
||||
|
||||
# prepare test data if provided
|
||||
data_test = []
|
||||
test_set = []
|
||||
if test_data is not None:
|
||||
if not pickle_exist(pickle_path, "data_test.pkl"):
|
||||
data_test = self.to_index(test_data)
|
||||
save_pickle(data_test, pickle_path, "data_test.pkl")
|
||||
test_set = self.convert_to_dataset(test_data, self.word2index, self.label2index)
|
||||
save_pickle(test_set, pickle_path, "data_test.pkl")
|
||||
|
||||
# return preprocessed results
|
||||
results = [data_train]
|
||||
results = [train_set]
|
||||
if cross_val or train_dev_split > 0:
|
||||
results.append(data_dev)
|
||||
results.append(dev_set)
|
||||
if test_data:
|
||||
results.append(data_test)
|
||||
results.append(test_set)
|
||||
if len(results) == 1:
|
||||
return results[0]
|
||||
else:
|
||||
return tuple(results)
|
||||
|
||||
def build_dict(self, data):
|
||||
raise NotImplementedError
|
||||
label2index = DEFAULT_WORD_TO_INDEX.copy()
|
||||
word2index = DEFAULT_WORD_TO_INDEX.copy()
|
||||
for example in data:
|
||||
for word in example[0]:
|
||||
if word not in word2index:
|
||||
word2index[word] = len(word2index)
|
||||
label = example[1]
|
||||
if isinstance(label, str):
|
||||
# label is a string
|
||||
if label not in label2index:
|
||||
label2index[label] = len(label2index)
|
||||
elif isinstance(label, list):
|
||||
# label is a list of strings
|
||||
for single_label in label:
|
||||
if single_label not in label2index:
|
||||
label2index[single_label] = len(label2index)
|
||||
return word2index, label2index
|
||||
|
||||
def to_index(self, data):
|
||||
raise NotImplementedError
|
||||
|
||||
def build_reverse_dict(self, word_dict):
|
||||
id2word = {word_dict[w]: w for w in word_dict}
|
||||
@ -186,11 +211,23 @@ class BasePreprocess(object):
|
||||
return data_train, data_dev
|
||||
|
||||
def cv_split(self, data, n_fold):
|
||||
"""Split data for cross validation."""
|
||||
"""Split data for cross validation.
|
||||
|
||||
:param data: list of string
|
||||
:param n_fold: int
|
||||
:return data_cv:
|
||||
|
||||
::
|
||||
[
|
||||
(data_train, data_dev), # 1st fold
|
||||
(data_train, data_dev), # 2nd fold
|
||||
...
|
||||
]
|
||||
|
||||
"""
|
||||
data_copy = data.copy()
|
||||
np.random.shuffle(data_copy)
|
||||
fold_size = round(len(data_copy) / n_fold)
|
||||
|
||||
data_cv = []
|
||||
for i in range(n_fold - 1):
|
||||
start = i * fold_size
|
||||
@ -202,154 +239,62 @@ class BasePreprocess(object):
|
||||
data_dev = data_copy[start:]
|
||||
data_train = data_copy[:start]
|
||||
data_cv.append((data_train, data_dev))
|
||||
|
||||
return data_cv
|
||||
|
||||
def convert_to_dataset(self, data, vocab, label_vocab):
|
||||
"""Convert list of indices into a DataSet object.
|
||||
|
||||
:param data: list. Entries are strings.
|
||||
:param vocab: a dict, mapping string (token) to index (int).
|
||||
:param label_vocab: a dict, mapping string (label) to index (int).
|
||||
:return data_set: a DataSet object
|
||||
"""
|
||||
use_word_seq = False
|
||||
use_label_seq = False
|
||||
data_set = DataSet()
|
||||
for example in data:
|
||||
words, label = example[0], example[1]
|
||||
instance = Instance()
|
||||
|
||||
if isinstance(words, list):
|
||||
x = TextField(words, is_target=False)
|
||||
instance.add_field("word_seq", x)
|
||||
use_word_seq = True
|
||||
else:
|
||||
raise NotImplementedError("words is a {}".format(type(words)))
|
||||
|
||||
if isinstance(label, list):
|
||||
y = TextField(label, is_target=True)
|
||||
instance.add_field("label_seq", y)
|
||||
use_label_seq = True
|
||||
elif isinstance(label, str):
|
||||
y = LabelField(label, is_target=True)
|
||||
instance.add_field("label", y)
|
||||
else:
|
||||
raise NotImplementedError("label is a {}".format(type(label)))
|
||||
|
||||
data_set.append(instance)
|
||||
if use_word_seq:
|
||||
data_set.index_field("word_seq", vocab)
|
||||
if use_label_seq:
|
||||
data_set.index_field("label_seq", label_vocab)
|
||||
return data_set
|
||||
|
||||
|
||||
class SeqLabelPreprocess(BasePreprocess):
|
||||
"""Preprocess pipeline, including building mapping from words to index, from index to words,
|
||||
from labels/classes to index, from index to labels/classes.
|
||||
data of three-level list which have multiple labels in each sample.
|
||||
::
|
||||
|
||||
[
|
||||
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
|
||||
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
|
||||
...
|
||||
]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(SeqLabelPreprocess, self).__init__()
|
||||
|
||||
def build_dict(self, data):
|
||||
"""Add new words with indices into self.word_dict, new labels with indices into self.label_dict.
|
||||
|
||||
:param data: three-level list
|
||||
::
|
||||
|
||||
[
|
||||
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
|
||||
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
|
||||
...
|
||||
]
|
||||
|
||||
:return word2index: dict of {str, int}
|
||||
label2index: dict of {str, int}
|
||||
"""
|
||||
# In seq labeling, both word seq and label seq need to be padded to the same length in a mini-batch.
|
||||
label2index = DEFAULT_WORD_TO_INDEX.copy()
|
||||
word2index = DEFAULT_WORD_TO_INDEX.copy()
|
||||
for example in data:
|
||||
for word, label in zip(example[0], example[1]):
|
||||
if word not in word2index:
|
||||
word2index[word] = len(word2index)
|
||||
if label not in label2index:
|
||||
label2index[label] = len(label2index)
|
||||
return word2index, label2index
|
||||
|
||||
def to_index(self, data):
|
||||
"""Convert word strings and label strings into indices.
|
||||
|
||||
:param data: three-level list
|
||||
::
|
||||
|
||||
[
|
||||
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
|
||||
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
|
||||
...
|
||||
]
|
||||
|
||||
:return data_index: the same shape as data, but each string is replaced by its corresponding index
|
||||
"""
|
||||
data_index = []
|
||||
for example in data:
|
||||
word_list = []
|
||||
label_list = []
|
||||
for word, label in zip(example[0], example[1]):
|
||||
word_list.append(self.word2index.get(word, DEFAULT_WORD_TO_INDEX[DEFAULT_UNKNOWN_LABEL]))
|
||||
label_list.append(self.label2index.get(label, DEFAULT_WORD_TO_INDEX[DEFAULT_UNKNOWN_LABEL]))
|
||||
data_index.append([word_list, label_list])
|
||||
return data_index
|
||||
|
||||
|
||||
class ClassPreprocess(BasePreprocess):
|
||||
""" Preprocess pipeline for classification datasets.
|
||||
Preprocess pipeline, including building mapping from words to index, from index to words,
|
||||
from labels/classes to index, from index to labels/classes.
|
||||
design for data of three-level list which has a single label in each sample.
|
||||
::
|
||||
|
||||
[
|
||||
[ [word_11, word_12, ...], label_1 ],
|
||||
[ [word_21, word_22, ...], label_2 ],
|
||||
...
|
||||
]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(ClassPreprocess, self).__init__()
|
||||
|
||||
def build_dict(self, data):
|
||||
"""Build vocabulary."""
|
||||
|
||||
# build vocabulary from scratch if nothing exists
|
||||
word2index = DEFAULT_WORD_TO_INDEX.copy()
|
||||
label2index = DEFAULT_WORD_TO_INDEX.copy()
|
||||
|
||||
# collect every word and label
|
||||
for sent, label in data:
|
||||
if len(sent) <= 1:
|
||||
continue
|
||||
|
||||
if label not in label2index:
|
||||
label2index[label] = len(label2index)
|
||||
|
||||
for word in sent:
|
||||
if word not in word2index:
|
||||
word2index[word] = len(word2index)
|
||||
return word2index, label2index
|
||||
|
||||
def to_index(self, data):
|
||||
"""Convert word strings and label strings into indices.
|
||||
|
||||
:param data: three-level list
|
||||
::
|
||||
|
||||
[
|
||||
[ [word_11, word_12, ...], label_1 ],
|
||||
[ [word_21, word_22, ...], label_2 ],
|
||||
...
|
||||
]
|
||||
|
||||
:return data_index: the same shape as data, but each string is replaced by its corresponding index
|
||||
"""
|
||||
data_index = []
|
||||
for example in data:
|
||||
word_list = []
|
||||
# example[0] is the word list, example[1] is the single label
|
||||
for word in example[0]:
|
||||
word_list.append(self.word2index.get(word, DEFAULT_WORD_TO_INDEX[DEFAULT_UNKNOWN_LABEL]))
|
||||
label_index = self.label2index.get(example[1], DEFAULT_WORD_TO_INDEX[DEFAULT_UNKNOWN_LABEL])
|
||||
data_index.append([word_list, label_index])
|
||||
return data_index
|
||||
|
||||
|
||||
def infer_preprocess(pickle_path, data):
|
||||
"""Preprocess over inference data. Transform three-level list of strings into that of index.
|
||||
::
|
||||
|
||||
[
|
||||
[word_11, word_12, ...],
|
||||
[word_21, word_22, ...],
|
||||
...
|
||||
]
|
||||
|
||||
"""
|
||||
word2index = load_pickle(pickle_path, "word2id.pkl")
|
||||
data_index = []
|
||||
for example in data:
|
||||
data_index.append([word2index.get(w, DEFAULT_UNKNOWN_LABEL) for w in example])
|
||||
return data_index
|
||||
if __name__ == "__main__":
|
||||
p = BasePreprocess()
|
||||
train_dev_data = [[["I", "am", "a", "good", "student", "."], "0"],
|
||||
[["You", "are", "pretty", "."], "1"]
|
||||
]
|
||||
training_set = p.run(train_dev_data)
|
||||
print(training_set)
|
||||
|
@ -2,8 +2,8 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
from fastNLP.core.action import Action
|
||||
from fastNLP.core.action import RandomSampler, Batchifier
|
||||
from fastNLP.modules import utils
|
||||
from fastNLP.core.action import RandomSampler
|
||||
from fastNLP.core.batch import Batch
|
||||
from fastNLP.saver.logger import create_logger
|
||||
|
||||
logger = create_logger(__name__, "./train_test.log")
|
||||
@ -35,16 +35,16 @@ class BaseTester(object):
|
||||
"""
|
||||
"required_args" is the collection of arguments that users must pass to Trainer explicitly.
|
||||
This is used to warn users of essential settings in the training.
|
||||
Obviously, "required_args" is the subset of "default_args".
|
||||
The value in "default_args" to the keys in "required_args" is simply for type check.
|
||||
Specially, "required_args" does not have default value, so they have nothing to do with "default_args".
|
||||
"""
|
||||
# add required arguments here
|
||||
required_args = {}
|
||||
required_args = {"task" # one of ("seq_label", "text_classify")
|
||||
}
|
||||
|
||||
for req_key in required_args:
|
||||
if req_key not in kwargs:
|
||||
logger.error("Tester lacks argument {}".format(req_key))
|
||||
raise ValueError("Tester lacks argument {}".format(req_key))
|
||||
self._task = kwargs["task"]
|
||||
|
||||
for key in default_args:
|
||||
if key in kwargs:
|
||||
@ -83,10 +83,10 @@ class BaseTester(object):
|
||||
self.eval_history.clear()
|
||||
self.batch_output.clear()
|
||||
|
||||
iterator = iter(Batchifier(RandomSampler(dev_data), self.batch_size, drop_last=False))
|
||||
data_iterator = Batch(dev_data, self.batch_size, sampler=RandomSampler(), use_cuda=self.use_cuda)
|
||||
step = 0
|
||||
|
||||
for batch_x, batch_y in self.make_batch(iterator):
|
||||
for batch_x, batch_y in data_iterator:
|
||||
with torch.no_grad():
|
||||
prediction = self.data_forward(network, batch_x)
|
||||
eval_results = self.evaluate(prediction, batch_y)
|
||||
@ -112,7 +112,8 @@ class BaseTester(object):
|
||||
|
||||
def data_forward(self, network, x):
|
||||
"""A forward pass of the model. """
|
||||
raise NotImplementedError
|
||||
y = network(**x)
|
||||
return y
|
||||
|
||||
def evaluate(self, predict, truth):
|
||||
"""Compute evaluation metrics.
|
||||
@ -121,7 +122,26 @@ class BaseTester(object):
|
||||
:param truth: Tensor
|
||||
:return eval_results: can be anything. It will be stored in self.eval_history
|
||||
"""
|
||||
raise NotImplementedError
|
||||
batch_size, max_len = predict.size(0), predict.size(1)
|
||||
if "label_seq" in truth:
|
||||
truth = truth["label_seq"]
|
||||
elif "label" in truth:
|
||||
truth = truth["label"]
|
||||
else:
|
||||
raise NotImplementedError("Unknown key {} in batch_y.".format(truth.keys()))
|
||||
loss = self._model.loss(predict, truth) / batch_size
|
||||
|
||||
prediction = self._model.prediction(predict)
|
||||
# pad prediction to equal length
|
||||
for pred in prediction:
|
||||
if len(pred) < max_len:
|
||||
pred += [0] * (max_len - len(pred))
|
||||
results = torch.Tensor(prediction).view(-1, )
|
||||
|
||||
# make sure "results" is in the same device as "truth"
|
||||
results = results.to(truth)
|
||||
accuracy = torch.sum(results == truth.view((-1,))).to(torch.float) / results.shape[0]
|
||||
return [float(loss), float(accuracy)]
|
||||
|
||||
@property
|
||||
def metrics(self):
|
||||
@ -131,7 +151,9 @@ class BaseTester(object):
|
||||
|
||||
:return : variable number of outputs
|
||||
"""
|
||||
raise NotImplementedError
|
||||
batch_loss = np.mean([x[0] for x in self.eval_history])
|
||||
batch_accuracy = np.mean([x[1] for x in self.eval_history])
|
||||
return batch_loss, batch_accuracy
|
||||
|
||||
def show_metrics(self):
|
||||
"""Customize evaluation outputs in Trainer.
|
||||
@ -140,10 +162,8 @@ class BaseTester(object):
|
||||
|
||||
:return print_str: str
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def make_batch(self, iterator):
|
||||
raise NotImplementedError
|
||||
loss, accuracy = self.metrics
|
||||
return "dev loss={:.2f}, accuracy={:.2f}".format(loss, accuracy)
|
||||
|
||||
def make_eval_output(self, predictions, eval_results):
|
||||
"""Customize Tester outputs.
|
||||
@ -152,78 +172,21 @@ class BaseTester(object):
|
||||
:param eval_results: Tensor
|
||||
:return: str, to be printed.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
return self.show_metrics()
|
||||
|
||||
|
||||
class SeqLabelTester(BaseTester):
|
||||
"""Tester for sequence labeling.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, **test_args):
|
||||
"""
|
||||
:param test_args: a dict-like object that has __getitem__ method, can be accessed by "test_args["key_str"]"
|
||||
"""
|
||||
test_args.update({"task": "seq_label"})
|
||||
print(
|
||||
"[FastNLP Warning] SeqLabelTester will be deprecated. Please use Tester with argument 'task'='seq_label'.")
|
||||
super(SeqLabelTester, self).__init__(**test_args)
|
||||
self.max_len = None
|
||||
self.mask = None
|
||||
self.seq_len = None
|
||||
|
||||
def data_forward(self, network, inputs):
|
||||
"""This is only for sequence labeling with CRF decoder.
|
||||
|
||||
:param network: a PyTorch model
|
||||
:param inputs: tuple of (x, seq_len)
|
||||
x: Tensor of shape [batch_size, max_len], where max_len is the maximum length of the mini-batch
|
||||
after padding.
|
||||
seq_len: list of int, the lengths of sequences before padding.
|
||||
:return y: Tensor of shape [batch_size, max_len]
|
||||
"""
|
||||
if not isinstance(inputs, tuple):
|
||||
raise RuntimeError("output_length must be true for sequence modeling.")
|
||||
# unpack the returned value from make_batch
|
||||
x, seq_len = inputs[0], inputs[1]
|
||||
batch_size, max_len = x.size(0), x.size(1)
|
||||
mask = utils.seq_mask(seq_len, max_len)
|
||||
mask = mask.byte().view(batch_size, max_len)
|
||||
if torch.cuda.is_available() and self.use_cuda:
|
||||
mask = mask.cuda()
|
||||
self.mask = mask
|
||||
self.seq_len = seq_len
|
||||
y = network(x)
|
||||
return y
|
||||
|
||||
def evaluate(self, predict, truth):
|
||||
"""Compute metrics (or loss).
|
||||
|
||||
:param predict: Tensor, [batch_size, max_len, tag_size]
|
||||
:param truth: Tensor, [batch_size, max_len]
|
||||
:return:
|
||||
"""
|
||||
batch_size, max_len = predict.size(0), predict.size(1)
|
||||
loss = self._model.loss(predict, truth, self.mask) / batch_size
|
||||
|
||||
prediction = self._model.prediction(predict, self.mask)
|
||||
results = torch.Tensor(prediction).view(-1, )
|
||||
# make sure "results" is in the same device as "truth"
|
||||
results = results.to(truth)
|
||||
accuracy = torch.sum(results == truth.view((-1,))).to(torch.float) / results.shape[0]
|
||||
return [float(loss), float(accuracy)]
|
||||
|
||||
def metrics(self):
|
||||
batch_loss = np.mean([x[0] for x in self.eval_history])
|
||||
batch_accuracy = np.mean([x[1] for x in self.eval_history])
|
||||
return batch_loss, batch_accuracy
|
||||
|
||||
def show_metrics(self):
|
||||
"""This is called by Trainer to print evaluation on dev set.
|
||||
|
||||
:return print_str: str
|
||||
"""
|
||||
loss, accuracy = self.metrics()
|
||||
return "dev loss={:.2f}, accuracy={:.2f}".format(loss, accuracy)
|
||||
|
||||
def make_batch(self, iterator):
|
||||
return Action.make_batch(iterator, use_cuda=self.use_cuda, output_length=True)
|
||||
|
||||
|
||||
class ClassificationTester(BaseTester):
|
||||
@ -236,9 +199,6 @@ class ClassificationTester(BaseTester):
|
||||
"""
|
||||
super(ClassificationTester, self).__init__(**test_args)
|
||||
|
||||
def make_batch(self, iterator, max_len=None):
|
||||
return Action.make_batch(iterator, use_cuda=self.use_cuda, max_len=max_len)
|
||||
|
||||
def data_forward(self, network, x):
|
||||
"""Forward through network."""
|
||||
logits = network(x)
|
||||
|
@ -4,15 +4,14 @@ import time
|
||||
from datetime import timedelta
|
||||
|
||||
import torch
|
||||
import tensorboardX
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
from fastNLP.core.action import Action
|
||||
from fastNLP.core.action import RandomSampler, Batchifier
|
||||
from fastNLP.core.action import RandomSampler
|
||||
from fastNLP.core.batch import Batch
|
||||
from fastNLP.core.loss import Loss
|
||||
from fastNLP.core.optimizer import Optimizer
|
||||
from fastNLP.core.tester import SeqLabelTester, ClassificationTester
|
||||
from fastNLP.modules import utils
|
||||
from fastNLP.saver.logger import create_logger
|
||||
from fastNLP.saver.model_saver import ModelSaver
|
||||
|
||||
@ -50,16 +49,16 @@ class BaseTrainer(object):
|
||||
"""
|
||||
"required_args" is the collection of arguments that users must pass to Trainer explicitly.
|
||||
This is used to warn users of essential settings in the training.
|
||||
Obviously, "required_args" is the subset of "default_args".
|
||||
The value in "default_args" to the keys in "required_args" is simply for type check.
|
||||
Specially, "required_args" does not have default value, so they have nothing to do with "default_args".
|
||||
"""
|
||||
# add required arguments here
|
||||
required_args = {}
|
||||
required_args = {"task" # one of ("seq_label", "text_classify")
|
||||
}
|
||||
|
||||
for req_key in required_args:
|
||||
if req_key not in kwargs:
|
||||
logger.error("Trainer lacks argument {}".format(req_key))
|
||||
raise ValueError("Trainer lacks argument {}".format(req_key))
|
||||
self._task = kwargs["task"]
|
||||
|
||||
for key in default_args:
|
||||
if key in kwargs:
|
||||
@ -90,13 +89,14 @@ class BaseTrainer(object):
|
||||
self._optimizer_proto = default_args["optimizer"]
|
||||
self._summary_writer = SummaryWriter(self.pickle_path + 'tensorboard_logs')
|
||||
self._graph_summaried = False
|
||||
self._best_accuracy = 0.0
|
||||
|
||||
def train(self, network, train_data, dev_data=None):
|
||||
"""General Training Procedure
|
||||
|
||||
:param network: a model
|
||||
:param train_data: three-level list, the training set.
|
||||
:param dev_data: three-level list, the validation data (optional)
|
||||
:param train_data: a DataSet instance, the training data
|
||||
:param dev_data: a DataSet instance, the validation data (optional)
|
||||
"""
|
||||
# transfer model to gpu if available
|
||||
if torch.cuda.is_available() and self.use_cuda:
|
||||
@ -128,7 +128,8 @@ class BaseTrainer(object):
|
||||
# turn on network training mode
|
||||
self.mode(network, test=False)
|
||||
# prepare mini-batch iterator
|
||||
data_iterator = iter(Batchifier(RandomSampler(train_data), self.batch_size, drop_last=False))
|
||||
data_iterator = Batch(train_data, batch_size=self.batch_size, sampler=RandomSampler(),
|
||||
use_cuda=self.use_cuda)
|
||||
logger.info("prepared data iterator")
|
||||
|
||||
# one forward and backward pass
|
||||
@ -157,7 +158,7 @@ class BaseTrainer(object):
|
||||
- epoch: int,
|
||||
"""
|
||||
step = 0
|
||||
for batch_x, batch_y in self.make_batch(data_iterator):
|
||||
for batch_x, batch_y in data_iterator:
|
||||
|
||||
prediction = self.data_forward(network, batch_x)
|
||||
|
||||
@ -166,10 +167,6 @@ class BaseTrainer(object):
|
||||
self.update()
|
||||
self._summary_writer.add_scalar("loss", loss.item(), global_step=step)
|
||||
|
||||
if not self._graph_summaried:
|
||||
self._summary_writer.add_graph(network, batch_x)
|
||||
self._graph_summaried = True
|
||||
|
||||
if kwargs["n_print"] > 0 and step % kwargs["n_print"] == 0:
|
||||
end = time.time()
|
||||
diff = timedelta(seconds=round(end - kwargs["start"]))
|
||||
@ -204,9 +201,6 @@ class BaseTrainer(object):
|
||||
network_copy = copy.deepcopy(network)
|
||||
self.train(network_copy, train_data_cv[i], dev_data_cv[i])
|
||||
|
||||
def make_batch(self, iterator):
|
||||
raise NotImplementedError
|
||||
|
||||
def mode(self, network, test):
|
||||
Action.mode(network, test)
|
||||
|
||||
@ -224,7 +218,12 @@ class BaseTrainer(object):
|
||||
self._optimizer.step()
|
||||
|
||||
def data_forward(self, network, x):
|
||||
raise NotImplementedError
|
||||
y = network(**x)
|
||||
if not self._graph_summaried:
|
||||
if self._task == "seq_label":
|
||||
self._summary_writer.add_graph(network, (x["word_seq"], x["word_seq_origin_len"]), verbose=False)
|
||||
self._graph_summaried = True
|
||||
return y
|
||||
|
||||
def grad_backward(self, loss):
|
||||
"""Compute gradient with link rules.
|
||||
@ -243,6 +242,12 @@ class BaseTrainer(object):
|
||||
:param truth: ground truth label vector
|
||||
:return: a scalar
|
||||
"""
|
||||
if "label_seq" in truth:
|
||||
truth = truth["label_seq"]
|
||||
elif "label" in truth:
|
||||
truth = truth["label"]
|
||||
else:
|
||||
raise NotImplementedError("Unknown key {} in batch_y.".format(truth.keys()))
|
||||
return self._loss_func(predict, truth)
|
||||
|
||||
def define_loss(self):
|
||||
@ -270,7 +275,12 @@ class BaseTrainer(object):
|
||||
:param validator: a Tester instance
|
||||
:return: bool, True means current results on dev set is the best.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
loss, accuracy = validator.metrics()
|
||||
if accuracy > self._best_accuracy:
|
||||
self._best_accuracy = accuracy
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def save_model(self, network, model_name):
|
||||
"""Save this model with such a name.
|
||||
@ -291,55 +301,11 @@ class SeqLabelTrainer(BaseTrainer):
|
||||
"""Trainer for Sequence Labeling
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
kwargs.update({"task": "seq_label"})
|
||||
print(
|
||||
"[FastNLP Warning] SeqLabelTrainer will be deprecated. Please use Trainer with argument 'task'='seq_label'.")
|
||||
super(SeqLabelTrainer, self).__init__(**kwargs)
|
||||
# self.vocab_size = kwargs["vocab_size"]
|
||||
# self.num_classes = kwargs["num_classes"]
|
||||
self.max_len = None
|
||||
self.mask = None
|
||||
self.best_accuracy = 0.0
|
||||
|
||||
def data_forward(self, network, inputs):
|
||||
if not isinstance(inputs, tuple):
|
||||
raise RuntimeError("output_length must be true for sequence modeling. Receive {}".format(type(inputs[0])))
|
||||
# unpack the returned value from make_batch
|
||||
x, seq_len = inputs[0], inputs[1]
|
||||
|
||||
batch_size, max_len = x.size(0), x.size(1)
|
||||
mask = utils.seq_mask(seq_len, max_len)
|
||||
mask = mask.byte().view(batch_size, max_len)
|
||||
|
||||
if torch.cuda.is_available() and self.use_cuda:
|
||||
mask = mask.cuda()
|
||||
self.mask = mask
|
||||
|
||||
y = network(x)
|
||||
return y
|
||||
|
||||
def get_loss(self, predict, truth):
|
||||
"""Compute loss given prediction and ground truth.
|
||||
|
||||
:param predict: prediction label vector, [batch_size, max_len, tag_size]
|
||||
:param truth: ground truth label vector, [batch_size, max_len]
|
||||
:return loss: a scalar
|
||||
"""
|
||||
batch_size, max_len = predict.size(0), predict.size(1)
|
||||
assert truth.shape == (batch_size, max_len)
|
||||
|
||||
loss = self._model.loss(predict, truth, self.mask)
|
||||
return loss
|
||||
|
||||
def best_eval_result(self, validator):
|
||||
loss, accuracy = validator.metrics()
|
||||
if accuracy > self.best_accuracy:
|
||||
self.best_accuracy = accuracy
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def make_batch(self, iterator):
|
||||
return Action.make_batch(iterator, output_length=True, use_cuda=self.use_cuda)
|
||||
|
||||
def _create_validator(self, valid_args):
|
||||
return SeqLabelTester(**valid_args)
|
||||
@ -361,9 +327,6 @@ class ClassificationTrainer(BaseTrainer):
|
||||
logits = network(x)
|
||||
return logits
|
||||
|
||||
def make_batch(self, iterator):
|
||||
return Action.make_batch(iterator, output_length=False, use_cuda=self.use_cuda)
|
||||
|
||||
def get_acc(self, y_logit, y_true):
|
||||
"""Compute accuracy."""
|
||||
y_pred = torch.argmax(y_logit, dim=-1)
|
||||
|
@ -1,86 +0,0 @@
|
||||
from collections import defaultdict
|
||||
import torch
|
||||
|
||||
class Batch(object):
|
||||
def __init__(self, dataset, sampler, batch_size):
|
||||
self.dataset = dataset
|
||||
self.sampler = sampler
|
||||
self.batch_size = batch_size
|
||||
|
||||
self.idx_list = None
|
||||
self.curidx = 0
|
||||
|
||||
def __iter__(self):
|
||||
self.idx_list = self.sampler(self.dataset)
|
||||
self.curidx = 0
|
||||
self.lengths = self.dataset.get_length()
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.curidx >= len(self.idx_list):
|
||||
raise StopIteration
|
||||
else:
|
||||
endidx = min(self.curidx + self.batch_size, len(self.idx_list))
|
||||
padding_length = {field_name : max(field_length[self.curidx: endidx])
|
||||
for field_name, field_length in self.lengths.items()}
|
||||
|
||||
batch_x, batch_y = defaultdict(list), defaultdict(list)
|
||||
for idx in range(self.curidx, endidx):
|
||||
x, y = self.dataset.to_tensor(idx, padding_length)
|
||||
for name, tensor in x.items():
|
||||
batch_x[name].append(tensor)
|
||||
for name, tensor in y.items():
|
||||
batch_y[name].append(tensor)
|
||||
|
||||
for batch in (batch_x, batch_y):
|
||||
for name, tensor_list in batch.items():
|
||||
print(name, " ", tensor_list)
|
||||
batch[name] = torch.stack(tensor_list, dim=0)
|
||||
self.curidx += endidx
|
||||
return batch_x, batch_y
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""simple running example
|
||||
"""
|
||||
from field import TextField, LabelField
|
||||
from instance import Instance
|
||||
from dataset import DataSet
|
||||
|
||||
texts = ["i am a cat",
|
||||
"this is a test of new batch",
|
||||
"haha"
|
||||
]
|
||||
labels = [0, 1, 0]
|
||||
|
||||
# prepare vocabulary
|
||||
vocab = {}
|
||||
for text in texts:
|
||||
for tokens in text.split():
|
||||
if tokens not in vocab:
|
||||
vocab[tokens] = len(vocab)
|
||||
|
||||
# prepare input dataset
|
||||
data = DataSet()
|
||||
for text, label in zip(texts, labels):
|
||||
x = TextField(text.split(), False)
|
||||
y = LabelField(label, is_target=True)
|
||||
ins = Instance(text=x, label=y)
|
||||
data.append(ins)
|
||||
|
||||
# use vocabulary to index data
|
||||
data.index_field("text", vocab)
|
||||
|
||||
# define naive sampler for batch class
|
||||
class SeqSampler:
|
||||
def __call__(self, dataset):
|
||||
return list(range(len(dataset)))
|
||||
|
||||
# use bacth to iterate dataset
|
||||
batcher = Batch(data, SeqSampler(), 2)
|
||||
for epoch in range(3):
|
||||
for batch_x, batch_y in batcher:
|
||||
print(batch_x)
|
||||
print(batch_y)
|
||||
# do stuff
|
||||
|
@ -1,38 +0,0 @@
|
||||
class Instance(object):
|
||||
def __init__(self, **fields):
|
||||
self.fields = fields
|
||||
self.has_index = False
|
||||
self.indexes = {}
|
||||
|
||||
def add_field(self, field_name, field):
|
||||
self.fields[field_name] = field
|
||||
|
||||
def get_length(self):
|
||||
length = {name : field.get_length() for name, field in self.fields.items()}
|
||||
return length
|
||||
|
||||
def index_field(self, field_name, vocab):
|
||||
"""use `vocab` to index certain field
|
||||
"""
|
||||
self.indexes[field_name] = self.fields[field_name].index(vocab)
|
||||
|
||||
def index_all(self, vocab):
|
||||
"""use `vocab` to index all fields
|
||||
"""
|
||||
if self.has_index:
|
||||
print("error")
|
||||
return self.indexes
|
||||
indexes = {name : field.index(vocab) for name, field in self.fields.items()}
|
||||
self.indexes = indexes
|
||||
return indexes
|
||||
|
||||
def to_tensor(self, padding_length: dict):
|
||||
tensorX = {}
|
||||
tensorY = {}
|
||||
for name, field in self.fields.items():
|
||||
if field.is_target:
|
||||
tensorY[name] = field.to_tensor(padding_length[name])
|
||||
else:
|
||||
tensorX[name] = field.to_tensor(padding_length[name])
|
||||
|
||||
return tensorX, tensorY
|
@ -4,6 +4,20 @@ from fastNLP.models.base_model import BaseModel
|
||||
from fastNLP.modules import decoder, encoder
|
||||
|
||||
|
||||
def seq_mask(seq_len, max_len):
|
||||
"""Create a mask for the sequences.
|
||||
|
||||
:param seq_len: list or torch.LongTensor
|
||||
:param max_len: int
|
||||
:return mask: torch.LongTensor
|
||||
"""
|
||||
if isinstance(seq_len, list):
|
||||
seq_len = torch.LongTensor(seq_len)
|
||||
mask = [torch.ge(seq_len, i + 1) for i in range(max_len)]
|
||||
mask = torch.stack(mask, 1)
|
||||
return mask
|
||||
|
||||
|
||||
class SeqLabeling(BaseModel):
|
||||
"""
|
||||
PyTorch Network for sequence labeling
|
||||
@ -20,13 +34,17 @@ class SeqLabeling(BaseModel):
|
||||
self.Rnn = encoder.lstm.Lstm(word_emb_dim, hidden_dim)
|
||||
self.Linear = encoder.linear.Linear(hidden_dim, num_classes)
|
||||
self.Crf = decoder.CRF.ConditionalRandomField(num_classes)
|
||||
self.mask = None
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, word_seq, word_seq_origin_len):
|
||||
"""
|
||||
:param x: LongTensor, [batch_size, mex_len]
|
||||
:param word_seq: LongTensor, [batch_size, mex_len]
|
||||
:param word_seq_origin_len: LongTensor, [batch_size,], the origin lengths of the sequences.
|
||||
:return y: [batch_size, mex_len, tag_size]
|
||||
"""
|
||||
x = self.Embedding(x)
|
||||
self.mask = self.make_mask(word_seq, word_seq_origin_len)
|
||||
|
||||
x = self.Embedding(word_seq)
|
||||
# [batch_size, max_len, word_emb_dim]
|
||||
x = self.Rnn(x)
|
||||
# [batch_size, max_len, hidden_size * direction]
|
||||
@ -34,27 +52,32 @@ class SeqLabeling(BaseModel):
|
||||
# [batch_size, max_len, num_classes]
|
||||
return x
|
||||
|
||||
def loss(self, x, y, mask):
|
||||
def loss(self, x, y):
|
||||
"""
|
||||
Negative log likelihood loss.
|
||||
:param x: Tensor, [batch_size, max_len, tag_size]
|
||||
:param y: Tensor, [batch_size, max_len]
|
||||
:param mask: ByteTensor, [batch_size, ,max_len]
|
||||
:return loss: a scalar Tensor
|
||||
|
||||
"""
|
||||
x = x.float()
|
||||
y = y.long()
|
||||
total_loss = self.Crf(x, y, mask)
|
||||
total_loss = self.Crf(x, y, self.mask)
|
||||
return torch.mean(total_loss)
|
||||
|
||||
def prediction(self, x, mask):
|
||||
def make_mask(self, x, seq_len):
|
||||
batch_size, max_len = x.size(0), x.size(1)
|
||||
mask = seq_mask(seq_len, max_len)
|
||||
mask = mask.byte().view(batch_size, max_len)
|
||||
mask = mask.to(x)
|
||||
return mask
|
||||
|
||||
def prediction(self, x):
|
||||
"""
|
||||
:param x: FloatTensor, [batch_size, max_len, tag_size]
|
||||
:param mask: ByteTensor, [batch_size, max_len]
|
||||
:return prediction: list of [decode path(list)]
|
||||
"""
|
||||
tag_seq = self.Crf.viterbi_decode(x, mask)
|
||||
tag_seq = self.Crf.viterbi_decode(x, self.mask)
|
||||
return tag_seq
|
||||
|
||||
|
||||
@ -81,11 +104,14 @@ class AdvSeqLabel(SeqLabeling):
|
||||
|
||||
self.Crf = decoder.CRF.ConditionalRandomField(num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, seq_len):
|
||||
"""
|
||||
:param x: LongTensor, [batch_size, mex_len]
|
||||
:param seq_len: list of int.
|
||||
:return y: [batch_size, mex_len, tag_size]
|
||||
"""
|
||||
self.mask = self.make_mask(x, seq_len)
|
||||
|
||||
batch_size = x.size(0)
|
||||
max_len = x.size(1)
|
||||
x = self.Embedding(x)
|
||||
|
@ -15,11 +15,11 @@ from fastNLP.core.optimizer import Optimizer
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-s", "--save", type=str, default="./seq_label/", help="path to save pickle files")
|
||||
parser.add_argument("-t", "--train", type=str, default="./data_for_tests/people.txt",
|
||||
parser.add_argument("-t", "--train", type=str, default="../data_for_tests/people.txt",
|
||||
help="path to the training data")
|
||||
parser.add_argument("-c", "--config", type=str, default="./data_for_tests/config", help="path to the config file")
|
||||
parser.add_argument("-c", "--config", type=str, default="../data_for_tests/config", help="path to the config file")
|
||||
parser.add_argument("-m", "--model_name", type=str, default="seq_label_model.pkl", help="the name of the model")
|
||||
parser.add_argument("-i", "--infer", type=str, default="data_for_tests/people_infer.txt",
|
||||
parser.add_argument("-i", "--infer", type=str, default="../data_for_tests/people_infer.txt",
|
||||
help="data used for inference")
|
||||
|
||||
args = parser.parse_args()
|
||||
@ -86,7 +86,7 @@ def train_and_test():
|
||||
trainer = SeqLabelTrainer(
|
||||
epochs=trainer_args["epochs"],
|
||||
batch_size=trainer_args["batch_size"],
|
||||
validate=trainer_args["validate"],
|
||||
validate=False,
|
||||
use_cuda=trainer_args["use_cuda"],
|
||||
pickle_path=pickle_path,
|
||||
save_best_dev=trainer_args["save_best_dev"],
|
||||
@ -139,5 +139,5 @@ def train_and_test():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# train_and_test()
|
||||
infer()
|
||||
train_and_test()
|
||||
# infer()
|
||||
|
@ -115,4 +115,4 @@ def train():
|
||||
|
||||
if __name__ == "__main__":
|
||||
train()
|
||||
infer()
|
||||
# infer()
|
||||
|
Loading…
Reference in New Issue
Block a user