diff --git a/Jenkinsfile b/.Jenkinsfile
similarity index 55%
rename from Jenkinsfile
rename to .Jenkinsfile
index f6168e63..cf238595 100644
--- a/Jenkinsfile
+++ b/.Jenkinsfile
@@ -1,8 +1,11 @@
pipeline {
- agent none
+ agent any
+ options {
+ timeout(time:30, unit: 'MINUTES')
+ }
environment {
PJ_NAME = 'fastNLP'
- POST_URL = 'https://open.feishu.cn/open-apis/bot/v2/hook/14719364-818d-4f88-9057-7c9f0eaaf6ae'
+ POST_URL = 'https://open.feishu.cn/open-apis/bot/v2/hook/2f7122e3-3459-43d2-a9e4-ddd77bfc4282'
}
stages {
stage('Parallel Stages') {
@@ -15,7 +18,12 @@ pipeline {
}
}
steps {
- sh 'pytest ./tests --durations=0 -m "not (torch or paddle or paddledist or jittor or torchpaddle or torchjittor)"'
+ sh 'pytest ./tests --durations=0 --html=other.html --self-contained-html -m "not (torch or paddle or paddledist or jittor or torchpaddle or torchjittor)"'
+ }
+ post {
+ always {
+ sh 'html_path=/ci/${PJ_NAME}/report-${BUILD_NUMBER}-${GIT_BRANCH#*/}-${GIT_COMMIT} && mkdir -p ${html_path} && mv other.html ${html_path}'
+ }
}
}
stage('Test Torch-1.11') {
@@ -26,7 +34,12 @@ pipeline {
}
}
steps {
- sh 'pytest ./tests --durations=0 -m torch'
+ sh 'pytest ./tests/ --durations=0 --html=torch-1.11.html --self-contained-html -m torch'
+ }
+ post {
+ always {
+ sh 'html_path=/ci/${PJ_NAME}/report-${BUILD_NUMBER}-${GIT_BRANCH#*/}-${GIT_COMMIT} && mkdir -p ${html_path} && mv torch-1.11.html ${html_path}'
+ }
}
}
stage('Test Torch-1.6') {
@@ -37,7 +50,12 @@ pipeline {
}
}
steps {
- sh 'pytest ./tests/ --durations=0 -m torch'
+ sh 'pytest ./tests/ --durations=0 --html=torch-1.6.html --self-contained-html -m torch'
+ }
+ post {
+ always {
+ sh 'html_path=/ci/${PJ_NAME}/report-${BUILD_NUMBER}-${GIT_BRANCH#*/}-${GIT_COMMIT} && mkdir -p ${html_path} && mv torch-1.6.html ${html_path}'
+ }
}
}
stage('Test Paddle') {
@@ -48,11 +66,16 @@ pipeline {
}
}
steps {
- sh 'pytest ./tests --durations=0 -m paddle --co'
- sh 'FASTNLP_BACKEND=paddle pytest ./tests --durations=0 -m paddle --co'
- sh 'FASTNLP_BACKEND=paddle pytest ./tests/core/drivers/paddle_driver/test_dist_utils.py --durations=0 --co'
- sh 'FASTNLP_BACKEND=paddle pytest ./tests/core/drivers/paddle_driver/test_fleet.py --durations=0 --co'
- sh 'FASTNLP_BACKEND=paddle pytest ./tests/core/controllers/test_trainer_paddle.py --durations=0 --co'
+ sh 'pytest ./tests --durations=0 --html=paddle.html --self-contained-html -m paddle --co'
+ sh 'FASTNLP_BACKEND=paddle pytest ./tests --durations=0 --html=paddle_with_backend.html --self-contained-html -m paddle --co'
+ sh 'FASTNLP_BACKEND=paddle pytest ./tests/core/drivers/paddle_driver/test_dist_utils.py --durations=0 --html=paddle_dist_utils.html --self-contained-html --co'
+ sh 'FASTNLP_BACKEND=paddle pytest ./tests/core/drivers/paddle_driver/test_fleet.py --durations=0 --html=paddle_fleet.html --self-contained-html --co'
+ sh 'FASTNLP_BACKEND=paddle pytest ./tests/core/controllers/test_trainer_paddle.py --durations=0 --html=paddle_trainer.html --self-contained-html --co'
+ }
+ post {
+ always {
+ sh 'html_path=/ci/${PJ_NAME}/report-${BUILD_NUMBER}-${GIT_BRANCH#*/}-${GIT_COMMIT} && mkdir -p ${html_path} && mv paddle*.html ${html_path}'
+ }
}
}
// stage('Test Jittor') {
@@ -65,7 +88,7 @@ pipeline {
// steps {
// // sh 'pip install fitlog'
// // sh 'pytest ./tests --html=test_results.html --self-contained-html'
- // sh 'pytest ./tests --durations=0 -m jittor --co'
+ // sh 'pytest ./tests --durations=0 --html=jittor.html --self-contained-html -m jittor --co'
// }
// }
}
@@ -77,7 +100,7 @@ pipeline {
}
success {
sh 'post 0'
- sh 'post github'
+ // sh 'post github'
}
}
}
\ No newline at end of file
diff --git a/docs/Makefile b/docs/Makefile
index d6c4f6b6..fd4035db 100644
--- a/docs/Makefile
+++ b/docs/Makefile
@@ -9,7 +9,7 @@ SPHINXPROJ = fastNLP
SPHINXEXCLUDE = ../fastNLP/transformers/*
SOURCEDIR = source
BUILDDIR = build
-PORT = 9000
+PORT = 8000
# Put it first so that "make" without argument is like "make help".
help:
@@ -30,6 +30,9 @@ web:
dev:
make delete && make apidoc && make html && make server
+versions:
+ sphinx-multiversion "$(SOURCEDIR)" "$(BUILDDIR)" && cd build && python -m http.server $(PORT)
+
prod:
make apidoc && make html
diff --git a/docs/requirements.txt b/docs/requirements.txt
index 45450867..91e78913 100644
--- a/docs/requirements.txt
+++ b/docs/requirements.txt
@@ -1,3 +1,4 @@
sphinx
sphinx_rtd_theme
-sphinx_autodoc_typehints
\ No newline at end of file
+sphinx_autodoc_typehints
+sphinx-multiversion
\ No newline at end of file
diff --git a/docs/source/_templates/versions.html b/docs/source/_templates/versions.html
new file mode 100644
index 00000000..476c8d19
--- /dev/null
+++ b/docs/source/_templates/versions.html
@@ -0,0 +1,27 @@
+{%- if current_version %}
+
+
+ Other Versions
+ v: {{ current_version.name }}
+
+
+
+ {%- if versions.tags %}
+
+ - Tags
+ {%- for item in versions.tags %}
+ - {{ item.name }}
+ {%- endfor %}
+
+ {%- endif %}
+ {%- if versions.branches %}
+
+ - Branches
+ {%- for item in versions.branches %}
+ - {{ item.name }}
+ {%- endfor %}
+
+ {%- endif %}
+
+
+{%- endif %}
\ No newline at end of file
diff --git a/docs/source/conf.py b/docs/source/conf.py
index 2ed8ac96..01884ef7 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -43,7 +43,8 @@ extensions = [
'sphinx.ext.autosummary',
'sphinx.ext.mathjax',
'sphinx.ext.todo',
- 'sphinx_autodoc_typehints'
+ 'sphinx_autodoc_typehints',
+ 'sphinx_multiversion',
]
autodoc_default_options = {
@@ -116,7 +117,11 @@ html_static_path = ['_static']
# 'searchbox.html']``.
#
# html_sidebars = {}
-
+html_sidebars = {
+ '**': [
+ 'versions.html',
+ ],
+}
# -- Options for HTMLHelp output ---------------------------------------------
@@ -168,6 +173,8 @@ texinfo_documents = [
'Miscellaneous'),
]
+# -- Options for Multiversions ----------------------------------------------
+smv_latest_version = 'dev0.8.0'
# -- Extension configuration -------------------------------------------------
def maybe_skip_member(app, what, name, obj, skip, options):
diff --git a/fastNLP/core/callbacks/load_best_model_callback.py b/fastNLP/core/callbacks/load_best_model_callback.py
index 9b80bb94..4f52720f 100644
--- a/fastNLP/core/callbacks/load_best_model_callback.py
+++ b/fastNLP/core/callbacks/load_best_model_callback.py
@@ -54,18 +54,9 @@ class LoadBestModelCallback(HasMonitorCallback):
if model_save_fn is not None:
assert save_folder is not None, "When passing `model_save_fn`, `save_folder` must be provided."
- if save_folder is not None:
+ if save_folder:
if os.path.exists(save_folder):
- assert os.path.isdir(save_folder), f"`save_folder` must be a directory."
- else:
- os.makedirs(save_folder, exist_ok=True)
- save_folder = os.path.join(save_folder, os.environ.get(FASTNLP_LAUNCH_TIME))
- self.real_save_folder = os.path.join(save_folder, 'best_so_far')
- if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0:
- os.makedirs(self.real_save_folder, exist_ok=True)
- else: # 创建出一个 stringio
- self.real_save_folder = None
- self.buffer = BytesIO()
+ assert os.path.isdir(save_folder), f"`save_folder={save_folder}` must be a directory."
self.save_folder = save_folder
self.only_state_dict = only_state_dict
@@ -73,21 +64,37 @@ class LoadBestModelCallback(HasMonitorCallback):
self.model_load_fn = model_load_fn
self.delete_after_after = delete_after_train
- def on_after_trainer_initialized(self, trainer, driver):
- if self.save_folder is not None and driver.is_distributed() and int(os.environ.get(FASTNLP_BACKEND_LAUNCH, 0))==1:
- # 如果需要保存,但是又是不是 fastNLP 拉起的, 需要同步一下 folder
- try:
- self.real_save_folder = driver.broadcast_object(self.real_save_folder, src=0, group=None)
- logger.debug(f"Synchronize best model save folder: {self.real_save_folder} for LoadBestModelCallback.")
- except NotImplementedError:
- raise RuntimeError(f"Currently {driver.__class__.__name__} does not support using `save_folder` to "
- f"save best model when launch using module.")
+ def prepare_save_folder(self, trainer):
+ if not hasattr(self, 'real_save_folder'):
+ if self.save_folder is not None:
+ if not os.path.exists(self.save_folder):
+ os.makedirs(self.save_folder, exist_ok=True)
+ self.save_folder = os.path.join(self.save_folder, os.environ.get(FASTNLP_LAUNCH_TIME))
+ self.real_save_folder = os.path.join(self.save_folder, 'best_so_far')
+ if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0:
+ os.makedirs(self.real_save_folder, exist_ok=True)
+ if self.save_folder is not None and trainer.driver.is_distributed() and int(
+ os.environ.get(FASTNLP_BACKEND_LAUNCH, 0)) == 1:
+ trainer.driver.barrier()
+ try:
+ self.real_save_folder = trainer.driver.broadcast_object(self.real_save_folder, src=0, group=None)
+ logger.debug(
+ f"Synchronize best model save folder: {self.real_save_folder} for LoadBestModelCallback.")
+ except NotImplementedError:
+ raise RuntimeError(
+ f"Currently {trainer.driver.__class__.__name__} does not support using `save_folder` to "
+ f"save best model when launch using module.")
+ else: # 创建出一个 stringio
+ self.real_save_folder = None
+ self.buffer = BytesIO()
+ def on_after_trainer_initialized(self, trainer, driver):
super().on_after_trainer_initialized(trainer, driver)
self.encounter_exception = False
def on_evaluate_end(self, trainer, results):
if self.is_better_results(results, keep_if_better=True):
+ self.prepare_save_folder(trainer)
if self.real_save_folder:
trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict,
model_save_fn=self.model_save_fn)
@@ -103,8 +110,7 @@ class LoadBestModelCallback(HasMonitorCallback):
trainer.load_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict,
model_load_fn=self.model_load_fn)
else:
- logger.info(
- f"Loading best model from buffer with {self.monitor_name}: {self.monitor_value}...")
+ logger.info(f"Loading best model from buffer with {self.monitor_name}: {self.monitor_value}...")
self.buffer.seek(0)
trainer.load_model(folder=self.buffer, only_state_dict=self.only_state_dict)
if self.delete_after_after:
@@ -119,7 +125,7 @@ class LoadBestModelCallback(HasMonitorCallback):
self.encounter_exception = True
def _delete_folder(self):
- if self.real_save_folder:
+ if getattr(self, 'real_save_folder', None):
logger.info(f"Deleting {self.real_save_folder}...")
shutil.rmtree(self.real_save_folder, ignore_errors=True)
try:
diff --git a/fastNLP/core/callbacks/torch_callbacks/torch_grad_clip_callback.py b/fastNLP/core/callbacks/torch_callbacks/torch_grad_clip_callback.py
index 40a03b89..c986e4e4 100644
--- a/fastNLP/core/callbacks/torch_callbacks/torch_grad_clip_callback.py
+++ b/fastNLP/core/callbacks/torch_callbacks/torch_grad_clip_callback.py
@@ -3,7 +3,11 @@ __all__ = [
]
from typing import Union, List
from ..callback import Callback
-
+from ...drivers.torch_driver.fairscale import FairScaleDriver
+from ...drivers.torch_driver import TorchDriver
+from fastNLP.envs.imports import _NEED_IMPORT_FAIRSCALE
+if _NEED_IMPORT_FAIRSCALE:
+ from fairscale.nn import FullyShardedDataParallel
class TorchGradClipCallback(Callback):
r"""
@@ -35,15 +39,20 @@ class TorchGradClipCallback(Callback):
else:
self.parameters = None
self.clip_value = clip_value
+ self.clip_type = clip_type
def on_after_trainer_initialized(self, trainer, driver):
- assert 'torch' in driver.__class__.__name__.lower(), f"Callback:{self.__class__.__name__} only supports torch " \
+ assert isinstance(driver, TorchDriver), f"Callback:{self.__class__.__name__} only supports torch " \
f"related drivers for now."
parameters = []
for optimizer in trainer.driver.optimizers:
for param_group in optimizer.param_groups:
parameters.extend(param_group['params'])
self.parameters = parameters
+ if isinstance(trainer.driver, FairScaleDriver):
+ if isinstance(trainer.driver.model, FullyShardedDataParallel) and self.clip_type == 'norm':
+ self.clip_fun = trainer.driver.model.clip_grad_norm_
+
assert len(self.parameters), "There is no parameters need to be clipped."
def on_before_optimizers_step(self, trainer, optimizers):
diff --git a/fastNLP/core/controllers/loops/train_batch_loop.py b/fastNLP/core/controllers/loops/train_batch_loop.py
index 48485226..645f4224 100644
--- a/fastNLP/core/controllers/loops/train_batch_loop.py
+++ b/fastNLP/core/controllers/loops/train_batch_loop.py
@@ -58,7 +58,7 @@ class TrainBatchLoop(Loop):
trainer.on_train_batch_end()
except BaseException as e:
if indices is not None and not isinstance(e, (EarlyStopException, KeyboardInterrupt)):
- logger.error(f"Exception happens when running on samples: {indices}")
+ logger.error(f"Exception happens when training on samples: {indices}")
raise e
trainer.step_evaluate()
trainer.batch_idx_in_epoch = 0
diff --git a/fastNLP/core/controllers/trainer.py b/fastNLP/core/controllers/trainer.py
index 86097995..79cc36a0 100644
--- a/fastNLP/core/controllers/trainer.py
+++ b/fastNLP/core/controllers/trainer.py
@@ -267,7 +267,8 @@ class Trainer(TrainerEventTrigger):
* ddp_kwargs -- 用于在使用 ``TorchDDPDriver`` 时指定 ``DistributedDataParallel`` 初始化时的参数;例如传入
{'find_unused_parameters': True} 来解决有参数不参与前向运算导致的报错等;
* set_grad_to_none -- 是否在训练过程中在每一次 optimizer 更新后将 grad 置为 None;
- * torch_non_blocking -- 表示用于 pytorch 的 tensor 的 to 方法的参数 non_blocking;
+ * non_blocking -- 表示用于 pytorch 的 tensor 的 to 方法的参数 non_blocking;
+ * gradscaler_kwargs -- 用于 fp16=True 时,提供给 ``torch.amp.cuda.GradScaler`` 的参数。
* *paddle_kwargs* -- 用于在指定 ``driver`` 为 'paddle' 时设定具体 driver 实例的一些参数:
* fleet_kwargs -- 用于在使用 ``PaddleFleetDriver`` 时指定 ``DataParallel`` 和 ``fleet`` 初始化时的参数,包括:
@@ -494,9 +495,6 @@ class Trainer(TrainerEventTrigger):
self.dataloader = self.driver.set_dist_repro_dataloader(dataloader=self.train_dataloader, dist=_dist_sampler,
reproducible=self.callback_manager._need_reproducible_sampler)
- _torch_kwargs = kwargs.get("torch_kwargs", {})
- self.set_grad_to_none = _torch_kwargs.get("set_grad_to_none", True)
-
self.evaluate_batch_step_fn = evaluate_batch_step_fn
self.kwargs = kwargs
@@ -596,7 +594,7 @@ class Trainer(TrainerEventTrigger):
try:
self.on_train_begin()
self.driver.barrier()
- self.driver.zero_grad(self.set_grad_to_none)
+ self.driver.zero_grad()
while self.cur_epoch_idx < self.n_epochs:
# 这个是防止在 Trainer.load_checkpoint 之后还没结束当前 epoch 又继续 save
self.start_batch_idx_in_epoch = self.trainer_state.batch_idx_in_epoch
@@ -1236,7 +1234,7 @@ class Trainer(TrainerEventTrigger):
"""
if (self.global_forward_batches + 1) % self.accumulation_steps == 0:
self.on_before_zero_grad(self.optimizers)
- self.driver.zero_grad(self.set_grad_to_none)
+ self.driver.zero_grad()
self.on_after_zero_grad(self.optimizers)
def step(self):
diff --git a/fastNLP/core/drivers/driver.py b/fastNLP/core/drivers/driver.py
index 6b32b856..1b6f2931 100644
--- a/fastNLP/core/drivers/driver.py
+++ b/fastNLP/core/drivers/driver.py
@@ -198,12 +198,11 @@ class Driver(ABC):
raise NotImplementedError("Each specific driver should implemented its own `step` function.")
@abstractmethod
- def zero_grad(self, set_to_none: bool = False):
+ def zero_grad(self):
r"""
实现深度学习中的梯度的置零操作,应当直接通过优化器 optimizers 来将梯度置零;
注意梯度累积不需要在这里实现,trainer 已经在内部实现了梯度累积;
- :param set_to_none: 用来判断是否需要将梯度直接置为 None;
"""
raise NotImplementedError("Each specific driver should implemented its own `zero_grad` function.")
diff --git a/fastNLP/core/drivers/jittor_driver/single_device.py b/fastNLP/core/drivers/jittor_driver/single_device.py
index be704e69..7529aec9 100644
--- a/fastNLP/core/drivers/jittor_driver/single_device.py
+++ b/fastNLP/core/drivers/jittor_driver/single_device.py
@@ -46,7 +46,7 @@ class JittorSingleDriver(JittorDriver):
for optimizer in self.optimizers:
optimizer.backward(loss)
- def zero_grad(self, set_to_none=False):
+ def zero_grad(self):
for optimizer in self.optimizers:
optimizer.zero_grad()
diff --git a/fastNLP/core/drivers/paddle_driver/fleet.py b/fastNLP/core/drivers/paddle_driver/fleet.py
index f438599b..342ae8f2 100644
--- a/fastNLP/core/drivers/paddle_driver/fleet.py
+++ b/fastNLP/core/drivers/paddle_driver/fleet.py
@@ -199,7 +199,7 @@ class PaddleFleetDriver(PaddleDriver):
paddle_kwargs = kwargs.get("paddle_kwargs", {})
self._fleet_kwargs = paddle_kwargs.get("fleet_kwargs", {})
- check_user_specific_params(self._fleet_kwargs, DataParallel.__init__)
+ check_user_specific_params(self._fleet_kwargs, DataParallel.__init__, DataParallel.__name__)
# fleet.init 中对于分布式策略的设置,详情可以参考 PaddlePaddle 的官方文档
self.strategy = self._fleet_kwargs.get("strategy", fleet.DistributedStrategy())
self.is_collective = self._fleet_kwargs.pop("is_collective", True)
diff --git a/fastNLP/core/drivers/paddle_driver/paddle_driver.py b/fastNLP/core/drivers/paddle_driver/paddle_driver.py
index 606bec03..aec20ac6 100644
--- a/fastNLP/core/drivers/paddle_driver/paddle_driver.py
+++ b/fastNLP/core/drivers/paddle_driver/paddle_driver.py
@@ -82,13 +82,7 @@ class PaddleDriver(Driver):
# 用来设置是否关闭 auto_param_call 中的参数匹配问题;
self.wo_auto_param_call = kwargs.get("model_wo_auto_param_call", False)
- def zero_grad(self, set_to_none: bool = False):
- r"""
- 实现深度学习中的梯度的置零操作,应当直接通过优化器 ``optimizers`` 来将梯度置零;
- 注意梯度累积不需要在这里实现,:class:`~fastNLP.core.Trainer` 已经在内部实现了梯度累积;
-
- :param set_to_none: 用来判断是否需要将梯度直接置为 ``None``;在 **PaddlePaddle** 中这个参数无效。
- """
+ def zero_grad(self):
for optimizer in self.optimizers:
optimizer.clear_grad()
@@ -194,7 +188,7 @@ class PaddleDriver(Driver):
raise ValueError("To save the whole Paddle Layer, parameter `input_spec` is needed.")
paddle.jit.save(model, filepath, input_spec)
- def load_model(self, filepath: str, only_state_dict: bool = True, **kwargs):
+ def load_model(self, filepath: Union[Path, str], only_state_dict: bool = True, **kwargs):
model = self.unwrap_model()
if isinstance(filepath, Path):
filepath = str(filepath)
@@ -274,21 +268,10 @@ class PaddleDriver(Driver):
# 2. 保存模型的状态;
if should_save_model:
self.save_model(folder.joinpath(FASTNLP_MODEL_FILENAME), only_state_dict, **kwargs)
- if only_state_dict:
- logger.debug("Save model state dict.")
- else:
- logger.debug("Save model.")
# 3. 保存 optimizers 的状态;
- optimizers_state_dict = {}
- for i in range(len(self.optimizers)):
- optimizer: Optimizer = self.optimizers[i]
- optimizer_state = optimizer.state_dict()
- optimizer_state["state"] = optimizer_state_to_device(optimizer_state, "cpu")
- optimizers_state_dict[f"optimizer{i}"] = optimizer_state # 注意这里没有使用 deepcopy,测试是不需要的;
-
+ states["optimizers_state_dict"] = self.get_optimizer_state()
logger.debug("Save optimizer state dict.")
- states["optimizers_state_dict"] = optimizers_state_dict
# 4.保存fp16的状态
if not isinstance(self.grad_scaler, DummyGradScaler):
@@ -297,34 +280,42 @@ class PaddleDriver(Driver):
paddle.save(states, str(folder.joinpath(FASTNLP_CHECKPOINT_FILENAME)))
+ def get_optimizer_state(self):
+ optimizers_state_dict = {}
+ for i in range(len(self.optimizers)):
+ optimizer: Optimizer = self.optimizers[i]
+ optimizer_state = optimizer.state_dict()
+ optimizer_state["state"] = optimizer_state_to_device(optimizer_state, "cpu")
+ optimizers_state_dict[f"optimizer{i}"] = optimizer_state # 注意这里没有使用 deepcopy,测试是不需要的;
+
+ return optimizers_state_dict
+
+ def load_optimizer_state(self, states):
+ assert len(states) == len(self.optimizers), f"The number of optimizers is:{len(self.optimizers)}, while in " \
+ f"checkpoint it is:{len(states)}"
+ for i in range(len(self.optimizers)):
+ optimizer: Optimizer = self.optimizers[i]
+ optimizer.set_state_dict(states[f"optimizer{i}"])
+ logger.debug("Load optimizer state dict.")
+
def load_checkpoint(self, folder: Path, dataloader, only_state_dict: bool = True, should_load_model: bool = True, **kwargs) -> Dict:
states = paddle.load(str(folder.joinpath(FASTNLP_CHECKPOINT_FILENAME)))
# 1. 加载 optimizers 的状态;
optimizers_state_dict = states.pop("optimizers_state_dict")
- for i in range(len(self.optimizers)):
- optimizer: Optimizer = self.optimizers[i]
- optimizer.set_state_dict(optimizers_state_dict[f"optimizer{i}"])
- logger.debug("Load optimizer state dict.")
+ self.load_optimizer_state(optimizers_state_dict)
# 2. 加载模型状态;
if should_load_model:
self.load_model(folder.joinpath(FASTNLP_MODEL_FILENAME), only_state_dict)
- if only_state_dict:
- logger.debug("Load model state dict...")
- else:
- logger.debug("Load model...")
# 3. 加载fp16的状态;
if "grad_scaler_state_dict" in states:
grad_scaler_state_dict = states.pop("grad_scaler_state_dict")
- if isinstance(self.grad_scaler, DummyGradScaler):
- self.auto_cast, _grad_scaler = _build_fp16_env(dummy=False)
- self.grad_scaler = _grad_scaler()
- self.fp16 = True
- self.grad_scaler.load_state_dict(grad_scaler_state_dict)
- logger.debug("Load grad_scaler state dict...")
+ if not isinstance(self.grad_scaler, DummyGradScaler):
+ self.grad_scaler.load_state_dict(grad_scaler_state_dict)
+ logger.debug("Load grad_scaler state dict...")
elif not isinstance(self.grad_scaler, DummyGradScaler):
logger.rank_zero_warning(f"Checkpoint {folder} is not trained with fp16=True, while resume to a fp16=True training, "
f"the training process may be unstable.")
@@ -347,7 +338,7 @@ class PaddleDriver(Driver):
batch_size=dataloader_args.batch_size,
drop_last=dataloader_args.drop_last
)
- sampler.load_state_dict(states["sampler_states"])
+ sampler.load_state_dict(states.pop("sampler_states"))
states["dataloader"] = self.set_dist_repro_dataloader(dataloader, sampler)
# 5. 修改 trainer_state.batch_idx_in_epoch
diff --git a/fastNLP/core/drivers/torch_driver/ddp.py b/fastNLP/core/drivers/torch_driver/ddp.py
index 9dbea342..364c3a0b 100644
--- a/fastNLP/core/drivers/torch_driver/ddp.py
+++ b/fastNLP/core/drivers/torch_driver/ddp.py
@@ -304,11 +304,11 @@ class TorchDDPDriver(TorchDriver):
self.global_rank = 0
self._ddp_kwargs = self._torch_kwargs.get("ddp_kwargs", {})
- check_user_specific_params(self._ddp_kwargs, DistributedDataParallel.__init__)
+ check_user_specific_params(self._ddp_kwargs, DistributedDataParallel.__init__, DistributedDataParallel.__name__)
if len(self.model._buffers) != 0 and self._ddp_kwargs.get("broadcast_buffers", None) is None:
logger.info("Notice your model has buffers and you are using `TorchDDPDriver`, but you do not set "
"'broadcast_buffers' in your trainer. Cause in most situations, this parameter can be set"
- " to 'False' to avoid redundant data translation between different processes.")
+ " to 'False' to avoid redundant data communication between different processes.")
self.output_from_new_proc = kwargs.get("output_from_new_proc", "only_error")
assert isinstance(self.output_from_new_proc, str), "Parameter `output_from_new_proc` can only be `str` type."
@@ -471,7 +471,7 @@ class TorchDDPDriver(TorchDriver):
self._global_rank = rank
@property
- def local_rank(self) -> int:
+ def local_rank(self) -> int: # 这个不会受到 all_rank_call_context 的影响
return int(os.environ.get("LOCAL_RANK", 0))
@property
diff --git a/fastNLP/core/drivers/torch_driver/fairscale.py b/fastNLP/core/drivers/torch_driver/fairscale.py
new file mode 100644
index 00000000..ece78f5e
--- /dev/null
+++ b/fastNLP/core/drivers/torch_driver/fairscale.py
@@ -0,0 +1,307 @@
+__all__ = [
+ 'FairScaleDriver'
+]
+from typing import List, Sequence, Union, Dict, Mapping
+from pathlib import Path
+import os
+import functools
+
+from fastNLP.envs.imports import _NEED_IMPORT_FAIRSCALE
+if _NEED_IMPORT_FAIRSCALE:
+ import torch
+ import torch.distributed as dist
+ from fairscale.optim import OSS
+ from fairscale.nn import ShardedDataParallel
+ from fairscale.nn import FullyShardedDataParallel
+ from fairscale.optim.grad_scaler import ShardedGradScaler
+ from torch.nn.parallel import DistributedDataParallel
+ from fairscale.nn.wrap import auto_wrap, enable_wrap, default_auto_wrap_policy
+
+from ...log import logger
+from .utils import reset_seed, _DDPWrappingModel
+
+from .ddp import TorchDDPDriver
+from .torch_driver import TorchDriver
+from .utils import _build_fp16_env
+from ....envs.distributed import all_rank_call_context
+from fastNLP.envs import FASTNLP_DISTRIBUTED_CHECK
+from .utils import optimizer_state_to_device
+
+
+class FairScaleDriver(TorchDDPDriver):
+ def __init__(
+ self,
+ model,
+ parallel_device: Union[List["torch.device"], "torch.device"],
+ is_pull_by_torch_run = False,
+ fp16: bool = False,
+ **kwargs
+ ):
+ assert _NEED_IMPORT_FAIRSCALE, "fairscale is not imported."
+ assert not dist.is_initialized(), "FairScaleDriver does not support initialize distributed by user."
+ self._fairscale_kwargs = kwargs.get('fairscale_kwargs', {})
+ self.fs_type = self._fairscale_kwargs.get('fs_type', 'sdp') # ddp, sdp, fsdp
+ if self.fs_type == 'fsdp':
+ self._fairscale_kwargs['set_grad_to_none'] = self._fairscale_kwargs.get('set_grad_to_none', True)
+ # 将最顶上的进行初始化
+ kwargs.pop('torch_kwargs', None)
+ TorchDriver.__init__(self, model=model, fp16=False, torch_kwargs=self._fairscale_kwargs, **kwargs)
+ self.is_pull_by_torch_run = is_pull_by_torch_run
+ assert self.fs_type in ['ddp', 'sdp', 'fsdp']
+ self._oss_kwargs = self._fairscale_kwargs.get('oss_kwargs', {}) # 仅在 ddp 和 sdp 下有使用到
+ self._sdp_kwargs = self._fairscale_kwargs.get('sdp_kwargs', {})
+ self._fdsp_kwargs = self._fairscale_kwargs.get('fsdp_kwargs', {})
+ self._ddp_kwargs = self._fairscale_kwargs.get('ddp_kwargs', {})
+
+ if self.fs_type == 'ddp' or fp16 is False:
+ self.auto_cast, _grad_scaler = _build_fp16_env(dummy=not fp16)
+ self.grad_scaler = _grad_scaler(**self._fairscale_kwargs.get('gradscaler_kwargs', {}))
+ else:
+ self.auto_cast, self.grad_scaler = torch.cuda.amp.autocast, \
+ ShardedGradScaler(**self._fairscale_kwargs.get('gradscaler_kwargs', {}))
+
+ self.parallel_device = parallel_device
+ if is_pull_by_torch_run:
+ self.model_device = parallel_device
+ else:
+ self.model_device = parallel_device[self.local_rank]
+
+ self.outside_ddp = False # 不允许在外部初始化
+ self._data_device = kwargs.get("data_device", None)
+ if isinstance(self._data_device, int):
+ if self._data_device < 0:
+ raise ValueError("Parameter `data_device` can not be smaller than 0.")
+ _could_use_device_num = torch.cuda.device_count()
+ if self._data_device >= _could_use_device_num:
+ raise ValueError("The gpu device that parameter `device` specifies is not existed.")
+ self._data_device = torch.device(f"cuda:{self._data_device}")
+ elif isinstance(self._data_device, str):
+ self._data_device = torch.device(self._data_device)
+ elif self._data_device is not None and not isinstance(self._data_device, torch.device):
+ raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.")
+
+ self._master_port = None
+ # world_size 表示的就是全局的显卡的数量;
+ self.world_size = None # int(os.environ.get("WORLD_SIZE")) len(self.parallel_device)
+ self.global_rank = 0
+
+ if self.fs_type == 'ddp':
+ if len(self.model._buffers) != 0 and self._ddp_kwargs.get("broadcast_buffers", None) is None:
+ logger.info("Notice your model has buffers and you are using `FairScaleDriver`, but you do not set "
+ "'broadcast_buffers' in your trainer. Cause in most situations, this parameter can be set"
+ " to 'False' to avoid redundant data communication between different processes.")
+
+ self.output_from_new_proc = kwargs.get("output_from_new_proc", "only_error")
+ assert isinstance(self.output_from_new_proc, str), "Parameter `output_from_new_proc` can only be `str` type."
+ if self.output_from_new_proc not in {"all", "ignore", "only_error"}:
+ os.makedirs(self.output_from_new_proc, exist_ok=True)
+ self.output_from_new_proc = os.path.abspath(self.output_from_new_proc)
+
+ self._has_setup = False # 设置这一参数是因为 evaluator 中也会进行 setup 操作,但是显然是不需要的也不应该的;
+ self._has_ddpwrapped = False # 判断传入的模型是否经过 _has_ddpwrapped 包裹;
+
+ def setup(self):
+ r"""
+ 准备分布式环境,该函数主要做以下两件事情:
+
+ 1. 开启多进程,每个 gpu 设备对应单独的一个进程;
+ 2. 每个进程将模型迁移到自己对应的 ``gpu`` 设备上;然后使用 ``DistributedDataParallel`` 包裹模型;
+ """
+ if self._has_setup:
+ return
+ self._has_setup = True
+ if self.is_pull_by_torch_run:
+ # dist.get_world_size() 只能在 dist.init_process_group 初始化之后进行调用;
+ self.world_size = int(os.environ.get("WORLD_SIZE"))
+ self.global_rank = int(os.environ.get("RANK"))
+ reset_seed()
+ logger.info(f"World size: {self.world_size}, Global rank: {self.global_rank}")
+
+ if not dist.is_initialized():
+ dist.init_process_group(
+ backend="nccl", rank=self.global_rank, world_size=self.world_size
+ )
+
+ os.environ["fastnlp_torch_launch_not_ddp"] = "yes"
+ else:
+ if not dist.is_initialized():
+ # 这里主要的问题在于要区分 rank0 和其它 rank 的情况;
+ self.world_size = len(self.parallel_device)
+ self.open_subprocess()
+ self.global_rank = self.local_rank # rank 一定是通过环境变量去获取的;
+ reset_seed()
+ dist.init_process_group(
+ backend="nccl", rank=self.global_rank, world_size=self.world_size
+ )
+ # 用户在这个 trainer 前面又初始化了一个 trainer,并且使用的是 TorchDDPDriver;
+ else:
+ # 如果 `dist.is_initialized() == True`,那么说明 TorchDDPDriver 在之前已经初始化并且已经 setup 过一次,那么我们需要保证现在
+ # 使用的(即之后的)TorchDDPDriver 的设置和第一个 TorchDDPDriver 是完全一样的;
+ pre_num_processes = int(os.environ[FASTNLP_DISTRIBUTED_CHECK])
+ if pre_num_processes != len(self.parallel_device):
+ raise RuntimeError(
+ "Notice you are using `TorchDDPDriver` after one instantiated `TorchDDPDriver`, it is not"
+ "allowed that your second `TorchDDPDriver` has a new setting of parameters "
+ "`num_nodes` and `num_processes`.")
+ self.world_size = dist.get_world_size()
+ self.global_rank = dist.get_rank()
+
+ torch.cuda.set_device(self.model_device)
+ if self.fs_type != 'fsdp':
+ self.model.to(self.model_device)
+ self.configure_ddp()
+
+ self.barrier()
+ # 初始化 self._pids,从而使得每一个进程都能接受到 rank0 的 send 操作;
+ self._pids = [torch.tensor(0, dtype=torch.int).to(self.data_device) for _ in range(dist.get_world_size())]
+ dist.all_gather(self._pids, torch.tensor(os.getpid(), dtype=torch.int).to(self.data_device))
+ local_world_size = int(os.environ.get("LOCAL_WORLD_SIZE")) if "LOCAL_WORLD_SIZE" in os.environ else None
+ if local_world_size is None:
+ local_world_size = torch.tensor(int(os.environ.get("LOCAL_RANK")), dtype=torch.int).to(self.data_device)
+ dist.all_reduce(local_world_size, op=dist.ReduceOp.MAX)
+ local_world_size = local_world_size.tolist() + 1
+
+ node_rank = self.global_rank // local_world_size
+ self._pids = self._pids[node_rank * local_world_size: (node_rank + 1) * local_world_size]
+ self._pids = self.tensor_to_numeric(self._pids)
+
+ def configure_ddp(self):
+ model = _DDPWrappingModel(self.model)
+ if self.fs_type == 'ddp':
+ self.model = DistributedDataParallel(
+ # 注意这里的 self.model_device 是 `torch.device` type,因此 self.model_device.index;
+ model, device_ids=[self.model_device.index],
+ **self._ddp_kwargs
+ )
+ elif self.fs_type == 'sdp':
+ sdp_kwargs = self._sdp_kwargs
+ sdp_kwargs = {**sdp_kwargs, 'module': model}
+ sdp_kwargs['reduce_fp16'] = sdp_kwargs.get('reduce_fp16', self.fp16)
+ oss_lst = []
+ for optimizer in self.optimizers:
+ oss = OSS(optimizer.param_groups, optim=type(optimizer), **optimizer.defaults)
+ oss_lst.append(oss)
+ sdp_kwargs['sharded_optimizer'] = oss_lst
+ sdp_kwargs['warn_on_trainable_params_changed'] = sdp_kwargs.get('warn_on_trainable_params_changed', False)
+ self.model = ShardedDataParallel(**sdp_kwargs)
+ self.optimizers = oss_lst
+ else:
+ assert len(self.optimizers) == 1, "When fs_type='fsdp', only one optimizer is allowed."
+ optimizer = self.optimizers[0]
+ assert len(optimizer.param_groups) == 1, "Cannot assign parameter specific optimizer parameter for 'fsdp'."
+ fsdp_kwargs = self._fdsp_kwargs
+ fsdp_kwargs['mixed_precision'] = self.fp16
+ fsdp_kwargs['state_dict_on_rank_0_only'] = fsdp_kwargs.get('state_dict_on_rank_0_only', True)
+ fsdp_kwargs['state_dict_device'] = fsdp_kwargs.get('state_dict_device', torch.device('cpu'))
+ fsdp_kwargs['compute_device'] = fsdp_kwargs.get('compute_device', self.model_device)
+ optimizer = self.optimizers[0]
+ # wrap_policy = functools.partial(default_auto_wrap_policy, min_num_params=1e6)
+ # with enable_wrap(wrapper_cls=FullyShardedDataParallel, auto_wrap_policy=wrap_policy,
+ # **fsdp_kwargs):
+ # model = auto_wrap(model)
+ fsdp_kwargs = {**fsdp_kwargs, 'module': model}
+ self.model = None # 释放掉
+ self.model = FullyShardedDataParallel(**fsdp_kwargs).to(self.model_device)
+ self.optimizers = type(optimizer)(self.model.parameters(), **optimizer.defaults)
+
+ self._has_ddpwrapped = True
+
+ def save_model(self, filepath: Union[str, Path], only_state_dict: bool = True, **kwargs):
+ """
+ 保存当前 driver 的模型到 folder 下。
+
+ :param filepath: 保存到哪个文件夹;
+ :param only_state_dict: 是否只保存权重;
+ :return:
+ """
+ if self.fs_type in ('ddp', 'sdp'):
+ model = self.model.module.model
+
+ if only_state_dict:
+ if self.fs_type != 'fsdp':
+ if self.local_rank == 0:
+ states = {name: param.cpu().detach().clone() for name, param in model.state_dict().items()}
+ else:
+ # 所有 rank 都需要调用
+ states = self.model.state_dict()
+ if self.local_rank == 0:
+ states = {key[len('model.'):]:value for key, value in states.items()} # 这里需要去掉那个 _wrap 的 key
+ if self.local_rank == 0: #
+ torch.save(states, filepath)
+ elif self.fs_type == 'fsdp':
+ raise RuntimeError("When fs_type='fsdp', only `only_state_dict=True` is allowed.")
+ else:
+ if self.local_rank == 0:
+ torch.save(model, filepath)
+
+ def load_model(self, filepath: str, only_state_dict: bool = True, **kwargs):
+ """
+ 从 folder 中加载权重并赋值到当前 driver 的模型上。
+
+ :param filepath: 加载权重或模型的路径
+ :param load_state_dict: 保存的内容是否只是权重。
+ :param kwargs:
+ :return:
+ """
+ states = torch.load(filepath, map_location='cpu')
+ if isinstance(states, dict) and only_state_dict is False:
+ logger.rank_zero_warning(f"It seems like that {filepath} only contains state, you may need to use "
+ f"`only_state_dict=True`")
+ elif not isinstance(states, dict) and only_state_dict is True:
+ logger.rank_zero_warning(f"It seems like that {filepath} is not state, you may need to use "
+ f"`only_state_dict=False`")
+ if not isinstance(states, Mapping):
+ states = states.state_dict()
+
+ if self.fs_type in ('ddp', 'sdp'):
+ model = self.model.module.model
+ else:
+ model = self.model
+ states = {f'model.{k}':v for k, v in states.items()}
+
+ model.load_state_dict(states)
+
+ def save_checkpoint(self, folder: Path, states: Dict, dataloader, only_state_dict: bool = True, should_save_model: bool = True, **kwargs):
+ if self.fs_type == 'fsdp':
+ if should_save_model is False:
+ logger.warning("When save model using fs_type='fsdp', please make sure use "
+ "`with trainer.driver.model.summon_full_params():` context to gather all parameters.")
+ with all_rank_call_context():
+ super().save_checkpoint(folder=folder, states=states, dataloader=dataloader, only_state_dict=only_state_dict,
+ should_save_model=should_save_model, **kwargs)
+ else:
+ super().save_checkpoint(folder=folder, states=states, dataloader=dataloader,
+ only_state_dict=only_state_dict, should_save_model=should_save_model, **kwargs)
+
+ def get_optimizer_state(self):
+ optimizers_state_dict = {}
+ for i in range(len(self.optimizers)):
+ optimizer: torch.optim.Optimizer = self.optimizers[i]
+ if self.fs_type == 'fsdp':
+ optimizer_state = self.model.gather_full_optim_state_dict(optimizer)
+ elif self.fs_type == 'sdp':
+ optimizer.consolidate_state_dict(recipient_rank=0)
+ else:
+ optimizer_state = optimizer.state_dict()
+ if self.local_rank == 0:
+ optimizer_state["state"] = optimizer_state_to_device(optimizer_state["state"], torch.device("cpu"))
+ optimizers_state_dict[f"optimizer{i}"] = optimizer_state # 注意这里没有使用 deepcopy,测试是不需要的;
+ return optimizers_state_dict
+
+ def load_optimizer_state(self, states):
+ assert len(states) == len(self.optimizers), f"The number of optimizers is:{len(self.optimizers)}, while in " \
+ f"checkpoint it is:{len(states)}"
+ for i in range(len(self.optimizers)):
+ optimizer: torch.optim.Optimizer = self.optimizers[i]
+ state = states[f'optimizer{i}']
+ if self.fs_type == 'fsdp':
+ state = self.model.get_shard_from_optim_state_dict(state)
+ optimizer.load_state_dict(state)
+
+ logger.debug("Load optimizer state dict.")
+
+ def unwrap_model(self):
+ r"""
+ :return: 返回原本的模型,例如没有被 ``DataParallel`` 包裹;
+ """
+ return self.model.module.model
diff --git a/fastNLP/core/drivers/torch_driver/fairscale_sharded.py b/fastNLP/core/drivers/torch_driver/fairscale_sharded.py
deleted file mode 100644
index 66826daf..00000000
--- a/fastNLP/core/drivers/torch_driver/fairscale_sharded.py
+++ /dev/null
@@ -1,63 +0,0 @@
-from typing import List
-from fastNLP.envs.imports import _NEED_IMPORT_FAIRSCALE
-if _NEED_IMPORT_FAIRSCALE:
- import torch
- from fairscale.nn.data_parallel.sharded_ddp import ShardedDataParallel
- from fairscale.optim import OSS
-
-__all__ = [
- 'ShardedDriver'
-]
-
-from .ddp import TorchDDPDriver
-
-
-# todo 注意 fairscale 现在几乎所有的功能都没有实现;
-# TODO:预跑前后对模型和 optimizers 的支持;
-# TODO:fairscale 的 fp16 额外的处理;
-class ShardedDriver(TorchDDPDriver):
- _REDUCE_BUFFER_SIZE_DEFAULT: int = 2 ** 23 # 8M
-
- def __init__(
- self,
- model,
- parallel_device: List["torch.device"],
- num_nodes: int = 1,
- fp16: bool = False,
- **kwargs
- ):
- super(ShardedDriver, self).__init__(
- model=model,
- parallel_device=parallel_device,
- num_nodes=num_nodes,
- fp16=fp16,
- **kwargs
- )
-
- def configure_ddp(self):
- if "reduce_buffer_size" not in self._ddp_kwargs:
- # For multi-node training, enabling bucketing will improve performance.
- self._ddp_kwargs["reduce_buffer_size"] = self._REDUCE_BUFFER_SIZE_DEFAULT if self.num_nodes > 1 else 0
-
- self.optimizers = self._wrap_optimizers(self.optimizers)
- self.model = ShardedDataParallel(self.model, sharded_optimizer=self.optimizers, **self._ddp_kwargs)
-
-
- def _wrap_optimizers(self, optimizers) -> List["OSS"]:
- # TODO:之后得去研究一下 pytorch lightning 为什么这样写,我们是不是也需要这样写;
- # if self.model is not None and self.model.trainer.state.fn != TrainerFn.FITTING:
- # return optimizers
-
- return self._reinit_optimizers_with_oss(optimizers)
-
- def _reinit_optimizers_with_oss(self, optimizers) -> List["OSS"]:
- for x, optimizer in enumerate(optimizers):
- if not isinstance(optimizer, OSS):
- optim_class = type(optimizer)
- zero_optimizer = OSS(params=optimizer.param_groups, optim=optim_class, **optimizer.defaults)
-
- # TODO:具体细节见 pytorch lightning 的这一函数,主要的点在于加入 fp16 相关的一些东西;
- optimizers[x] = zero_optimizer
- del optimizer
- return optimizers
-
diff --git a/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py b/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py
index f8fe63d8..0deac4dc 100644
--- a/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py
+++ b/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py
@@ -7,11 +7,14 @@ if _NEED_IMPORT_TORCH:
from .torch_driver import TorchDriver
from .single_device import TorchSingleDriver
from .ddp import TorchDDPDriver
+from .fairscale import FairScaleDriver
from fastNLP.core.log import logger
from fastNLP.envs import FASTNLP_BACKEND_LAUNCH
+from pkg_resources import parse_version
__all__ = []
+
def initialize_torch_driver(driver: str, device: Optional[Union[str, "torch.device", int, List[int]]],
model: "torch.nn.Module", **kwargs) -> TorchDriver:
r"""
@@ -23,13 +26,20 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, "torch.devi
:return: 返回一个 :class:`~fastNLP.core.TorchSingleDriver` 或 :class:`~fastNLP.core.TorchDDPDriver` 实例;
"""
+ if parse_version(torch.__version__) < parse_version('1.6'):
+ raise RuntimeError(f"Pytorch(current version:{torch.__version__}) need to be older than 1.6.")
# world_size 和 rank
if FASTNLP_BACKEND_LAUNCH in os.environ:
if device is not None:
logger.rank_zero_warning("Parameter `device` would be ignored when you are using `torch.distributed.run` to pull "
"up your script. And we will directly get the local device via "
"`os.environ['LOCAL_RANK']`.", once=True)
- return TorchDDPDriver(model, torch.device(f"cuda:{os.environ['LOCAL_RANK']}"), True, **kwargs)
+ if driver == 'fairscale':
+ return FairScaleDriver(model, torch.device(f"cuda:{os.environ['LOCAL_RANK']}"),
+ is_pull_by_torch_run=True, **kwargs)
+ else:
+ return TorchDDPDriver(model, torch.device(f"cuda:{os.environ['LOCAL_RANK']}"),
+ is_pull_by_torch_run=True, **kwargs)
if driver not in {"torch", "fairscale"}:
raise ValueError("Parameter `driver` can only be one of these values: ['torch', 'fairscale'].")
@@ -67,13 +77,10 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, "torch.devi
else:
return TorchDDPDriver(model, device, **kwargs)
elif driver == "fairscale":
- raise NotImplementedError("`fairscale` is not support right now.")
- # if not isinstance(device, List):
- # if device.type == 'cpu':
- # raise ValueError("You are using `fairscale` driver, but your chosen `device` is 'cpu'.")
- # log.info("Notice you are using `fairscale` driver, but your chosen `device` is only one gpu, we will"
- # "still use `fairscale` for you, but if you mean using `TorchSingleDriver`, you should "
- # "choose `torch` driver.")
- # return ShardedDriver(model, [device], **kwargs)
- # else:
- # return ShardedDriver(model, device, **kwargs)
\ No newline at end of file
+ if not isinstance(device, List):
+ if device.type == 'cpu':
+ raise ValueError("You are using `fairscale` driver, but your chosen `device` is 'cpu'.")
+ logger.warning_once("Notice you are using `fairscale`, but the `device` is only one gpu.")
+ return FairScaleDriver(model, [device], **kwargs)
+ else:
+ return FairScaleDriver(model, device, **kwargs)
\ No newline at end of file
diff --git a/fastNLP/core/drivers/torch_driver/torch_driver.py b/fastNLP/core/drivers/torch_driver/torch_driver.py
index 156681be..a0c562f7 100644
--- a/fastNLP/core/drivers/torch_driver/torch_driver.py
+++ b/fastNLP/core/drivers/torch_driver/torch_driver.py
@@ -1,7 +1,6 @@
import os
from typing import Union, Dict, Optional, Callable
from functools import partial
-from pkg_resources import parse_version
import numpy as np
import random
from dataclasses import dataclass
@@ -52,23 +51,23 @@ class TorchDriver(Driver):
super(TorchDriver, self).__init__(model)
""" 进行 fp16 的设置 """
+ self._torch_kwargs = kwargs.get("torch_kwargs", {})
+
# 因为 ddp 和 single_device 的混合精度训练的设置是一样的,因此可以统一抽象到这里;
self.fp16 = fp16
- if parse_version(torch.__version__) < parse_version('1.6'):
- raise RuntimeError(f"Pytorch({torch.__version__}) need to be older than 1.6.")
- self.auto_cast, _grad_scaler = _build_fp16_env(dummy=not fp16)
- self.grad_scaler = _grad_scaler()
+ self.auto_cast, _grad_scaler = _build_fp16_env(dummy=not self.fp16)
+ self.grad_scaler = _grad_scaler(**self._torch_kwargs.get('gradscaler_kwargs', {}))
+ self.set_grad_to_none = self._torch_kwargs.get('set_grad_to_none')
- self._torch_kwargs = kwargs.get("torch_kwargs", {})
# 用来设置 `torch_move_data_to_device` 中的 `non_blocking` 参数;
- self.non_blocking = self._torch_kwargs.get("torch_non_blocking", True)
+ self.non_blocking = self._torch_kwargs.get("non_blocking", True)
# 用来设置是否关闭 auto_param_call 中的参数匹配问题;
self.wo_auto_param_call = kwargs.get("model_wo_auto_param_call", False)
- def zero_grad(self, set_to_none: bool = False):
+ def zero_grad(self):
for optimizer in self.optimizers:
- self._clear_grad(optimizer, set_to_none)
+ self._clear_grad(optimizer, self.set_grad_to_none)
def _clear_grad(self, optimizer, set_to_none):
param_groups = optimizer.param_groups
@@ -178,7 +177,7 @@ class TorchDriver(Driver):
else:
torch.save(model, filepath)
- def load_model(self, filepath: str, only_state_dict: bool = True, **kwargs):
+ def load_model(self, filepath: Union[Path, str], only_state_dict: bool = True, **kwargs):
"""
从 folder 中加载权重并赋值到当前 driver 的模型上。
@@ -195,10 +194,9 @@ class TorchDriver(Driver):
elif not isinstance(res, dict) and only_state_dict is True:
logger.rank_zero_warning(f"It seems like that {filepath} is not state, you may need to use "
f"`only_state_dict=False`")
- if only_state_dict:
- model.load_state_dict(res)
- else:
- model.load_state_dict(res.state_dict())
+ if not isinstance(res, dict):
+ res = res.state_dict()
+ model.load_state_dict(res)
@rank_zero_call
def save_checkpoint(self, folder: Path, states: Dict, dataloader, only_state_dict: bool = True, should_save_model: bool = True, **kwargs):
@@ -246,25 +244,13 @@ class TorchDriver(Driver):
# 2. 保存模型的状态;
if should_save_model:
- model = self.unwrap_model()
if not os.path.exists(folder):
os.mkdir(folder)
- if only_state_dict:
- model_state_dict = {name: param.cpu().detach().clone() for name, param in model.state_dict().items()}
- # 对于单卡的 driver 来讲,我们实际上(现在)不应该考虑用户在DDP环境下使用单卡模式,从而造成效率损失;
- torch.save(model_state_dict, folder.joinpath(FASTNLP_MODEL_FILENAME))
- logger.debug("Save model state dict")
- else:
- torch.save(model, folder.joinpath(FASTNLP_MODEL_FILENAME))
- logger.debug("Save model")
+ model_path = folder.joinpath(FASTNLP_MODEL_FILENAME)
+ self.save_model(model_path, only_state_dict=only_state_dict)
# 3. 保存 optimizers 的状态;
- optimizers_state_dict = {}
- for i in range(len(self.optimizers)):
- optimizer: torch.optim.Optimizer = self.optimizers[i]
- optimizer_state = optimizer.state_dict()
- optimizer_state["state"] = optimizer_state_to_device(optimizer_state["state"], torch.device("cpu"))
- optimizers_state_dict[f"optimizer{i}"] = optimizer_state # 注意这里没有使用 deepcopy,测试是不需要的;
+ optimizers_state_dict = self.get_optimizer_state()
# 4. 保存fp16的状态
if not isinstance(self.grad_scaler, DummyGradScaler):
@@ -275,38 +261,42 @@ class TorchDriver(Driver):
states["optimizers_state_dict"] = optimizers_state_dict
torch.save(states, Path(folder).joinpath(FASTNLP_CHECKPOINT_FILENAME))
+ def get_optimizer_state(self):
+ optimizers_state_dict = {}
+ for i in range(len(self.optimizers)):
+ optimizer: torch.optim.Optimizer = self.optimizers[i]
+ optimizer_state = optimizer.state_dict()
+ optimizer_state["state"] = optimizer_state_to_device(optimizer_state["state"], torch.device("cpu"))
+ optimizers_state_dict[f"optimizer{i}"] = optimizer_state # 注意这里没有使用 deepcopy,测试是不需要的;
+ return optimizers_state_dict
+
+ def load_optimizer_state(self, states):
+ assert len(states) == len(self.optimizers), f"The number of optimizers is:{len(self.optimizers)}, while in " \
+ f"checkpoint it is:{len(states)}"
+ for i in range(len(self.optimizers)):
+ optimizer: torch.optim.Optimizer = self.optimizers[i]
+ optimizer.load_state_dict(states[f"optimizer{i}"])
+ logger.debug("Load optimizer state dict.")
+
def load_checkpoint(self, folder: Path, dataloader, only_state_dict: bool = True, should_load_model: bool = True, **kwargs) -> Dict:
states = torch.load(folder.joinpath(FASTNLP_CHECKPOINT_FILENAME))
# 1. 加载 optimizers 的状态;
optimizers_state_dict = states.pop("optimizers_state_dict")
- for i in range(len(self.optimizers)):
- optimizer: torch.optim.Optimizer = self.optimizers[i]
- optimizer.load_state_dict(optimizers_state_dict[f"optimizer{i}"])
- logger.debug("Load optimizer state dict.")
+ self.load_optimizer_state(optimizers_state_dict)
# 2. 加载模型状态;
if should_load_model:
- model = self.unwrap_model()
- res = torch.load(folder.joinpath(FASTNLP_MODEL_FILENAME), map_location='cpu')
- if only_state_dict:
- model.load_state_dict(res)
- logger.debug("Load model state dict...")
- else:
- model.load_state_dict(res.state_dict())
- logger.debug("Load model...")
+ self.load_model(filepath=folder.joinpath(FASTNLP_MODEL_FILENAME), only_state_dict=only_state_dict)
# 3. 加载fp16的状态
if "grad_scaler_state_dict" in states:
grad_scaler_state_dict = states.pop("grad_scaler_state_dict")
- if isinstance(self.grad_scaler, DummyGradScaler):
- self.auto_cast, _grad_scaler = _build_fp16_env(dummy=False)
- self.grad_scaler = _grad_scaler()
- self.fp16 = True
- self.grad_scaler.load_state_dict(grad_scaler_state_dict)
- logger.debug("Load grad_scaler state dict...")
+ if not isinstance(self.grad_scaler, DummyGradScaler):
+ self.grad_scaler.load_state_dict(grad_scaler_state_dict)
+ logger.debug("Load grad_scaler state dict...")
elif not isinstance(self.grad_scaler, DummyGradScaler):
- logger.warning(f"Checkpoint {folder} is not trained with fp16=True, while resume to a fp16=True training, "
+ logger.rank_zero_warning(f"Checkpoint {folder} is not trained with fp16=True, while resume to a fp16=True training, "
f"the training process may be unstable.")
# 4. 恢复 sampler 的状态;
diff --git a/fastNLP/core/metrics/classify_f1_pre_rec_metric.py b/fastNLP/core/metrics/classify_f1_pre_rec_metric.py
index 8de007ce..53e0d630 100644
--- a/fastNLP/core/metrics/classify_f1_pre_rec_metric.py
+++ b/fastNLP/core/metrics/classify_f1_pre_rec_metric.py
@@ -5,6 +5,7 @@ __all__ = [
from typing import Union, List
from collections import Counter
import warnings
+import numpy as np
from .metric import Metric
from .backend import Backend
@@ -132,10 +133,10 @@ class ClassifyFPreRecMetric(Metric):
seq_len = self.tensor2numpy(seq_len)
if seq_len is not None and target.ndim > 1:
- max_len = target.ndim[-1]
+ max_len = target.shape[-1]
masks = seq_len_to_mask(seq_len=seq_len, max_len=max_len)
else:
- masks = None
+ masks = np.ones_like(target)
if pred.ndim == target.ndim:
if len(pred.flatten()) != len(target.flatten()):
@@ -143,7 +144,6 @@ class ClassifyFPreRecMetric(Metric):
f" while target have element numbers:{len(pred.flatten())}, "
f"pred have element numbers: {len(target.flatten())}")
- pass
elif pred.ndim == target.ndim + 1:
pred = pred.argmax(axis=-1)
if seq_len is None and target.ndim > 1:
@@ -152,11 +152,9 @@ class ClassifyFPreRecMetric(Metric):
raise RuntimeError(f"when pred have "
f"size:{pred.shape}, target should have size: {pred.shape} or "
f"{pred.shape[:-1]}, got {target.shape}.")
- if masks is not None:
- target = target * masks
- pred = pred * masks
- target_idxes = set(target.reshape(-1).tolist())
+
+ target_idxes = set(target.reshape(-1).tolist()+pred.reshape(-1).tolist())
for target_idx in target_idxes:
- self._tp[target_idx] += ((pred == target_idx) * (target != target_idx)).sum().item()
- self._fp[target_idx] += ((pred == target_idx) * (target == target_idx)).sum().item()
- self._fn[target_idx] += ((pred != target_idx) * (target != target_idx)).sum().item()
+ self._tp[target_idx] += ((pred == target_idx) * (target == target_idx) * masks).sum().item()
+ self._fp[target_idx] += ((pred == target_idx) * (target != target_idx) * masks).sum().item()
+ self._fn[target_idx] += ((pred != target_idx) * (target == target_idx) * masks).sum().item()
diff --git a/fastNLP/core/utils/utils.py b/fastNLP/core/utils/utils.py
index c33154fa..0890f5ec 100644
--- a/fastNLP/core/utils/utils.py
+++ b/fastNLP/core/utils/utils.py
@@ -227,7 +227,7 @@ def _check_valid_parameters_number(fn, expected_params:List[str], fn_name=None):
raise e
-def check_user_specific_params(user_params: Dict, fn: Callable):
+def check_user_specific_params(user_params: Dict, fn: Callable, fn_name=None):
"""
该函数使用用户的输入来对指定函数的参数进行赋值,主要用于一些用户无法直接调用函数的情况;
主要作用在于帮助检查用户对使用函数 ``fn`` 的参数输入是否有误;
@@ -235,13 +235,16 @@ def check_user_specific_params(user_params: Dict, fn: Callable):
:param user_params: 用户指定的参数的值,应当是一个字典,其中 ``key`` 表示每一个参数的名字,
``value`` 为每一个参数的值;
:param fn: 将要被调用的函数;
+ :param fn_name: 在打印提示信息是如何显示函数名
:return: 返回一个字典,其中为在之后调用函数 ``fn`` 时真正会被传进去的参数的值;
"""
+ if fn_name is None:
+ fn_name = fn.__name__
fn_arg_names = get_fn_arg_names(fn)
for arg_name, arg_value in user_params.items():
if arg_name not in fn_arg_names:
- logger.rank_zero_warning(f"Notice your specific parameter `{arg_name}` is not used by function `{fn.__name__}`.")
+ logger.rank_zero_warning(f"Notice parameter `{arg_name}` may not be used by `{fn_name}`.")
return user_params
diff --git a/fastNLP/envs/imports.py b/fastNLP/envs/imports.py
index a2b63953..77b642c3 100644
--- a/fastNLP/envs/imports.py
+++ b/fastNLP/envs/imports.py
@@ -18,7 +18,7 @@ else:
_IS_WINDOWS = platform.system() == "Windows"
-_NEED_IMPORT_FAIRSCALE = not _IS_WINDOWS and _module_available("fairscale.nn") and 'torch' in need_import
+_NEED_IMPORT_FAIRSCALE = not _IS_WINDOWS and _module_available("fairscale") and 'torch' in need_import
_NEED_IMPORT_TORCH = _module_available("torch") and 'torch' in need_import
_NEED_IMPORT_JITTOR = _module_available("jittor") and 'jittor' in need_import
_NEED_IMPORT_PADDLE = _module_available("paddle") and 'paddle' in need_import
diff --git a/tests/core/controllers/test_trainer_w_evaluator_torch.py b/tests/core/controllers/test_trainer_w_evaluator_torch.py
index 2d525260..752e06d8 100644
--- a/tests/core/controllers/test_trainer_w_evaluator_torch.py
+++ b/tests/core/controllers/test_trainer_w_evaluator_torch.py
@@ -277,13 +277,12 @@ def test_trainer_specific_params_1(
model_wo_auto_param_call=True,
torch_kwargs={
- "torch_non_blocking": False,
+ "non_blocking": False,
"set_grad_to_none": True
}
)
- assert trainer.set_grad_to_none is True
assert trainer.driver.non_blocking is False
assert trainer.driver.wo_auto_param_call is True
@@ -320,13 +319,11 @@ def test_trainer_specific_params_2(
"broadcast_buffers": True,
"find_unused_parameters": True
},
- "torch_non_blocking": False,
- "set_grad_to_none": True
+ "non_blocking": False,
}
)
- assert trainer.set_grad_to_none is True
assert trainer.driver.non_blocking is False
assert trainer.driver.wo_auto_param_call is True
assert trainer.driver.output_from_new_proc == "all"
diff --git a/tests/core/dataloaders/torch_dataloader/test_fdl.py b/tests/core/dataloaders/torch_dataloader/test_fdl.py
index 8ed7441b..d977e52f 100644
--- a/tests/core/dataloaders/torch_dataloader/test_fdl.py
+++ b/tests/core/dataloaders/torch_dataloader/test_fdl.py
@@ -139,7 +139,7 @@ class TestFdl:
logger.set_stdout()
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10})
with Capturing() as out:
- dl = TorchDataLoader(ds, prefetch_factor=3, shuffle=False)
+ dl = TorchDataLoader(ds, batch_size=1, prefetch_factor=3, shuffle=False)
for idx, batch in enumerate(dl):
assert len(batch['x'])==1
assert batch['x'][0].tolist() == ds[idx]['x']
@@ -154,7 +154,7 @@ class TestFdl:
logger.set_stdout()
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10})
with Capturing() as out:
- dl = TorchDataLoader(ds, num_workers=0, prefetch_factor=2, generator=torch.Generator(), shuffle=False)
+ dl = TorchDataLoader(ds, batch_size=1, num_workers=0, prefetch_factor=2, generator=torch.Generator(), shuffle=False)
for idx, batch in enumerate(dl):
assert len(batch['x'])==1
assert batch['x'][0].tolist() == ds[idx]['x']
diff --git a/tests/core/drivers/paddle_driver/test_fleet.py b/tests/core/drivers/paddle_driver/test_fleet.py
index ad680dcb..5f90ed12 100644
--- a/tests/core/drivers/paddle_driver/test_fleet.py
+++ b/tests/core/drivers/paddle_driver/test_fleet.py
@@ -661,7 +661,7 @@ class TestSaveLoad:
# 3. 检查 fp16 是否被加载
if fp16:
- assert isinstance(self.driver2.grad_scaler, paddle.amp.GradScaler)
+ assert not isinstance(self.driver2.grad_scaler, paddle.amp.GradScaler)
# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
@@ -771,7 +771,7 @@ class TestSaveLoad:
assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"]
# 3. 检查 fp16 是否被加载
if fp16:
- assert isinstance(self.driver2.grad_scaler, paddle.amp.GradScaler)
+ assert not isinstance(self.driver2.grad_scaler, paddle.amp.GradScaler)
# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
diff --git a/tests/core/drivers/paddle_driver/test_single_device.py b/tests/core/drivers/paddle_driver/test_single_device.py
index 67ea1b42..9b7a8560 100644
--- a/tests/core/drivers/paddle_driver/test_single_device.py
+++ b/tests/core/drivers/paddle_driver/test_single_device.py
@@ -632,7 +632,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
# 3. 检查 fp16 是否被加载
if fp16:
- assert isinstance(driver2.grad_scaler, paddle.amp.GradScaler)
+ assert not isinstance(driver2.grad_scaler, paddle.amp.GradScaler)
# 4. 检查 model 的参数是否正确
@@ -720,7 +720,7 @@ def test_save_and_load_with_randomsampler(only_state_dict, fp16):
# 3. 检查 fp16 是否被加载
if fp16:
- assert isinstance(driver2.grad_scaler, paddle.amp.GradScaler)
+ assert not isinstance(driver2.grad_scaler, paddle.amp.GradScaler)
# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
diff --git a/tests/core/drivers/torch_driver/test_ddp.py b/tests/core/drivers/torch_driver/test_ddp.py
index a7c4705a..d9e4da66 100644
--- a/tests/core/drivers/torch_driver/test_ddp.py
+++ b/tests/core/drivers/torch_driver/test_ddp.py
@@ -682,7 +682,7 @@ class TestSaveLoad:
# 3. 检查 fp16 是否被加载
if fp16:
- assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
+ assert not isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
@@ -731,7 +731,7 @@ class TestSaveLoad:
"""
try:
- path = "model.ckp"
+ path = "checkpoints/"
num_replicas = len(device)
@@ -764,6 +764,7 @@ class TestSaveLoad:
driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True)
else:
driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))])
+ dist.barrier() # 等待save成功
# 加载
# 更改 batch_size
dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False)
@@ -788,7 +789,7 @@ class TestSaveLoad:
assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"]
# 3. 检查 fp16 是否被加载
if fp16:
- assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
+ assert not isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
diff --git a/tests/core/drivers/torch_driver/test_single_device.py b/tests/core/drivers/torch_driver/test_single_device.py
index 51555918..7839e1c9 100644
--- a/tests/core/drivers/torch_driver/test_single_device.py
+++ b/tests/core/drivers/torch_driver/test_single_device.py
@@ -1,6 +1,8 @@
import pytest
from pathlib import Path
+from pkg_resources import parse_version
+
from fastNLP.core.drivers.torch_driver.single_device import TorchSingleDriver
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
@@ -9,6 +11,7 @@ from tests.helpers.datasets.paddle_data import PaddleNormalDataset
from tests.helpers.models.paddle_model import PaddleNormalModel_Classification_1
from fastNLP.envs.distributed import rank_zero_rm
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH
+
if _NEED_IMPORT_TORCH:
import torch
from torch.utils.data import DataLoader, BatchSampler
@@ -245,6 +248,9 @@ class TestTorchDriverFunctions:
"""
# 先确保不影响运行
# TODO:正确性
+ if parse_version(torch.__version__) < parse_version('1.7'):
+ pytest.skip("Skip if torch version smaller than 1.6 since torch.manual_seed my cause bug:"
+ "Overflow when unpacking long")
TorchSingleDriver.worker_init_function(0)
@pytest.mark.torch
@@ -611,7 +617,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
# 3. 检查 fp16 是否被加载
if fp16:
- assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
+ assert not isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
@@ -683,7 +689,7 @@ def test_save_and_load_with_randomsampler(only_state_dict, fp16):
# 3. 检查 fp16 是否被加载
if fp16:
- assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
+ assert not isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
diff --git a/tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py b/tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py
index 4d799e1f..dcf7d616 100644
--- a/tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py
+++ b/tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py
@@ -31,7 +31,7 @@ def _test(local_rank: int, world_size: int, device: "torch.device",
my_result = metric.get_metric()
for keys in ['f', 'pre', 'rec']:
- np.allclose(my_result[keys], metric_result[keys], atol=0.000001)
+ assert np.allclose(my_result[keys], metric_result[keys], atol=0.000001)
@pytest.mark.torch
@@ -69,7 +69,6 @@ class TestClassfiyFPreRecMetric:
[-0.8088, -0.6648, -0.5018, -0.0230, -0.8207],
[-0.7753, -0.3508, 1.6163, 0.7158, 1.5207],
[0.8692, 0.7718, -0.6734, 0.6515, 0.0641]])
- arg_max_pred = torch.argmax(pred, dim=-1)
target = torch.tensor([0, 2, 4, 1, 4, 0, 1, 3, 3, 3, 1, 3, 4, 4, 3, 4, 0, 2, 4, 4, 3, 4, 4, 3,
0, 3, 0, 0, 0, 1, 3, 1])
@@ -79,10 +78,9 @@ class TestClassfiyFPreRecMetric:
f1_score = 0.1882051282051282
recall = 0.1619047619047619
pre = 0.23928571428571427
-
ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall}
for keys in ['f', 'pre', 'rec']:
- np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001)
+ assert np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001)
metric = ClassifyFPreRecMetric(f_type='micro')
metric.update(pred, target)
@@ -93,7 +91,7 @@ class TestClassfiyFPreRecMetric:
ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall}
for keys in ['f', 'pre', 'rec']:
- np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001)
+ assert np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001)
metric = ClassifyFPreRecMetric(only_gross=False, f_type='macro')
metric.update(pred, target)
@@ -103,19 +101,35 @@ class TestClassfiyFPreRecMetric:
'1': {'f1-score': 0.0, 'precision': 0.0, 'recall': 0.0, 'support': 5},
'2': {'f1-score': 0.0, 'precision': 0.0, 'recall': 0.0, 'support': 2},
'3': {'f1-score': 0.30769230769230765, 'precision': 0.5, 'recall': 0.2222222222222222, 'support': 9},
- '4': {'f1-score': 0.5, 'precision': 0.5714285714285714, 'recall': 0.4444444444444444, 'support': 9},
- 'macro avg': {'f1-score': 0.1882051282051282, 'precision': 0.23928571428571427,
- 'recall': 0.1619047619047619, 'support': 32},
- 'micro avg': {'f1-score': 0.21875, 'precision': 0.21875, 'recall': 0.21875, 'support': 32},
- 'weighted avg': {'f1-score': 0.2563301282051282, 'precision': 0.3286830357142857, 'recall': 0.21875,
- 'support': 32}}
+ '4': {'f1-score': 0.5, 'precision': 0.5714285714285714, 'recall': 0.4444444444444444, 'support': 9}}
for keys in result_dict.keys():
if keys == "f" or "pre" or "rec":
continue
gl = str(keys[-1])
tmp_d = {"p": "precision", "r": "recall", "f": "f1-score"}
gk = tmp_d[keys[0]]
- np.allclose(result_dict[keys], ground_truth[gl][gk], atol=0.000001)
+ assert np.allclose(result_dict[keys], ground_truth[gl][gk], atol=0.000001)
+
+ def test_seq_len(self):
+ pred = torch.tensor([[[0.3, 0.7, 0.1], [0.4, 0.1, 0.1], [0.3, 0.1, 0.7]],
+ [[0.7, 0.1, 0.1], [0.5, 0.9, 0.1], [0.3, 0.1, 0.7]]])
+ seq_len = torch.LongTensor([3, 2])
+ target = torch.LongTensor([[1, 0, 2], [0, 1, 0]])
+
+ # 不考虑长度
+ metric = ClassifyFPreRecMetric(only_gross=True, f_type='macro')
+ metric.update(pred, target)
+ result_dict = metric.get_metric()
+ for keys in ['f', 'pre', 'rec']:
+ assert result_dict[keys] != 1
+
+ # 考虑长度
+ metric = ClassifyFPreRecMetric(only_gross=True, f_type='macro')
+ metric.update(pred, target, seq_len=seq_len)
+ result_dict = metric.get_metric()
+ for keys in ['f', 'pre', 'rec']:
+ assert result_dict[keys] == 1
+
@pytest.mark.parametrize("f_type, f1_score,recall,pre",
[('macro', 0.1882051282051282, 0.1619047619047619, 0.23928571428571427),
@@ -180,3 +194,22 @@ class TestClassfiyFPreRecMetric:
[(rank, NUM_PROCESSES, torch.device(f'cuda:{rank}')) for rank in range(NUM_PROCESSES)])
pool.close()
pool.join()
+
+ def test_binary(self):
+ pred = torch.randn(10, 2)
+ target = torch.randint(1, size=(10,))
+ metric = ClassifyFPreRecMetric()
+ metric.update(pred, target)
+ results = metric.get_metric()
+ print(target)
+ print(metric._tp, metric._fp, metric._fn)
+ assert results['f']==results['rec']==results['pre']
+
+ pred = torch.randn(10, 2)
+ target = torch.randint(2, size=(10,))
+ metric = ClassifyFPreRecMetric()
+ metric.update(pred, target)
+ results = metric.get_metric()
+ print(target)
+ print(metric._tp, metric._fp, metric._fn)
+ assert results['f']==results['rec']==results['pre']
diff --git a/tests/core/metrics/test_span_f1_rec_acc_torch.py b/tests/core/metrics/test_span_f1_rec_acc_torch.py
index 0ebb9bdd..227c9643 100644
--- a/tests/core/metrics/test_span_f1_rec_acc_torch.py
+++ b/tests/core/metrics/test_span_f1_rec_acc_torch.py
@@ -226,7 +226,7 @@ class TestSpanFPreRecMetric:
# print(expected_metric)
metric_value = metric.get_metric()
for key, value in expected_metric.items():
- np.allclose(value, metric_value[key])
+ assert np.allclose(value, metric_value[key])
def test_auto_encoding_type_infer(self):
# 检查是否可以自动check encode的类型