delete predictor.py

This commit is contained in:
ChenXin 2019-08-25 16:57:47 +08:00
parent f3a2aa6da5
commit 8445bdbc79
2 changed files with 0 additions and 127 deletions

View File

@ -1,79 +0,0 @@
"""
..todo::
检查这个类是否需要
"""
from collections import defaultdict
import torch
from . import DataSetIter
from . import DataSet
from . import SequentialSampler
from .utils import _build_args, _move_dict_value_to_device, _get_model_device
class Predictor(object):
"""
一个根据训练模型预测输出的预测器Predictor
与测试器Tester不同的是predictor不关心模型性能的评价指标只做inference
这是一个fastNLP调用的高级模型包装器它与TrainerTester不共享任何操作
:param torch.nn.Module network: 用来完成预测任务的模型
"""
def __init__(self, network):
if not isinstance(network, torch.nn.Module):
raise ValueError(
"Only fastNLP.models.BaseModel or torch.nn,Module is allowed, not {}".format(type(network)))
self.network = network
self.batch_size = 1
self.batch_output = []
def predict(self, data: DataSet, seq_len_field_name=None):
"""用已经训练好的模型进行inference.
:param fastNLP.DataSet data: 待预测的数据集
:param str seq_len_field_name: 表示序列长度信息的field名字
:return: dict dict里面的内容为模型预测的结果
"""
if not isinstance(data, DataSet):
raise ValueError("Only Dataset class is allowed, not {}.".format(type(data)))
if seq_len_field_name is not None and seq_len_field_name not in data.field_arrays:
raise ValueError("Field name {} not found in DataSet {}.".format(seq_len_field_name, data))
prev_training = self.network.training
self.network.eval()
network_device = _get_model_device(self.network)
batch_output = defaultdict(list)
data_iterator = DataSetIter(data, batch_size=self.batch_size, sampler=SequentialSampler(), as_numpy=False)
if hasattr(self.network, "predict"):
predict_func = self.network.predict
else:
predict_func = self.network.forward
with torch.no_grad():
for batch_x, _ in data_iterator:
_move_dict_value_to_device(batch_x, _, device=network_device)
refined_batch_x = _build_args(predict_func, **batch_x)
prediction = predict_func(**refined_batch_x)
if seq_len_field_name is not None:
seq_lens = batch_x[seq_len_field_name].tolist()
for key, value in prediction.items():
value = value.cpu().numpy()
if len(value.shape) == 1 or (len(value.shape) == 2 and value.shape[1] == 1):
batch_output[key].extend(value.tolist())
else:
if seq_len_field_name is not None:
tmp_batch = []
for idx, seq_len in enumerate(seq_lens):
tmp_batch.append(value[idx, :seq_len])
batch_output[key].extend(tmp_batch)
else:
batch_output[key].append(value)
self.network.train(prev_training)
return batch_output

View File

@ -1,48 +0,0 @@
import unittest
from collections import defaultdict
import numpy as np
import torch
from fastNLP.core.dataset import DataSet
from fastNLP.core.instance import Instance
from fastNLP.core.predictor import Predictor
def prepare_fake_dataset():
mean = np.array([-3, -3])
cov = np.array([[1, 0], [0, 1]])
class_A = np.random.multivariate_normal(mean, cov, size=(1000,))
mean = np.array([3, 3])
cov = np.array([[1, 0], [0, 1]])
class_B = np.random.multivariate_normal(mean, cov, size=(1000,))
data_set = DataSet([Instance(x=[float(item[0]), float(item[1])], y=[0.0]) for item in class_A] +
[Instance(x=[float(item[0]), float(item[1])], y=[1.0]) for item in class_B])
return data_set
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel, self).__init__()
self.linear = torch.nn.Linear(2, 1)
def forward(self, x):
return {"predict": self.linear(x)}
class TestPredictor(unittest.TestCase):
def test_simple(self):
model = LinearModel()
predictor = Predictor(model)
data = prepare_fake_dataset()
data.set_input("x")
ans = predictor.predict(data)
self.assertTrue(isinstance(ans, defaultdict))
self.assertTrue("predict" in ans)
self.assertTrue(isinstance(ans["predict"], list))
def test_sequence(self):
# test sequence input/output
pass