Merge branch 'dev0.8.0' of github.com:fastnlp/fastNLP into dev0.8.0

This commit is contained in:
yh_cc 2022-05-10 02:37:07 +08:00
commit 8c8cf70959
62 changed files with 168 additions and 2096 deletions

View File

@ -6,7 +6,7 @@ SPHINXOPTS =
SPHINXAPIDOC = sphinx-apidoc
SPHINXBUILD = sphinx-build
SPHINXPROJ = fastNLP
SPHINXEXCLUDE = ../fastNLP/transformers/* ../fastNLP/modules/* ../fastNLP/core/drivers/torch_paddle_driver/* ../fastNLP/core/utils/torch_paddle_utils.py
SPHINXEXCLUDE = ../fastNLP/transformers/*
SOURCEDIR = source
BUILDDIR = build
PORT = 9000
@ -16,7 +16,7 @@ help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS)
apidoc:
$(SPHINXAPIDOC) -efM -d 6 -o source ../$(SPHINXPROJ) $(SPHINXEXCLUDE)
$(SPHINXAPIDOC) -efM -o source ../$(SPHINXPROJ) $(SPHINXEXCLUDE)
server:
cd build/html && python -m http.server $(PORT)
@ -24,6 +24,9 @@ server:
delete:
rm -f source/$(SPHINXPROJ).* source/modules.rst && rm -rf build
web:
make html && make server
dev:
make delete && make apidoc && make html && make server

View File

@ -42,7 +42,8 @@ extensions = [
'sphinx.ext.viewcode',
'sphinx.ext.autosummary',
'sphinx.ext.mathjax',
'sphinx.ext.todo'
'sphinx.ext.todo',
'sphinx_autodoc_typehints'
]
autodoc_default_options = {
@ -53,8 +54,10 @@ autodoc_default_options = {
add_module_names = False
autosummary_ignore_module_all = False
autodoc_typehints = "description"
# autodoc_typehints = "description"
autoclass_content = "class"
typehints_fully_qualified = False
typehints_defaults = "comma"
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
@ -168,8 +171,8 @@ texinfo_documents = [
# -- Extension configuration -------------------------------------------------
def maybe_skip_member(app, what, name, obj, skip, options):
# if obj.__doc__ is None:
# return True
if obj.__doc__ is None:
return True
if name == "__init__":
return False
if name.startswith("_"):

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.callbacks.torch_callbacks
@ -18,7 +18,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.callbacks.callback
fastNLP.core.callbacks.callback_event

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.callbacks.torch_callbacks.torch_grad_clip_callback
fastNLP.core.callbacks.torch_callbacks.torch_lr_sched_callback

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.collators.padders.exceptions
fastNLP.core.collators.padders.get_padder

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.collators.padders
@ -18,7 +18,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.collators.collator
fastNLP.core.collators.packer_unpacker

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.controllers.loops.evaluate_batch_loop
fastNLP.core.controllers.loops.loop

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.controllers.loops
fastNLP.core.controllers.utils
@ -19,7 +19,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.controllers.evaluator
fastNLP.core.controllers.trainer

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.controllers.utils.state
fastNLP.core.controllers.utils.utils

View File

@ -10,6 +10,6 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.dataloaders.jittor_dataloader.fdl

View File

@ -10,6 +10,6 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.dataloaders.paddle_dataloader.fdl

View File

@ -0,0 +1,7 @@
fastNLP.core.dataloaders.prepare\_dataloader module
===================================================
.. automodule:: fastNLP.core.dataloaders.prepare_dataloader
:members:
:undoc-members:
:show-inheritance:

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.dataloaders.jittor_dataloader
fastNLP.core.dataloaders.paddle_dataloader
@ -20,7 +20,8 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.dataloaders.mix_dataloader
fastNLP.core.dataloaders.prepare_dataloader
fastNLP.core.dataloaders.utils

View File

@ -10,6 +10,6 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.dataloaders.torch_dataloader.fdl

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.dataset.dataset
fastNLP.core.dataset.field

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.drivers.jittor_driver.initialize_jittor_driver
fastNLP.core.drivers.jittor_driver.jittor_driver

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.drivers.paddle_driver.dist_utils
fastNLP.core.drivers.paddle_driver.fleet

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.drivers.jittor_driver
fastNLP.core.drivers.paddle_driver
@ -20,7 +20,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.drivers.choose_driver
fastNLP.core.drivers.driver

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.drivers.torch_driver.ddp
fastNLP.core.drivers.torch_driver.dist_utils

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.log.handler
fastNLP.core.log.highlighter

View File

@ -10,6 +10,6 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.metrics.backend.jittor_backend.backend

View File

@ -10,6 +10,6 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.metrics.backend.paddle_backend.backend

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.metrics.backend.jittor_backend
fastNLP.core.metrics.backend.paddle_backend
@ -20,7 +20,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.metrics.backend.auto_backend
fastNLP.core.metrics.backend.backend

View File

@ -10,6 +10,6 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.metrics.backend.torch_backend.backend

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.metrics.backend
@ -18,7 +18,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.metrics.accuracy
fastNLP.core.metrics.classify_f1_pre_rec_metric

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.callbacks
fastNLP.core.collators
@ -27,6 +27,6 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.vocabulary

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.samplers.conversion_utils
fastNLP.core.samplers.mix_sampler

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core.utils.cache_results
fastNLP.core.utils.dummy_class

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.envs.distributed
fastNLP.envs.env

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.io.loader.classification
fastNLP.io.loader.conll

View File

@ -10,7 +10,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.io.pipe.classification
fastNLP.io.pipe.conll

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.io.loader
fastNLP.io.pipe
@ -19,7 +19,7 @@ Submodules
----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.io.data_bundle
fastNLP.io.embed_loader

View File

@ -10,7 +10,7 @@ Subpackages
-----------
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP.core
fastNLP.envs

View File

@ -2,6 +2,6 @@ fastNLP
=======
.. toctree::
:maxdepth: 6
:maxdepth: 4
fastNLP

View File

@ -63,7 +63,6 @@ __all__ = [
"PaddleFleetDriver",
"JittorSingleDriver",
"JittorMPIDriver",
"TorchPaddleDriver",
# log
"logger",

View File

@ -8,8 +8,8 @@ from fastNLP.core.utils.utils import _get_fun_msg
def _get_monitor_value(monitor: Union[callable, str], real_monitor: Optional[str], res: dict) ->Tuple[str, float]:
"""
res中寻找 monitor 并返回如果 monitor 没找到则尝试用 _real_monitor , _real_monitor None 则尝试使用 monitor 的值进行
匹配
``res`` 中寻找 ``monitor`` 并返回如果 ``monitor`` 没找到则尝试用 ``_real_monitor`` , ``_real_monitor`` ``None``
则尝试使用 ``monitor`` 的值进行匹配
:param monitor:
:param real_monitor:

View File

@ -162,9 +162,9 @@ class PaddleDataLoader(DataLoader):
def get_batch_indices(self) -> List[int]:
"""
获取当前 batch idx
获取当前 ``batch`` 中每条数据对应的索引
:return:
:return: 当前 ``batch`` 数据的索引
"""
return self.cur_batch_indices

View File

@ -170,9 +170,9 @@ class TorchDataLoader(DataLoader):
def get_batch_indices(self) -> List[int]:
"""
获取当前 batch idx
获取当前 ``batch`` 中每条数据对应的索引
:return:
:return: 当前 ``batch`` 数据的索引
"""
return self.cur_batch_indices

View File

@ -400,15 +400,16 @@ class DataSet:
new_field_name: str = None, num_proc: int = 0,
progress_desc: str = None, show_progress_bar: bool = True):
r"""
DataSet 中的每个 instance 中的名为 `field_name` field 传给 func并获取它的返回值
:class:`~DataSet` 每个 ``instance`` 中为 ``field_name`` ``field`` 传给函数 ``func``并获取函数的返回值
:param field_name: 传入 func 的是哪个 field
:param func: input是 instance 中名为 `field_name` field 的内容
:param new_field_name: func 返回的内容放入到 `new_field_name` 这个 field 如果名称与已有的 field 相同则覆
盖之前的 field如果为 None 则不创建新的 field
:param num_proc: 进程的数量请注意由于python语言的特性多少进程就会导致多少倍内存的增长
:param progress_desc: progress_desc 的值默认为 Main
:param show_progress_bar: 是否展示进度条默认展示进度条
:param field_name: 传入 ``func`` ``field`` 名称
:param func: 一个函数其输入是 ``instance`` 中名为 ``field_name`` ``field`` 的内容
:param new_field_name: ``func`` 返回的内容放入到 ``new_field_name`` 对应的 ``field`` 如果名称与已有的 ``field`` 相同
则进行覆盖如果为 ``None`` 则不会覆盖和创建 ``field``
:param num_proc: 使用进程的数量请注意由于 ``python`` 语言的特性使用了多少进程就会导致多少倍内存的增长
:param progress_desc: 进度条的描述字符默认为 ``Main``
:param show_progress_bar: 是否展示进度条默认为展示
:return: 从函数 ``func`` 中得到的返回值
"""
assert len(self) != 0, "Null DataSet cannot use apply_field()."
if not self.has_field(field_name=field_name):

View File

@ -9,7 +9,6 @@ __all__ = [
"JittorDriver",
"JittorSingleDriver",
"JittorMPIDriver",
"TorchPaddleDriver",
'torch_seed_everything',
'paddle_seed_everything',
'optimizer_state_to_device'
@ -18,7 +17,6 @@ __all__ = [
from .torch_driver import TorchDriver, TorchSingleDriver, TorchDDPDriver, torch_seed_everything, optimizer_state_to_device
from .jittor_driver import JittorDriver, JittorMPIDriver, JittorSingleDriver
from .paddle_driver import PaddleDriver, PaddleFleetDriver, PaddleSingleDriver, paddle_seed_everything
from .torch_paddle_driver import TorchPaddleDriver
from .driver import Driver

View File

@ -1,5 +0,0 @@
__all__ = [
"TorchPaddleDriver",
]
from .torch_paddle_driver import TorchPaddleDriver

View File

@ -1,193 +0,0 @@
from typing import Optional, Dict, Union, Callable, Tuple
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH
from fastNLP.core.utils.utils import _get_fun_msg
if _NEED_IMPORT_PADDLE:
import paddle
from paddle.io import DataLoader as PaddleDataLoader
from paddle.optimizer import Optimizer as PaddleOptimizer
if _NEED_IMPORT_TORCH:
import torch
from torch.utils.data import DataLoader as TorchDataLoader
from torch.optim import Optimizer as TorchOptimizer
from fastNLP.core.drivers.driver import Driver
from fastNLP.envs.distributed import rank_zero_call
from fastNLP.core.utils.utils import auto_param_call, apply_to_collection
from fastNLP.core.log.logger import logger
from fastNLP.modules.mix_modules.mix_module import MixModule
__all__ = [
"TorchPaddleDriver",
]
class TorchPaddleDriver(Driver):
"""
针对torch和paddle混合模型的driver
由于是两种不同的框架不方便实现多卡暂时先实现CPU和GPU单卡的功能
"""
def __init__(self, model, device: Optional[str] = None, **kwargs):
super(TorchPaddleDriver, self).__init__(model)
self.model_device = device
self.torch_non_blocking = kwargs.get("torch_non_blocking", None)
self.paddle_blocking = kwargs.get("paddle_blocking", None)
self._data_device = kwargs.get("_data_device", None)
if isinstance(self._data_device, int):
# 将data_device设置为cuda:x的字符串形式
if self._data_device < 0:
raise ValueError("Parameter `_data_device` can not be smaller than 0.")
_could_use_device_num = paddle.device.cuda.device_count()
if self._data_device >= _could_use_device_num:
raise ValueError("The gpu device that parameter `device` specifies is not existed.")
self._data_device = f"cuda:{self._data_device}"
elif self._data_device is not None:
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.")
def setup(self):
if self.model_device is not None:
paddle.device.set_device(self.model_device.replace("cuda", "gpu"))
self.model.to(self.model_device)
@staticmethod
def check_dataloader_legality(dataloader, dataloader_name, is_train: bool = False):
if is_train:
if not isinstance(dataloader, (TorchDataLoader, PaddleDataLoader)):
raise ValueError(f"Parameter `{dataloader_name}` should be 'torch.util.data.DataLoader' or `paddle.io.dataloader` type, not {type(dataloader)}.")
else:
if not isinstance(dataloader, Dict):
raise ValueError(f"Parameter `{dataloader_name}` should be 'Dict' type, not {type(dataloader)}.")
else:
for each_dataloader in dataloader.values():
if not isinstance(each_dataloader, (TorchDataLoader, PaddleDataLoader)):
raise ValueError(f"Each dataloader of parameter `{dataloader_name}` should be "
f"'torch.util.data.DataLoader' or `paddle.io.dataloader` "
f"type, not {type(each_dataloader)}.")
@staticmethod
def _check_optimizer_legality(optimizers):
for each_optimizer in optimizers:
if not isinstance(each_optimizer, (TorchOptimizer, PaddleOptimizer)):
raise ValueError(f"Each optimizers of parameter `optimizers` should be "
f"'torch.optim.Optimizer' or 'paddle.optimizers.Optimizer' type, "
f"not {type(each_optimizer)}.")
def step(self):
for optimizer in self.optimizers:
optimizer.step()
def backward(self, loss):
loss.backward()
def zero_grad(self):
for optimizer in self.optimizers:
if isinstance(optimizer, TorchOptimizer):
optimizer.zero_grad()
elif isinstance(optimizer, PaddleOptimizer):
optimizer.clear_grad()
else:
raise ValueError("Unknown optimizers type.")
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict:
if isinstance(batch, Dict) and not self.wo_auto_param_call:
return auto_param_call(fn, batch, signature_fn=signature_fn)
else:
return fn(batch)
def get_model_call_fn(self, fn: str) -> Tuple:
if hasattr(self.model, fn):
fn = getattr(self.model, fn)
if not callable(fn):
raise RuntimeError(f"The `{fn}` attribute is not `Callable`.")
logger.debug(f'Use {_get_fun_msg(fn, with_fp=False)}...')
return fn, None
elif fn in {"train_step", "evaluate_step"}:
logger.debug(f'Use {_get_fun_msg(self.model.forward, with_fp=False)}...')
return self.model, self.model.forward
else:
raise RuntimeError(f"There is no `{fn}` method in your {type(self.model)}.")
def predict_step(self, batch):
if isinstance(batch, Dict):
return auto_param_call(self._predict_step, batch)
else:
return self._predict_step(batch)
@rank_zero_call
def save_model(self, filepath: str, only_state_dict: bool = True, model_save_fn: Optional[Callable] = None):
r"""
暂时不提供保存整个模型的方法
"""
if only_state_dict == False:
logger.warn("TorchPaddleModule only support saving state dicts now.")
if model_save_fn is not None:
model_save_fn(filepath)
else:
model = self.unwrap_model()
self.move_model_to_device(model, "cpu")
self.model.save(filepath)
self.move_model_to_device(model, self.model_device)
def load_model(self, filepath: str):
"""
加载模型的加载函数
:param filepath: 保存文件的文件位置需要包括文件名
:return:
"""
return self.model.load(filepath)
def save(self):
...
def load(self):
...
@staticmethod
def move_model_to_device(model: MixModule, device: str):
if device is not None:
model.to(device)
def unwrap_model(self):
return self.model
@staticmethod
def tensor_to_numeric(tensor):
if tensor is None:
return None
def _translate(_data):
return _data.tolist()
return apply_to_collection(
data=tensor,
dtype=(paddle.Tensor, torch.Tensor),
function=_translate
)
def set_model_mode(self, mode: str):
assert mode in {"train", "eval"}
getattr(self.model, mode)()
def get_model_device(self):
return self.model_device
@property
def data_device(self):
if self.model_device is not None:
return self.model_device
else:
return self._data_device
def set_model_mode(self, mode: str):
assert mode in {"train", "eval"}
getattr(self.model, mode)()
def set_sampler_epoch(self, dataloader: Union['TorchDataLoader', 'PaddleDataLoader'], cur_epoch_idx):
# 保证 ddp 训练时的 shuffle=True 时的正确性,因为需要保证每一个进程上的 sampler 的shuffle 的随机数种子是一样的;
return dataloader

View File

@ -1,4 +0,0 @@
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE
if _NEED_IMPORT_PADDLE:
pass

View File

@ -11,7 +11,6 @@ __all__ = [
'is_in_fnlp_paddle_dist',
'is_in_paddle_launch_dist',
'f_rich_progress',
'torch_paddle_move_data_to_device',
'torch_move_data_to_device',
'get_fn_arg_names',
'auto_param_call',
@ -32,7 +31,6 @@ from .jittor_utils import is_jittor_dataset, jittor_collate_wraps
from .paddle_utils import get_device_from_visible, paddle_to, paddle_move_data_to_device, get_paddle_device_id, get_paddle_gpu_str, is_in_paddle_dist, \
is_in_fnlp_paddle_dist, is_in_paddle_launch_dist
from .rich_progress import f_rich_progress
from .torch_paddle_utils import torch_paddle_move_data_to_device
from .torch_utils import torch_move_data_to_device
from .utils import *

View File

@ -1,4 +1,4 @@
import functools
__all__ = []
class DummyClass:
def __init__(self, *args, **kwargs):

View File

@ -1,7 +1,6 @@
"""
该文件用于为fastNLP提供一个统一的progress bar管理通过共用一个Task对象trainer中的progress bar和evaluation中的progress bar才能
不冲突
该文件用于为 ``fastNLP`` 提供一个统一的 ``progress bar`` 管理通过共用一个``Task`` 对象 :class:`~fastNLP.core.Trainer`
``progress bar`` :class:`~fastNLP.core.Evaluator` 中的 ``progress bar`` 才能不冲突
"""
import sys
from typing import Any, Union, Optional

View File

@ -1,49 +0,0 @@
from typing import Any, Optional
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH
if _NEED_IMPORT_PADDLE:
import paddle
if _NEED_IMPORT_TORCH:
import torch
__all__ = [
"torch_paddle_move_data_to_device",
]
from .utils import apply_to_collection
from .paddle_utils import paddle_to
def torch_paddle_move_data_to_device(batch: Any, device: Optional[str] = None, non_blocking: Optional[bool] = True,
data_device: Optional[str] = None) -> Any:
r"""
将数据集合传输到给定设备只有paddle.Tensor和torch.Tensor对象会被传输到设备中其余保持不变
:param batch:
:param device:
:param non_blocking:
:param data_device:
:return: 相同的集合但所有包含的张量都驻留在新设备上
"""
if device is None:
if data_device is not None:
device = data_device
else:
return batch
torch_device = device.replace("gpu", "cuda")
paddle_device = device.replace("cuda", "gpu")
def batch_to(data: Any) -> Any:
if isinstance(data, torch.Tensor):
data = data.to(torch_device, non_blocking=non_blocking)
elif isinstance(data, paddle.Tensor):
data = paddle_to(data, paddle_device)
return data
return apply_to_collection(batch, dtype=(paddle.Tensor, torch.Tensor), function=batch_to)

View File

@ -10,10 +10,6 @@ from typing import Callable, List, Any, Dict, AnyStr, Union, Mapping, Sequence
from typing import Tuple, Optional
from time import sleep
try:
from typing import Literal, Final
except ImportError:
from typing_extensions import Literal, Final
import os
from contextlib import contextmanager
from functools import wraps
@ -22,7 +18,6 @@ import numpy as np
from pathlib import Path
from fastNLP.core.log import logger
from ...envs import SUPPORT_BACKENDS
__all__ = [
@ -43,10 +38,10 @@ __all__ = [
def get_fn_arg_names(fn: Callable) -> List[str]:
r"""
返回一个函数所有参数的名字
返回一个函数所有参数的名字
:param fn: 需要查询的函数
:return: 一个列表其中的元素则是查询函数的参数的字符串名字
:param fn: 需要查询的函数
:return: 一个列表其中的元素是函数 ``fn`` 参数的字符串名字
"""
return list(inspect.signature(fn).parameters)
@ -54,24 +49,18 @@ def get_fn_arg_names(fn: Callable) -> List[str]:
def auto_param_call(fn: Callable, *args, signature_fn: Optional[Callable] = None,
mapping: Optional[Dict[AnyStr, AnyStr]] = None) -> Any:
r"""
该函数会根据输入函数的形参名从*args因此都需要是dict类型中找到匹配的值进行调用如果传入的数据与fn的形参不匹配可以通过mapping
参数进行转换mapping参数中的一对keyvalue表示以这个key在*args中找到值并将这个值传递给形参名为value的参数
该函数会根据输入函数的形参名从 ``*args`` 因此都需要是 ``dict`` 类型中找到匹配的值进行调用如果传入的数据与 ``fn`` 的形参不匹配可以通过
``mapping`` 参数进行转换``mapping`` 参数中的一对 ``(key, value)`` 表示在 ``*args`` 中找到 ``key`` 对应的值并将这个值传递给形参中名为
``value`` 的参数
1.该函数用来提供给用户根据字符串匹配从而实现自动调用
2.注意 mapping 默认为 None如果你希望指定输入和运行函数的参数的对应方式那么你应当让 mapping 为一个这样的字典传入进来
如果 mapping 不为 None那么我们一定会先使用 mapping 将输入的字典的 keys 修改过来因此请务必亲自检查 mapping 的正确性
3.如果输入的函数的参数有默认值那么如果之后的输入中没有该参数对应的值我们就会使用该参数对应的默认值否则也会使用之后的输入的值
4.如果输入的函数是一个 `partial` 函数情况同 '3.'即和默认参数的情况相同
:param fn: 用来进行实际计算的函数其参数可以包含有默认值
:param args: 一系列的位置参数应当为一系列的字典我们需要从这些输入中提取 `fn` 计算所需要的实际参数
:param signature_fn: 函数用来替换 `fn` 的函数签名如果该参数不为 None那么我们首先会从该函数中提取函数签名然后通过该函数签名提取
参数值后再传给 `fn` 进行实际的运算
:param mapping: 一个字典用来更改其前面的字典的键值
:return: 返回 `fn` 运行的结果
1. 该函数用来提供给用户根据字符串匹配从而实现自动调用
2. 注意 ``mapping`` 默认为 ``None``如果你希望指定输入和运行函数的参数的对应方式那么你应当让 ``mapping`` 为一个字典传入进来
如果 ``mapping`` 不为 ``None``那么我们一定会先使用 ``mapping`` 将输入的字典的 ``keys`` 修改过来因此请务必亲自检查 ``mapping`` 的正确性
3. 如果输入的函数的参数有默认值那么如果之后的输入中没有该参数对应的值我们就会使用该参数对应的默认值否则也会使用之后的输入的值
4. 如果输入的函数是一个 ``partial`` 函数情况同第三点即和默认参数的情况相同
Examples::
>>> # 1
>>> loss_fn = CrossEntropyLoss() # 如果其需要的参数为 def CrossEntropyLoss(y, pred)
>>> batch = {"x": 20, "y": 1}
@ -84,6 +73,14 @@ def auto_param_call(fn: Callable, *args, signature_fn: Optional[Callable] = None
>>> print(auto_param_call(test_fn, {"x": 10}, {"y": 20, "a": 30})) # res: 70
>>> print(auto_param_call(partial(test_fn, a=100), {"x": 10}, {"y": 20})) # res: 140
>>> print(auto_param_call(partial(test_fn, a=100), {"x": 10}, {"y": 20, "a": 200})) # res: 240
:param fn: 用来进行实际计算的函数其参数可以包含有默认值
:param args: 一系列的位置参数应当为一系列的字典我们需要从这些输入中提取 ``fn`` 计算所需要的实际参数
:param signature_fn: 函数用来替换 ``fn`` 的函数签名如果该参数不为 ``None``那么我们首先会从该函数中提取函数签名然后通过该函数签名提取
参数值后再传给 ``fn`` 进行实际的运算
:param mapping: 一个字典用来更改其前面的字典的键值
:return: 返回 ``fn`` 运行的结果
"""
if signature_fn is not None:
@ -226,13 +223,13 @@ def _check_valid_parameters_number(fn, expected_params:List[str], fn_name=None):
def check_user_specific_params(user_params: Dict, fn: Callable):
"""
该函数使用用户的输入来对指定函数的参数进行赋值
主要用于一些用户无法直接调用函数的情况
该函数主要的作用在于帮助检查用户对使用函数 fn 的参数输入是否有误
该函数使用用户的输入来对指定函数的参数进行赋值主要用于一些用户无法直接调用函数的情况
该函数主要的作用在于帮助检查用户对使用函数 ``fn`` 的参数输入是否有误
:param user_params: 用户指定的参数的值应当是一个字典其中 key 表示每一个参数的名字value 为每一个参数应当的值
:param fn: 会被调用的函数
:return: 返回一个字典其中为在之后调用函数 fn 时真正会被传进去的参数的值
:param user_params: 用户指定的参数的值应当是一个字典其中 ``key`` 表示每一个参数的名字
``value`` 为每一个参数的值
:param fn: 将要被调用的函数
:return: 返回一个字典其中为在之后调用函数 ``fn`` 时真正会被传进去的参数的值
"""
fn_arg_names = get_fn_arg_names(fn)
@ -243,6 +240,9 @@ def check_user_specific_params(user_params: Dict, fn: Callable):
def dataclass_to_dict(data: "dataclasses.dataclass") -> Dict:
"""
将传入的 `dataclass` 实例转换为字典
"""
if not is_dataclass(data):
raise TypeError(f"Parameter `data` can only be `dataclass` type instead of {type(data)}.")
_dict = dict()
@ -253,21 +253,31 @@ def dataclass_to_dict(data: "dataclasses.dataclass") -> Dict:
def match_and_substitute_params(mapping: Optional[Union[Callable, Dict]] = None, data: Optional[Any] = None) -> Any:
r"""
用来实现将输入batch或者输出outputs通过 `mapping` 将键值进行更换的功能
该函数应用于 `input_mapping` `output_mapping`
对于 `input_mapping`该函数会在 `TrainBatchLoop` 中取完数据后立刻被调用
对于 `output_mapping`该函数会在 `Trainer.train_step` 以及 `Evaluator.train_step` 中得到结果后立刻被调用
用来实现将输入的 ``batch``或者输出的 ``outputs``通过 ``mapping`` 将键值进行更换的功能
该函数应用于 ``input_mapping`` ``output_mapping``
对于 ``input_mapping``该函数会在 :class:`~fastNLP.core.controllers.TrainBatchLoop` 中取完数据后立刻被调用
对于 ``output_mapping``该函数会在 :class:`~fastNLP.core.Trainer` :meth:`~fastNLP.core.Trainer.train_step`
以及 :class:`~fastNLP.core.Evaluator` :meth:`~fastNLP.core.Evaluator.train_step` 中得到结果后立刻被调用
转换的逻辑按优先级依次为
1. 如果 `mapping` 是一个函数那么会直接返回 `mapping(data)`
2. 如果 `mapping` 是一个 `Dict`那么 `data` 的类型只能为以下三种 [`Dict`, `dataclass`, `Sequence`]
如果 `data` `Dict`那么该函数会将 `data` key 替换为 mapping[key]
如果 `data` `dataclass`那么该函数会先使用 `dataclasses.asdict` 函数将其转换为 `Dict`然后进行转换
如果 `data` `Sequence`那么该函数会先将其转换成一个对应的 `Dict`{"_0": list[0], "_1": list[1], ...}然后使用
mapping对这个 `Dict` 进行转换如果没有匹配上mapping中的key则保持"_number"这个形式
1. 如果 ``mapping`` 是一个函数那么会直接返回 ``mapping(data)``
2. 如果 ``mapping`` 是一个 ``Dict``那么 ``data`` 的类型只能为以下三种 ``[Dict, dataclass, Sequence]``
* 如果 ``data`` ``Dict``那么该函数会将 ``data`` ``key`` 替换为 ``mapping[key]``
* 如果 ``data`` ``dataclass``那么该函数会先使用 :func:`dataclasses.asdict` 函数将其转换为 ``Dict``然后进行转换
* 如果 ``data`` ``Sequence``那么该函数会先将其转换成一个对应的字典::
{
"_0": list[0],
"_1": list[1],
...
}
:param mapping: 用于转换的字典或者函数mapping是函数时返回值必须为字典类型
然后使用 ``mapping`` 对这个 ``Dict`` 进行转换如果没有匹配上 ``mapping`` 中的 ``key`` 则保持 ``\'\_number\'`` 这个形式。
:param mapping: 用于转换的字典或者函数``mapping`` 是函数时返回值必须为字典类型
:param data: 需要被转换的对象
:return: 返回转换好的结果
"""
@ -320,21 +330,20 @@ def apply_to_collection(
include_none: bool = True,
**kwargs: Any,
) -> Any:
"""将函数 function 递归地在 data 中的元素执行,但是仅在满足元素为 dtype 时执行。
"""
使用函数 ``function`` 递归地在 ``data`` 中的元素执行但是仅在满足元素为 ``dtype`` 时执行
this function credit to: https://github.com/PyTorchLightning/pytorch-lightning
Args:
data: the collection to apply the function to
dtype: the given function will be applied to all elements of this dtype
function: the function to apply
*args: positional arguments (will be forwarded to calls of ``function``)
wrong_dtype: the given function won't be applied if this type is specified and the given collections
is of the ``wrong_dtype`` even if it is of type ``dtype``
include_none: Whether to include an element if the output of ``function`` is ``None``.
**kwargs: keyword arguments (will be forwarded to calls of ``function``)
该函数参考了 `pytorch-lightning <https://github.com/PyTorchLightning/pytorch-lightning>`_ 的实现
Returns:
The resulting collection
:param data: 需要进行处理的数据集合或数据
:param dtype: 数据的类型函数 ``function`` 只会被应用于 ``data`` 中类型为 ``dtype`` 的数据
:param function: 对数据进行处理的函数
:param args: ``function`` 所需要的其它参数
:param wrong_dtype: ``function`` 一定不会生效的数据类型如果数据既是 ``wrong_dtype`` 类型又是 ``dtype`` 类型
那么也不会生效
:param include_none: 是否包含执行结果为 ``None`` 的数据默认为 ``True``
:param kwargs: ``function`` 所需要的其它参数
:return: 经过 ``function`` 处理后的数据集合
"""
# Breaking condition
if isinstance(data, dtype) and (wrong_dtype is None or not isinstance(data, wrong_dtype)):
@ -402,16 +411,18 @@ def apply_to_collection(
@contextmanager
def nullcontext():
r"""
用来实现一个什么 dummy context 上下文环境
实现一个什么都不做的上下文环境
"""
yield
def sub_column(string: str, c: int, c_size: int, title: str) -> str:
r"""
对传入的字符串进行截断方便在命令行中显示
:param string: 要被截断的字符串
:param c: 命令行列数
:param c_size: instance或dataset field数
:param c_size: :class:`~fastNLP.core.Instance` :class:`fastNLP.core.DataSet` ``field`` 数目
:param title: 列名
:return: 对一个过长的列进行截断的结果
"""
@ -442,18 +453,17 @@ def _is_iterable(value):
def pretty_table_printer(dataset_or_ins) -> PrettyTable:
r"""
:param dataset_or_ins: 传入一个dataSet或者instance
``fastNLP`` 中展示数据的函数::
.. code-block::
ins = Instance(field_1=[1, 1, 1], field_2=[2, 2, 2], field_3=["a", "b", "c"])
>>> ins = Instance(field_1=[1, 1, 1], field_2=[2, 2, 2], field_3=["a", "b", "c"])
+-----------+-----------+-----------------+
| field_1 | field_2 | field_3 |
+-----------+-----------+-----------------+
| [1, 1, 1] | [2, 2, 2] | ['a', 'b', 'c'] |
+-----------+-----------+-----------------+
:return: pretty table的形式返回根据terminal大小进行自动截断
:param dataset_or_ins: 要展示的 :class:`~fastNLP.core.DataSet` 或者 :class:`~fastNLP.core.Instance`
:return: 根据 ``terminal`` 大小进行自动截断的数据表格
"""
x = PrettyTable()
try:
@ -486,7 +496,7 @@ def pretty_table_printer(dataset_or_ins) -> PrettyTable:
class Option(dict):
r"""a dict can treat keys as attributes"""
r"""将键转化为属性的字典类型"""
def __getattr__(self, item):
try:
@ -516,11 +526,10 @@ _emitted_deprecation_warnings = set()
def deprecated(help_message: Optional[str] = None):
"""Decorator to mark a function as deprecated.
"""
标记当前功能已经过时的装饰器
Args:
help_message (`Optional[str]`): An optional message to guide the user on how to
switch to non-deprecated usage of the library.
:param help_message: 一段指引信息告知用户如何将代码切换为当前版本提倡的用法
"""
def decorator(deprecated_function: Callable):
@ -549,11 +558,10 @@ def deprecated(help_message: Optional[str] = None):
return decorator
def seq_len_to_mask(seq_len, max_len=None):
def seq_len_to_mask(seq_len, max_len: Optional[int]):
r"""
将一个表示sequence length的一维数组转换为二维的mask不包含的位置为0
转变 1-d seq_len到2-d mask.
将一个表示 ``sequence length`` 的一维数组转换为二维的 ``mask`` 不包含的位置为 **0**
.. code-block::
@ -570,10 +578,11 @@ def seq_len_to_mask(seq_len, max_len=None):
>>>print(mask.size())
torch.Size([14, 100])
:param np.ndarray,torch.LongTensor seq_len: shape将是(B,)
:param int max_len: 将长度pad到这个长度默认(None)使用的是seq_len中最长的长度但在nn.DataParallel的场景下可能不同卡的seq_len会有
区别所以需要传入一个max_len使得mask的长度是pad到该长度
:return: np.ndarray, torch.Tensor shape将是(B, max_length) 元素类似为bool或torch.uint8
:param seq_len: 大小为是 ``(B,)`` 的长度序列
:param int max_len: 将长度 ``pad`` ``max_len``默认情况 ``None``使用的是 ``seq_len`` 中最长的长度
但在 :class:`torch.nn.DataParallel` 等分布式的场景下可能不同卡的 ``seq_len`` 会有区别所以需要传入
一个 ``max_len`` 使得 ``mask`` 的长度 ``pad`` 到该长度
:return: 大小为 ``(B, max_len)`` ``mask`` 元素类型为 ``bool`` ``uint8``
"""
if isinstance(seq_len, np.ndarray):
assert len(np.shape(seq_len)) == 1, f"seq_len can only have one dimension, got {len(np.shape(seq_len))}."

View File

@ -6,6 +6,7 @@ from packaging.version import Version
import subprocess
import pkg_resources
__all__ = []
def _module_available(module_path: str) -> bool:
"""Check if a path is available in your environment.
@ -48,10 +49,11 @@ def _compare_version(package: str, op: Callable, version: str, use_base_version:
pkg_version = Version(pkg_version.base_version)
return op(pkg_version, Version(version))
def get_gpu_count():
def get_gpu_count() -> int:
"""
利用命令行获取gpu数目的函数
:return: gpu数目如果没有显卡设备则为-1
利用命令行获取 ``gpu`` 数目的函数
:return: 显卡数目如果没有显卡设备则为-1
"""
try:
lines = subprocess.check_output(['nvidia-smi', '--query-gpu=memory.used', '--format=csv'])

View File

@ -1,9 +0,0 @@
__all__ = [
"MixModule",
"torch2paddle",
"paddle2torch",
"torch2jittor",
"jittor2torch",
]
from .mix_modules import MixModule, torch2paddle, paddle2torch, torch2jittor, jittor2torch

View File

@ -1,10 +0,0 @@
__all__ = [
"MixModule",
"torch2paddle",
"paddle2torch",
"torch2jittor",
"jittor2torch",
]
from .mix_module import MixModule
from .utils import *

View File

@ -1,310 +0,0 @@
import os
import io
import pickle
from typing import Dict
from collections import OrderedDict
import numpy as np
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR, _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH
from fastNLP.core.utils.paddle_utils import paddle_to
if _NEED_IMPORT_PADDLE:
import paddle
from paddle.nn import Layer as PaddleLayer
if _NEED_IMPORT_TORCH:
import torch
from torch.nn import Module as TorchModule, Parameter as TorchParameter
if _NEED_IMPORT_JITTOR:
import jittor
__all__ = [
"MixModule",
]
class MixModule:
"""
TODO: 支持不同的混合方式添加state_dict的支持如果参数里有List of Tensors该怎么处理
是否需要仿照Module那样在初始化的时候给各种模型分类
可以同时使用Torch和Paddle框架的混合模型
"""
def __init__(self, *args, **kwargs):
pass
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def named_parameters(self, prefix='', recurse: bool=True, backend=None):
"""
返回模型的名字和参数
:param prefix: 输出时在参数名前加上的前缀
:param recurse: 是否递归地输出参数
:param backend: `backend`=`None`将所有模型和张量的参数返回
`backend`=`torch`返回`torch`的参数
`backend`=`paddle`返回`paddle`的参数
"""
if backend is None:
generator = self.attributes(TorchModule, TorchParameter, PaddleLayer)
elif backend == "torch":
generator = self.attributes(TorchModule, TorchParameter)
elif backend == "paddle":
generator = self.attributes(PaddleLayer)
else:
raise ValueError("Unknown backend parameter.")
for name, value in generator:
name = prefix + ('.' if prefix else '') + name
if isinstance(value, TorchParameter):
# 非Module/Layer类型直接输出名字和值
yield name, value
elif recurse:
# 递归地调用named_parameters
for name_r, value_r in value.named_parameters(name, recurse):
yield name_r, value_r
def parameters(self, recurse: bool = True, backend: str = None):
"""
返回模型的参数
:param recurse:
:param backend: `backend`=`None`将所有模型和张量的参数返回
`backend`=`torch`返回`torch`的参数
`backend`=`paddle`返回`paddle`的参数
"""
for name, value in self.named_parameters(recurse=recurse, backend=backend):
yield value
def forward(self, *args, **kwargs):
raise NotImplementedError
def train_step(self, batch):
raise NotImplementedError
def test_step(self, batch):
raise NotImplementedError
def evaluate_step(self, batch):
raise NotImplementedError
def train(self):
for name, value in self.attributes(TorchModule, PaddleLayer):
value.train()
def eval(self):
for name, value in self.attributes(TorchModule, PaddleLayer):
value.eval()
def to(self, device):
"""
:param device: 设备名
"""
# 有jittor的话 warning
if device == "cpu":
paddle_device = device
elif device.startswith("cuda"):
paddle_device = device.replace("cuda", "gpu")
elif device.startswith("gpu"):
paddle_device = device
device = device.replace("gpu", "cuda")
else:
raise ValueError("Device value error")
for name, value in self.attributes(TorchModule):
# torch的to函数不影响Tensor
vars(self)[name] = value.to(device)
for name, value in self.attributes(TorchParameter):
# Parameter在经过to函数后会变成Tensor类型
vars(self)[name] = TorchParameter(value.to(device), requires_grad=value.requires_grad)
for name, value in self.attributes(PaddleLayer):
vars(self)[name] = value.to(paddle_device)
for name, value in self.attributes(paddle.Tensor):
# paddle的to函数会影响到Tensor
vars(self)[name] = paddle_to(value, paddle_device)
return self
def state_dict(self, backend: str = None) -> Dict:
"""
返回模型的state_dict
.. note:: torch的destination参数会在将来删除因此不提供destination参数
:param backend: `backend`=`None`将所有模型和张量的state dict返回
`backend`=`torch`返回`torch`的state dict
`backend`=`paddle`返回`paddle`的state dict
"""
if backend is None:
generator = self.attributes(TorchModule, TorchParameter, PaddleLayer)
elif backend == "torch":
generator = self.attributes(TorchModule, TorchParameter)
elif backend == "paddle":
generator = self.attributes(PaddleLayer)
else:
raise ValueError(f"Unknown backend {backend}.")
destination = OrderedDict()
for name, value in generator:
if value is None:
continue
if isinstance(value, TorchParameter):
destination[name] = value
else:
# 不同框架state_dict函数的参数名和顺序不同
if isinstance(value, PaddleLayer):
kwargs = {
"structured_name_prefix": name + ".",
}
elif isinstance(value, TorchModule):
kwargs = {
"prefix": name + ".",
}
else:
raise ValueError(f"Unknown item type {type(value)}")
destination.update(value.state_dict(**kwargs))
return destination
def save_state_dict_to_file(self, path: str):
"""
保存模型的state dict到path
"""
# TODO 设备限制
filename = os.path.basename(path)
if filename == "":
raise ValueError("Received empty filename.")
dirname = os.path.dirname(path)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname)
protocol = 4
saved = {}
paddle_dict = self.state_dict(backend="paddle")
torch_dict = self.state_dict(backend="torch")
# 保存paddle部分
# 调用paddle保存时的处理函数
paddle_saved_obj = paddle.framework.io._build_saved_state_dict(paddle_dict)
paddle_saved_obj = paddle.fluid.io._unpack_saved_dict(paddle_saved_obj, protocol)
# 将返回的dict保存
saved["paddle"] = paddle_saved_obj
# 保存torch部分
buffer = io.BytesIO()
torch.save(torch_dict, buffer)
saved["torch"] = buffer.getvalue()
# 保存
with open(path, "wb") as f:
pickle.dump(saved, f, protocol)
def load_state_dict_from_file(self, path: str):
"""
`path` 中加载保存的state dict
"""
state_dict = {}
with open(path, "rb") as f:
loaded = pickle.load(f)
# 加载paddle的数据
paddle_loaded_obj = loaded["paddle"]
paddle_load_result = paddle.fluid.io._pack_loaded_dict(paddle_loaded_obj)
if "StructuredToParameterName@@" in paddle_load_result:
for key in paddle_load_result["StructuredToParameterName@@"]:
if isinstance(paddle_load_result[key], np.ndarray):
paddle_load_result[key] = paddle.to_tensor(paddle_load_result[key])
state_dict.update(paddle_load_result)
# 加载torch的数据
torch_loaded_obj = loaded["torch"]
torch_bytes = io.BytesIO(torch_loaded_obj)
torch_load_result = torch.load(torch_bytes)
state_dict.update(torch_load_result)
self.load_state_dict(state_dict)
def load_state_dict(self, state_dict):
"""
从state dict中加载数据
"""
missing_keys = []
unexpected_keys = []
error_msgs = []
new_state = {}
local_state = self.state_dict()
# 对字典内容按前缀进行归类
for key, value in state_dict.items():
splited = key.split(".", 1)
if len(splited) == 1:
# 没有前缀实际上只有torch.nn.Parameter会进入这种情况
new_state[key] = value
else:
prefix, name = splited
if prefix not in new_state:
new_state[prefix] = {}
new_state[prefix][name] = value
for key, param in self.attributes(TorchModule, TorchParameter, PaddleLayer):
if key in new_state:
# 在传入的字典中找到了对应的值
input_param = new_state[key]
if not isinstance(input_param, dict):
# 且不是字典,即上述没有前缀的情况
# 按照torch.nn.Module._load_from_state_dict进行赋值
if not torch.overrides.is_tensor_like(input_param):
error_msgs.append('While copying the parameter named "{}", '
'expected torch.Tensor or Tensor-like object from checkpoint but '
'received {}'
.format(key, type(input_param)))
continue
# This is used to avoid copying uninitialized parameters into
# non-lazy modules, since they dont have the hook to do the checks
# in such case, it will error when accessing the .shape attribute.
is_param_lazy = torch.nn.parameter.is_lazy(param)
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
if not is_param_lazy and len(param.shape) == 0 and len(input_param.shape) == 1:
input_param = input_param[0]
if not is_param_lazy and input_param.shape != param.shape:
# local shape should match the one in checkpoint
error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, '
'the shape in current model is {}.'
.format(key, input_param.shape, param.shape))
continue
try:
with torch.no_grad():
param.copy_(input_param)
except Exception as ex:
error_msgs.append('While copying the parameter named "{}", '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}, '
'an exception occurred : {}.'
.format(key, param.size(), input_param.size(), ex.args))
else:
# 否则在子模块中
if isinstance(param, TorchModule):
# torch模块
# 由于paddle没有提供类似strict的参数因此也不对torch作要求
param.load_state_dict(input_param, strict=False)
elif isinstance(param, PaddleLayer):
# paddle模块
param.load_dict(input_param)
else:
missing_keys.append(key)
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
self.__class__.__name__, "\n\t".join(error_msgs)))
def attributes(self, *types):
"""
查找对应类型的成员
"""
for name, value in vars(self).items():
if isinstance(value, types):
yield name, value

View File

@ -1,233 +0,0 @@
import warnings
import os
from typing import Any, Optional, Union
import numpy as np
from fastNLP.core.utils.utils import apply_to_collection
from fastNLP.core.utils.paddle_utils import paddle_to
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR, _NEED_IMPORT_TORCH, _NEED_IMPORT_PADDLE
if _NEED_IMPORT_PADDLE:
import paddle
if _NEED_IMPORT_JITTOR:
import jittor
if _NEED_IMPORT_TORCH:
import torch
__all__ = [
"paddle2torch",
"torch2paddle",
"jittor2torch",
"torch2jittor",
]
def _paddle2torch(paddle_tensor: 'paddle.Tensor', target_device: Optional[Union[str, int]] = None, no_gradient: bool = None) -> 'torch.Tensor':
"""
将paddle tensor转换为torch tensor并且能够保留梯度进行反向传播
:param paddle_tensor: 要转换的paddle张量
:param target_device: 是否将转换后的张量迁移到特定设备上输入为`None`和输入的张量相同
:param no_gradient: 是否保留原张量的梯度`None`新的张量与输入张量保持一致
`True`全部不保留梯度`False`全部保留梯度
:return: 转换后的torch张量
"""
no_gradient = paddle_tensor.stop_gradient if no_gradient is None else no_gradient
paddle_numpy = paddle_tensor.numpy()
if not np.issubdtype(paddle_numpy.dtype, np.inexact):
no_gradient = True
if target_device is None:
if paddle_tensor.place.is_gpu_place():
# paddlepaddle有两种Place对应不同的device id获取方式
if hasattr(paddle_tensor.place, "gpu_device_id"):
# paddle.fluid.core_avx.Place
# 在gpu环境下创建张量的话张量的place是这一类型
target_device = f"cuda:{paddle_tensor.place.gpu_device_id()}"
else:
# paddle.CUDAPlace
target_device = f"cuda:{paddle_tensor.place.get_device_id()}"
else:
# TODO: 可能需要支持xpu等设备
target_device = "cpu"
if not no_gradient:
# 保持梯度,并保持反向传播
# torch.tensor会保留numpy数组的类型
torch_tensor = torch.tensor(paddle_numpy, requires_grad=True, device=target_device)
hook = torch_tensor.register_hook(
lambda grad: paddle.autograd.backward(paddle_tensor, paddle.to_tensor(grad.cpu().numpy()))
)
else:
# 不保留梯度
torch_tensor = torch.tensor(paddle_numpy, requires_grad=False, device=target_device)
return torch_tensor
def _torch2paddle(torch_tensor: 'torch.Tensor', target_device: str = None, no_gradient: bool = None) -> 'paddle.Tensor':
"""
将torch tensor转换为paddle tensor并且能够保留梯度进行反向传播
:param torch_tensor: 要转换的torch张量
:param target_device: 是否将转换后的张量迁移到特定设备上输入为`None`和输入的张量相同
:param no_gradient: 是否保留原张量的梯度`None`新的张量与输入张量保持一致
`True`全部不保留梯度`False`全部保留梯度
:return: 转换后的paddle张量
"""
no_gradient = not torch_tensor.requires_grad if no_gradient is None else no_gradient
if target_device is None:
if torch_tensor.is_cuda:
target_device = f"gpu:{torch_tensor.device.index}"
else:
target_device = "cpu"
if not no_gradient:
# 保持梯度并保持反向传播
# paddle的stop_gradient和torch的requires_grad表现是相反的
paddle_tensor = paddle.to_tensor(torch_tensor.detach().numpy(), stop_gradient=False)
hook = paddle_tensor.register_hook(
lambda grad: torch.autograd.backward(torch_tensor, torch.tensor(grad.numpy()))
)
else:
paddle_tensor = paddle.to_tensor(torch_tensor.detach().numpy(), stop_gradient=True)
paddle_tensor = paddle_to(paddle_tensor, target_device)
return paddle_tensor
def _jittor2torch(jittor_var: 'jittor.Var', target_device: Optional[Union[str, int]] = None, no_gradient: bool = None) -> 'torch.Tensor':
"""
将jittor Var转换为torch tensor并且能够保留梯度进行反向传播
:param jittor_var: 要转换的jittor变量
:param target_device: 是否将转换后的张量迁移到特定设备上输入为`None`根据jittor.flags.use_cuda决定
:param no_gradient: 是否保留原张量的梯度`None`新的张量与输入张量保持一致
`True`全部不保留梯度`False`全部保留梯度
:return: 转换后的torch张量
"""
# TODO: warning无法保留梯度
# jittor的grad可以通过callback进行传递
# 如果outputs有_grad键可以实现求导
no_gradient = not jittor_var.requires_grad if no_gradient is None else no_gradient
if no_gradient == False:
warnings.warn("The result tensor will not keep gradients due to differences between jittor and pytorch.")
jittor_numpy = jittor_var.numpy()
if not np.issubdtype(jittor_numpy.dtype, np.inexact):
no_gradient = True
if target_device is None:
# jittor的设备分配是自动的
# 根据use_cuda判断
if jittor.flags.use_cuda:
target_device = "cuda:0"
else:
target_device = "cpu"
torch_tensor = torch.tensor(jittor_numpy, requires_grad=not no_gradient, device=target_device)
return torch_tensor
def _torch2jittor(torch_tensor: 'torch.Tensor', no_gradient: bool = None) -> 'jittor.Var':
"""
将torch tensor转换为jittor Var并且能够保留梯度进行反向传播
:param torch_tensor: 要转换的torch张量
:param no_gradient: 是否保留原张量的梯度`None`新的张量与输入张量保持一致
`True`全部不保留梯度`False`全部保留梯度
:return: 转换后的jittor变量
"""
no_gradient = not torch_tensor.requires_grad if no_gradient is None else no_gradient
if not no_gradient:
# 保持梯度并保持反向传播
jittor_var = jittor.Var(torch_tensor.detach().numpy())
jittor_var.requires_grad = True
hook = jittor_var.register_hook(
lambda grad: torch.autograd.backward(torch_tensor, torch.tensor(grad.numpy()))
)
else:
jittor_var = jittor.Var(torch_tensor.detach().numpy())
jittor_var.requires_grad = False
return jittor_var
def torch2paddle(torch_in: Any, target_device: str = None, no_gradient: bool = None) -> Any:
"""
递归地将输入中包含的torch张量转换为paddle张量
:param torch_in: 要转换的包含torch.Tensor类型的变量
:param target_device: 是否将转换后的张量迁移到特定设备上
输入为`None`和输入的张量相同
:param no_gradient: 是否保留原张量的梯度`None`新的张量与输入张量保持一致
`True`全部不保留梯度`False`全部保留梯度
:return: 将所有torch.Tensor转换为paddle.Tensor的张量
"""
return apply_to_collection(
torch_in,
dtype=torch.Tensor,
function=_torch2paddle,
target_device=target_device,
no_gradient=no_gradient,
)
def paddle2torch(paddle_in: Any, target_device: str = None, no_gradient: bool = None) -> Any:
"""
递归地将输入中包含的paddle张量转换为torch张量
:param torch_in: 要转换的包含paddle.Tensor类型的变量
:param target_device: 是否将转换后的张量迁移到特定设备上
输入为`None`和输入的张量相同
:param no_gradient: 是否保留原张量的梯度`None`新的张量与输入张量保持一致
`True`全部不保留梯度`False`全部保留梯度
:return: 将所有paddle.Tensor转换为torch.Tensor后的变量
"""
return apply_to_collection(
paddle_in,
dtype=paddle.Tensor,
function=_paddle2torch,
target_device=target_device,
no_gradient=no_gradient,
)
def jittor2torch(jittor_in: Any, target_device: str = None, no_gradient: bool = None) -> Any:
"""
递归地将输入中包含的jittor变量转换为torch张量
:param jittor_in: 要转换的jittor变量
:param target_device: 是否将转换后的张量迁移到特定设备上输入为`None`默认为cuda:0
:param no_gradient: 是否保留原张量的梯度`None`新的张量与输入张量保持一致
`True`全部不保留梯度`False`全部保留梯度
:return: 转换后的torch张量
"""
return apply_to_collection(
jittor_in,
dtype=jittor.Var,
function=_jittor2torch,
target_device=target_device,
no_gradient=no_gradient,
)
def torch2jittor(torch_in: Any, no_gradient: bool = None) -> Any:
"""
递归地将输入中包含的torch张量转换为jittor变量
:param torch_tensor: 要转换的torch张量
:param no_gradient: 是否保留原张量的梯度`None`新的张量与输入张量保持一致
`True`全部不保留梯度`False`全部保留梯度
:return: 转换后的jittor变量
"""
return apply_to_collection(
torch_in,
dtype=torch.Tensor,
function=_torch2jittor,
no_gradient=no_gradient,
)

View File

@ -11,6 +11,9 @@ if _NEED_IMPORT_JITTOR:
import jittor as jt
from jittor import nn, Module
from jittor.dataset import Dataset
else:
from fastNLP.core.utils.dummy_class import DummyClass as Module
from fastNLP.core.utils.dummy_class import DummyClass as Dataset
class JittorNormalModel_Classification(Module):
@ -68,6 +71,7 @@ class TrainJittorConfig:
@pytest.mark.parametrize("driver,device", [("jittor", None)])
@pytest.mark.parametrize("callbacks", [[RichCallback(100)]])
@pytest.mark.jittor
def test_trainer_jittor(
driver,
device,

View File

@ -1,122 +0,0 @@
import pytest
from fastNLP.modules.mix_modules.mix_module import MixModule
from fastNLP.core.drivers.torch_paddle_driver.torch_paddle_driver import TorchPaddleDriver
from fastNLP.modules.mix_modules.utils import paddle2torch, torch2paddle
import torch
import paddle
from paddle.io import Dataset, DataLoader
import numpy as np
############################################################################
#
# 测试在MNIST数据集上的表现
#
############################################################################
class MNISTDataset(Dataset):
def __init__(self, dataset):
self.dataset = [
(
np.array(img).astype('float32').reshape(-1),
label
) for img, label in dataset
]
def __getitem__(self, idx):
return self.dataset[idx]
def __len__(self):
return len(self.dataset)
class MixMNISTModel(MixModule):
def __init__(self):
super(MixMNISTModel, self).__init__()
self.fc1 = paddle.nn.Linear(784, 64)
self.fc2 = paddle.nn.Linear(64, 32)
self.fc3 = torch.nn.Linear(32, 10)
self.fc4 = torch.nn.Linear(10, 10)
def forward(self, x):
paddle_out = self.fc1(x)
paddle_out = self.fc2(paddle_out)
torch_in = paddle2torch(paddle_out)
torch_out = self.fc3(torch_in)
torch_out = self.fc4(torch_out)
return torch_out
def train_step(self, x):
return self.forward(x)
def test_step(self, x):
return self.forward(x)
@pytest.mark.torchpaddle
class TestMNIST:
@classmethod
def setup_class(self):
self.train_dataset = paddle.vision.datasets.MNIST(mode='train')
self.test_dataset = paddle.vision.datasets.MNIST(mode='test')
self.train_dataset = MNISTDataset(self.train_dataset)
self.lr = 0.0003
self.epochs = 20
self.dataloader = DataLoader(self.train_dataset, batch_size=100, shuffle=True)
def setup_method(self):
model = MixMNISTModel()
self.torch_loss_func = torch.nn.CrossEntropyLoss()
torch_opt = torch.optim.Adam(model.parameters(backend="torch"), self.lr)
paddle_opt = paddle.optimizer.Adam(parameters=model.parameters(backend="paddle"), learning_rate=self.lr)
self.driver = TorchPaddleDriver(model=model, device="cuda:0")
self.driver.set_optimizers([torch_opt, paddle_opt])
def test_case1(self):
epochs = 20
self.driver.setup()
self.driver.zero_grad()
# 开始训练
current_epoch_idx = 0
while current_epoch_idx < epochs:
epoch_loss, batch = 0, 0
self.driver.set_model_mode("train")
self.driver.set_sampler_epoch(self.dataloader, current_epoch_idx)
for batch, (img, label) in enumerate(self.dataloader):
img = paddle.to_tensor(img).cuda()
torch_out = self.driver.train_step(img)
label = torch.from_numpy(label.numpy()).reshape(-1)
loss = self.torch_loss_func(torch_out.cpu(), label)
epoch_loss += loss.item()
self.driver.backward(loss)
self.driver.step()
self.driver.zero_grad()
current_epoch_idx += 1
# 开始测试
correct = 0
for img, label in self.test_dataset:
img = paddle.to_tensor(np.array(img).astype('float32').reshape(1, -1))
torch_out = self.driver.test_step(img)
res = torch_out.softmax(-1).argmax().item()
label = label.item()
if res == label:
correct += 1
acc = correct / len(self.test_dataset)
assert acc > 0.85

View File

@ -1,204 +0,0 @@
import paddle
import pytest
import torch
from fastNLP.core.utils.torch_paddle_utils import torch_paddle_move_data_to_device
############################################################################
#
# 测试将参数中包含的所有torch和paddle张量迁移到指定设备
#
############################################################################
@pytest.mark.torchpaddle
class TestTorchPaddleMoveDataToDevice:
def check_gpu(self, tensor, idx):
"""
检查张量是否在指定显卡上的工具函数
"""
if isinstance(tensor, paddle.Tensor):
assert tensor.place.is_gpu_place()
assert tensor.place.gpu_device_id() == idx
elif isinstance(tensor, torch.Tensor):
assert tensor.is_cuda
assert tensor.device.index == idx
def check_cpu(self, tensor):
if isinstance(tensor, paddle.Tensor):
assert tensor.place.is_cpu_place()
elif isinstance(tensor, torch.Tensor):
assert not tensor.is_cuda
def test_tensor_transfer(self):
"""
测试迁移单个张量
"""
paddle_tensor = paddle.rand((3, 4, 5)).cpu()
res = torch_paddle_move_data_to_device(paddle_tensor, device=None, data_device=None)
self.check_cpu(res)
res = torch_paddle_move_data_to_device(paddle_tensor, device="gpu:0", data_device=None)
self.check_gpu(res, 0)
res = torch_paddle_move_data_to_device(paddle_tensor, device="gpu:1", data_device=None)
self.check_gpu(res, 1)
res = torch_paddle_move_data_to_device(paddle_tensor, device="cuda:0", data_device="cpu")
self.check_gpu(res, 0)
res = torch_paddle_move_data_to_device(paddle_tensor, device=None, data_device="gpu:0")
self.check_gpu(res, 0)
res = torch_paddle_move_data_to_device(paddle_tensor, device=None, data_device="cuda:1")
self.check_gpu(res, 1)
torch_tensor = torch.rand(3, 4, 5)
res = torch_paddle_move_data_to_device(torch_tensor, device=None, data_device=None)
self.check_cpu(res)
res = torch_paddle_move_data_to_device(torch_tensor, device="gpu:0", data_device=None)
self.check_gpu(res, 0)
res = torch_paddle_move_data_to_device(torch_tensor, device="gpu:1", data_device=None)
self.check_gpu(res, 1)
res = torch_paddle_move_data_to_device(torch_tensor, device="gpu:0", data_device="cpu")
self.check_gpu(res, 0)
res = torch_paddle_move_data_to_device(torch_tensor, device=None, data_device="gpu:0")
self.check_gpu(res, 0)
res = torch_paddle_move_data_to_device(torch_tensor, device=None, data_device="gpu:1")
self.check_gpu(res, 1)
def test_list_transfer(self):
"""
测试迁移张量的列表
"""
paddle_list = [paddle.rand((6, 4, 2)) for i in range(5)] + [torch.rand((6, 4, 2)) for i in range(5)]
res = torch_paddle_move_data_to_device(paddle_list, device=None, data_device="gpu:1")
assert isinstance(res, list)
for r in res:
self.check_gpu(r, 1)
res = torch_paddle_move_data_to_device(paddle_list, device="cpu", data_device="gpu:1")
assert isinstance(res, list)
for r in res:
self.check_cpu(r)
res = torch_paddle_move_data_to_device(paddle_list, device="gpu:0", data_device=None)
assert isinstance(res, list)
for r in res:
self.check_gpu(r, 0)
res = torch_paddle_move_data_to_device(paddle_list, device="gpu:1", data_device="cpu")
assert isinstance(res, list)
for r in res:
self.check_gpu(r, 1)
def test_tensor_tuple_transfer(self):
"""
测试迁移张量的元组
"""
paddle_list = [paddle.rand((6, 4, 2)) for i in range(10)] + [torch.rand((6, 4, 2)) for i in range(5)]
paddle_tuple = tuple(paddle_list)
res = torch_paddle_move_data_to_device(paddle_tuple, device=None, data_device="gpu:1")
assert isinstance(res, tuple)
for r in res:
self.check_gpu(r, 1)
res = torch_paddle_move_data_to_device(paddle_tuple, device="cpu", data_device="gpu:1")
assert isinstance(res, tuple)
for r in res:
self.check_cpu(r)
res = torch_paddle_move_data_to_device(paddle_tuple, device="gpu:0", data_device=None)
assert isinstance(res, tuple)
for r in res:
self.check_gpu(r, 0)
res = torch_paddle_move_data_to_device(paddle_tuple, device="gpu:1", data_device="cpu")
assert isinstance(res, tuple)
for r in res:
self.check_gpu(r, 1)
def test_dict_transfer(self):
"""
测试迁移复杂的字典结构
"""
paddle_dict = {
"torch_tensor": torch.rand((3, 4)),
"torch_list": [torch.rand((6, 4, 2)) for i in range(10)],
"dict":{
"list": [paddle.rand((6, 4, 2)) for i in range(5)] + [torch.rand((6, 4, 2)) for i in range(5)],
"torch_tensor": torch.rand((3, 4)),
"paddle_tensor": paddle.rand((3, 4))
},
"paddle_tensor": paddle.rand((3, 4)),
"list": [paddle.rand((6, 4, 2)) for i in range(10)] ,
"int": 2,
"string": "test string"
}
res = torch_paddle_move_data_to_device(paddle_dict, device="gpu:0", data_device=None)
assert isinstance(res, dict)
self.check_gpu(res["torch_tensor"], 0)
self.check_gpu(res["paddle_tensor"], 0)
assert isinstance(res["torch_list"], list)
for t in res["torch_list"]:
self.check_gpu(t, 0)
assert isinstance(res["list"], list)
for t in res["list"]:
self.check_gpu(t, 0)
assert isinstance(res["int"], int)
assert isinstance(res["string"], str)
assert isinstance(res["dict"], dict)
assert isinstance(res["dict"]["list"], list)
for t in res["dict"]["list"]:
self.check_gpu(t, 0)
self.check_gpu(res["dict"]["torch_tensor"], 0)
self.check_gpu(res["dict"]["paddle_tensor"], 0)
res = torch_paddle_move_data_to_device(paddle_dict, device=None, data_device="gpu:1")
assert isinstance(res, dict)
self.check_gpu(res["torch_tensor"], 1)
self.check_gpu(res["paddle_tensor"], 1)
assert isinstance(res["torch_list"], list)
for t in res["torch_list"]:
self.check_gpu(t, 1)
assert isinstance(res["list"], list)
for t in res["list"]:
self.check_gpu(t, 1)
assert isinstance(res["int"], int)
assert isinstance(res["string"], str)
assert isinstance(res["dict"], dict)
assert isinstance(res["dict"]["list"], list)
for t in res["dict"]["list"]:
self.check_gpu(t, 1)
self.check_gpu(res["dict"]["torch_tensor"], 1)
self.check_gpu(res["dict"]["paddle_tensor"], 1)
res = torch_paddle_move_data_to_device(paddle_dict, device="cpu", data_device="gpu:0")
assert isinstance(res, dict)
self.check_cpu(res["torch_tensor"])
self.check_cpu(res["paddle_tensor"])
assert isinstance(res["torch_list"], list)
for t in res["torch_list"]:
self.check_cpu(t)
assert isinstance(res["list"], list)
for t in res["list"]:
self.check_cpu(t)
assert isinstance(res["int"], int)
assert isinstance(res["string"], str)
assert isinstance(res["dict"], dict)
assert isinstance(res["dict"]["list"], list)
for t in res["dict"]["list"]:
self.check_cpu(t)
self.check_cpu(res["dict"]["torch_tensor"])
self.check_cpu(res["dict"]["paddle_tensor"])

View File

@ -1,378 +0,0 @@
import pytest
import os
from itertools import chain
import torch
import paddle
from paddle.io import Dataset, DataLoader
import numpy as np
from fastNLP.modules.mix_modules.mix_module import MixModule
from fastNLP.modules.mix_modules.utils import paddle2torch, torch2paddle
from fastNLP.envs.distributed import rank_zero_rm
############################################################################
#
# 测试类的基本功能
#
############################################################################
class MixModuleForTest(MixModule):
def __init__(self):
super(MixModuleForTest, self).__init__()
self.torch_fc1 = torch.nn.Linear(10, 10)
self.torch_softmax = torch.nn.Softmax(0)
self.torch_conv2d1 = torch.nn.Conv2d(10, 10, 3)
self.torch_tensor = torch.ones(3, 3)
self.torch_param = torch.nn.Parameter(torch.ones(4, 4))
self.paddle_fc1 = paddle.nn.Linear(10, 10)
self.paddle_softmax = paddle.nn.Softmax(0)
self.paddle_conv2d1 = paddle.nn.Conv2D(10, 10, 3)
self.paddle_tensor = paddle.ones((4, 4))
class TorchModuleForTest(torch.nn.Module):
def __init__(self):
super(TorchModuleForTest, self).__init__()
self.torch_fc1 = torch.nn.Linear(10, 10)
self.torch_softmax = torch.nn.Softmax(0)
self.torch_conv2d1 = torch.nn.Conv2d(10, 10, 3)
self.torch_tensor = torch.ones(3, 3)
self.torch_param = torch.nn.Parameter(torch.ones(4, 4))
class PaddleModuleForTest(paddle.nn.Layer):
def __init__(self):
super(PaddleModuleForTest, self).__init__()
self.paddle_fc1 = paddle.nn.Linear(10, 10)
self.paddle_softmax = paddle.nn.Softmax(0)
self.paddle_conv2d1 = paddle.nn.Conv2D(10, 10, 3)
self.paddle_tensor = paddle.ones((4, 4))
@pytest.mark.torchpaddle
class TestTorchPaddleMixModule:
def setup_method(self):
self.model = MixModuleForTest()
self.torch_model = TorchModuleForTest()
self.paddle_model = PaddleModuleForTest()
def test_to(self):
"""
测试混合模型的to函数
"""
self.model.to("cuda")
self.torch_model.to("cuda")
self.paddle_model.to("gpu")
self.if_device_correct("cuda")
self.model.to("cuda:2")
self.torch_model.to("cuda:2")
self.paddle_model.to("gpu:2")
self.if_device_correct("cuda:2")
self.model.to("gpu:1")
self.torch_model.to("cuda:1")
self.paddle_model.to("gpu:1")
self.if_device_correct("cuda:1")
self.model.to("cpu")
self.torch_model.to("cpu")
self.paddle_model.to("cpu")
self.if_device_correct("cpu")
def test_train_eval(self):
"""
测试train和eval函数
"""
self.model.eval()
self.if_training_correct(False)
self.model.train()
self.if_training_correct(True)
def test_parameters(self):
"""
测试parameters()函数由于初始化是随机的目前仅比较得到结果的长度
"""
mix_params = []
params = []
for value in self.model.named_parameters():
mix_params.append(value)
for value in chain(self.torch_model.named_parameters(), self.paddle_model.named_parameters()):
params.append(value)
assert len(params) == len(mix_params)
def test_named_parameters(self):
"""
测试named_parameters函数
"""
mix_param_names = []
param_names = []
for name, value in self.model.named_parameters():
mix_param_names.append(name)
for name, value in chain(self.torch_model.named_parameters(), self.paddle_model.named_parameters()):
param_names.append(name)
assert sorted(param_names) == sorted(mix_param_names)
def test_torch_named_parameters(self):
"""
测试对torch参数的提取
"""
mix_param_names = []
param_names = []
for name, value in self.model.named_parameters(backend="torch"):
mix_param_names.append(name)
for name, value in self.torch_model.named_parameters():
param_names.append(name)
assert sorted(param_names) == sorted(mix_param_names)
def test_paddle_named_parameters(self):
"""
测试对paddle参数的提取
"""
mix_param_names = []
param_names = []
for name, value in self.model.named_parameters(backend="paddle"):
mix_param_names.append(name)
for name, value in self.paddle_model.named_parameters():
param_names.append(name)
assert sorted(param_names) == sorted(mix_param_names)
def test_torch_state_dict(self):
"""
测试提取torch的state dict
"""
torch_dict = self.torch_model.state_dict()
mix_dict = self.model.state_dict(backend="torch")
assert sorted(torch_dict.keys()) == sorted(mix_dict.keys())
def test_paddle_state_dict(self):
"""
测试提取paddle的state dict
"""
paddle_dict = self.paddle_model.state_dict()
mix_dict = self.model.state_dict(backend="paddle")
# TODO 测试程序会显示passed后显示paddle的异常退出信息
assert sorted(paddle_dict.keys()) == sorted(mix_dict.keys())
def test_state_dict(self):
"""
测试提取所有的state dict
"""
all_dict = self.torch_model.state_dict()
all_dict.update(self.paddle_model.state_dict())
mix_dict = self.model.state_dict()
# TODO 测试程序会显示passed后显示paddle的异常退出信息
assert sorted(all_dict.keys()) == sorted(mix_dict.keys())
def test_load_state_dict(self):
"""
测试load_state_dict函数
"""
state_dict = self.model.state_dict()
new_model = MixModuleForTest()
new_model.load_state_dict(state_dict)
new_state_dict = new_model.state_dict()
for name, value in state_dict.items():
state_dict[name] = value.tolist()
for name, value in new_state_dict.items():
new_state_dict[name] = value.tolist()
# self.assertDictEqual(state_dict, new_state_dict)
def test_save_and_load_state_dict(self):
"""
测试save_state_dict_to_file和load_state_dict_from_file函数
"""
path = "model"
try:
self.model.save_state_dict_to_file(path)
new_model = MixModuleForTest()
new_model.load_state_dict_from_file(path)
state_dict = self.model.state_dict()
new_state_dict = new_model.state_dict()
for name, value in state_dict.items():
state_dict[name] = value.tolist()
for name, value in new_state_dict.items():
new_state_dict[name] = value.tolist()
# self.assertDictEqual(state_dict, new_state_dict)
finally:
rank_zero_rm(path)
def if_device_correct(self, device):
assert self.model.torch_fc1.weight.device == self.torch_model.torch_fc1.weight.device
assert self.model.torch_conv2d1.weight.device == self.torch_model.torch_fc1.bias.device
assert self.model.torch_conv2d1.bias.device == self.torch_model.torch_conv2d1.bias.device
assert self.model.torch_tensor.device == self.torch_model.torch_tensor.device
assert self.model.torch_param.device == self.torch_model.torch_param.device
if device == "cpu":
assert self.model.paddle_fc1.weight.place.is_cpu_place()
assert self.model.paddle_fc1.bias.place.is_cpu_place()
assert self.model.paddle_conv2d1.weight.place.is_cpu_place()
assert self.model.paddle_conv2d1.bias.place.is_cpu_place()
assert self.model.paddle_tensor.place.is_cpu_place()
elif device.startswith("cuda"):
assert self.model.paddle_fc1.weight.place.is_gpu_place()
assert self.model.paddle_fc1.bias.place.is_gpu_place()
assert self.model.paddle_conv2d1.weight.place.is_gpu_place()
assert self.model.paddle_conv2d1.bias.place.is_gpu_place()
assert self.model.paddle_tensor.place.is_gpu_place()
assert self.model.paddle_fc1.weight.place.gpu_device_id() == self.paddle_model.paddle_fc1.weight.place.gpu_device_id()
assert self.model.paddle_fc1.bias.place.gpu_device_id() == self.paddle_model.paddle_fc1.bias.place.gpu_device_id()
assert self.model.paddle_conv2d1.weight.place.gpu_device_id() == self.paddle_model.paddle_conv2d1.weight.place.gpu_device_id()
assert self.model.paddle_conv2d1.bias.place.gpu_device_id() == self.paddle_model.paddle_conv2d1.bias.place.gpu_device_id()
assert self.model.paddle_tensor.place.gpu_device_id() == self.paddle_model.paddle_tensor.place.gpu_device_id()
else:
raise NotImplementedError
def if_training_correct(self, training):
assert self.model.torch_fc1.training == training
assert self.model.torch_softmax.training == training
assert self.model.torch_conv2d1.training == training
assert self.model.paddle_fc1.training == training
assert self.model.paddle_softmax.training == training
assert self.model.paddle_conv2d1.training == training
############################################################################
#
# 测试在MNIST数据集上的表现
#
############################################################################
class MNISTDataset(Dataset):
def __init__(self, dataset):
self.dataset = [
(
np.array(img).astype('float32').reshape(-1),
label
) for img, label in dataset
]
def __getitem__(self, idx):
return self.dataset[idx]
def __len__(self):
return len(self.dataset)
class MixMNISTModel(MixModule):
def __init__(self):
super(MixMNISTModel, self).__init__()
self.fc1 = paddle.nn.Linear(784, 64)
self.fc2 = paddle.nn.Linear(64, 32)
self.fc3 = torch.nn.Linear(32, 10)
self.fc4 = torch.nn.Linear(10, 10)
def forward(self, x):
paddle_out = self.fc1(x)
paddle_out = self.fc2(paddle_out)
torch_in = paddle2torch(paddle_out)
torch_out = self.fc3(torch_in)
torch_out = self.fc4(torch_out)
return torch_out
@pytest.mark.torchpaddle
class TestMNIST:
@classmethod
def setup_class(self):
self.train_dataset = paddle.vision.datasets.MNIST(mode='train')
self.test_dataset = paddle.vision.datasets.MNIST(mode='test')
self.train_dataset = MNISTDataset(self.train_dataset)
self.lr = 0.0003
self.epochs = 20
self.dataloader = DataLoader(self.train_dataset, batch_size=100, shuffle=True)
def setup_method(self):
self.model = MixMNISTModel().to("cuda")
self.torch_loss_func = torch.nn.CrossEntropyLoss()
self.torch_opt = torch.optim.Adam(self.model.parameters(backend="torch"), self.lr)
self.paddle_opt = paddle.optimizer.Adam(parameters=self.model.parameters(backend="paddle"), learning_rate=self.lr)
def test_case1(self):
# 开始训练
for epoch in range(self.epochs):
epoch_loss, batch = 0, 0
for batch, (img, label) in enumerate(self.dataloader):
img = paddle.to_tensor(img).cuda()
torch_out = self.model(img)
label = torch.from_numpy(label.numpy()).reshape(-1)
loss = self.torch_loss_func(torch_out.cpu(), label)
epoch_loss += loss.item()
loss.backward()
self.torch_opt.step()
self.paddle_opt.step()
self.torch_opt.zero_grad()
self.paddle_opt.clear_grad()
else:
assert epoch_loss / (batch + 1) < 0.3
# 开始测试
correct = 0
for img, label in self.test_dataset:
img = paddle.to_tensor(np.array(img).astype('float32').reshape(1, -1))
torch_out = self.model(img)
res = torch_out.softmax(-1).argmax().item()
label = label.item()
if res == label:
correct += 1
acc = correct / len(self.test_dataset)
assert acc > 0.85
############################################################################
#
# 测试在ERNIE中文数据集上的表现
#
############################################################################

View File

@ -1,435 +0,0 @@
import unittest
import os
os.environ["log_silent"] = "1"
import torch
import paddle
import jittor
from fastNLP.modules.mix_modules.utils import (
paddle2torch,
torch2paddle,
jittor2torch,
torch2jittor,
)
############################################################################
#
# 测试paddle到torch的转换
#
############################################################################
class Paddle2TorchTestCase(unittest.TestCase):
def check_torch_tensor(self, tensor, device, requires_grad):
"""
检查张量设备和梯度情况的工具函数
"""
assert isinstance(tensor, torch.Tensor)
assert tensor.device == torch.device(device)
assert tensor.requires_grad == requires_grad
def test_gradient(self):
"""
测试张量转换后的反向传播是否正确
"""
x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0, 5.0], stop_gradient=False)
y = paddle2torch(x)
z = 3 * (y ** 2)
z.sum().backward()
assert y.grad.tolist() == [6, 12, 18, 24, 30]
def test_tensor_transfer(self):
"""
测试单个张量的设备和梯度转换是否正确
"""
paddle_tensor = paddle.rand((3, 4, 5)).cpu()
res = paddle2torch(paddle_tensor)
self.check_torch_tensor(res, "cpu", not paddle_tensor.stop_gradient)
res = paddle2torch(paddle_tensor, target_device="cuda:2", no_gradient=None)
self.check_torch_tensor(res, "cuda:2", not paddle_tensor.stop_gradient)
res = paddle2torch(paddle_tensor, target_device="cuda:1", no_gradient=True)
self.check_torch_tensor(res, "cuda:1", False)
res = paddle2torch(paddle_tensor, target_device="cuda:1", no_gradient=False)
self.check_torch_tensor(res, "cuda:1", True)
def test_list_transfer(self):
"""
测试张量列表的转换
"""
paddle_list = [paddle.rand((6, 4, 2)).cuda(1) for i in range(10)]
res = paddle2torch(paddle_list)
assert isinstance(res, list)
for t in res:
self.check_torch_tensor(t, "cuda:1", False)
res = paddle2torch(paddle_list, target_device="cpu", no_gradient=False)
assert isinstance(res, list)
for t in res:
self.check_torch_tensor(t, "cpu", True)
def test_tensor_tuple_transfer(self):
"""
测试张量元组的转换
"""
paddle_list = [paddle.rand((6, 4, 2)).cuda(1) for i in range(10)]
paddle_tuple = tuple(paddle_list)
res = paddle2torch(paddle_tuple)
assert isinstance(res, tuple)
for t in res:
self.check_torch_tensor(t, "cuda:1", False)
def test_dict_transfer(self):
"""
测试包含复杂结构的字典的转换
"""
paddle_dict = {
"tensor": paddle.rand((3, 4)).cuda(0),
"list": [paddle.rand((6, 4, 2)).cuda(0) for i in range(10)],
"dict":{
"list": [paddle.rand((6, 4, 2)).cuda(0) for i in range(10)],
"tensor": paddle.rand((3, 4)).cuda(0)
},
"int": 2,
"string": "test string"
}
res = paddle2torch(paddle_dict)
assert isinstance(res, dict)
self.check_torch_tensor(res["tensor"], "cuda:0", False)
assert isinstance(res["list"], list)
for t in res["list"]:
self.check_torch_tensor(t, "cuda:0", False)
assert isinstance(res["int"], int)
assert isinstance(res["string"], str)
assert isinstance(res["dict"], dict)
assert isinstance(res["dict"]["list"], list)
for t in res["dict"]["list"]:
self.check_torch_tensor(t, "cuda:0", False)
self.check_torch_tensor(res["dict"]["tensor"], "cuda:0", False)
############################################################################
#
# 测试torch到paddle的转换
#
############################################################################
class Torch2PaddleTestCase(unittest.TestCase):
def check_paddle_tensor(self, tensor, device, stop_gradient):
"""
检查得到的paddle张量设备和梯度情况的工具函数
"""
assert isinstance(tensor, paddle.Tensor)
if device == "cpu":
assert tensor.place.is_cpu_place()
elif device.startswith("gpu"):
paddle_device = paddle.device._convert_to_place(device)
assert tensor.place.is_gpu_place()
if hasattr(tensor.place, "gpu_device_id"):
# paddle中有两种Place
# paddle.fluid.core.Place是创建Tensor时使用的类型
# 有函数gpu_device_id获取设备
assert tensor.place.gpu_device_id() == paddle_device.get_device_id()
else:
# 通过_convert_to_place得到的是paddle.CUDAPlace
# 通过get_device_id获取设备
assert tensor.place.get_device_id() == paddle_device.get_device_id()
else:
raise NotImplementedError
assert tensor.stop_gradient == stop_gradient
def test_gradient(self):
"""
测试转换后梯度的反向传播
"""
x = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0], requires_grad=True)
y = torch2paddle(x)
z = 3 * (y ** 2)
z.sum().backward()
assert y.grad.tolist() == [6, 12, 18, 24, 30]
def test_tensor_transfer(self):
"""
测试单个张量的转换
"""
torch_tensor = torch.rand((3, 4, 5))
res = torch2paddle(torch_tensor)
self.check_paddle_tensor(res, "cpu", True)
res = torch2paddle(torch_tensor, target_device="gpu:2", no_gradient=None)
self.check_paddle_tensor(res, "gpu:2", True)
res = torch2paddle(torch_tensor, target_device="gpu:2", no_gradient=True)
self.check_paddle_tensor(res, "gpu:2", True)
res = torch2paddle(torch_tensor, target_device="gpu:2", no_gradient=False)
self.check_paddle_tensor(res, "gpu:2", False)
def test_tensor_list_transfer(self):
"""
测试张量列表的转换
"""
torch_list = [torch.rand(6, 4, 2) for i in range(10)]
res = torch2paddle(torch_list)
assert isinstance(res, list)
for t in res:
self.check_paddle_tensor(t, "cpu", True)
res = torch2paddle(torch_list, target_device="gpu:1", no_gradient=False)
assert isinstance(res, list)
for t in res:
self.check_paddle_tensor(t, "gpu:1", False)
def test_tensor_tuple_transfer(self):
"""
测试张量元组的转换
"""
torch_list = [torch.rand(6, 4, 2) for i in range(10)]
torch_tuple = tuple(torch_list)
res = torch2paddle(torch_tuple, target_device="cpu")
assert isinstance(res, tuple)
for t in res:
self.check_paddle_tensor(t, "cpu", True)
def test_dict_transfer(self):
"""
测试复杂的字典结构的转换
"""
torch_dict = {
"tensor": torch.rand((3, 4)),
"list": [torch.rand(6, 4, 2) for i in range(10)],
"dict":{
"list": [torch.rand(6, 4, 2) for i in range(10)],
"tensor": torch.rand((3, 4))
},
"int": 2,
"string": "test string"
}
res = torch2paddle(torch_dict)
assert isinstance(res, dict)
self.check_paddle_tensor(res["tensor"], "cpu", True)
assert isinstance(res["list"], list)
for t in res["list"]:
self.check_paddle_tensor(t, "cpu", True)
assert isinstance(res["int"], int)
assert isinstance(res["string"], str)
assert isinstance(res["dict"], dict)
assert isinstance(res["dict"]["list"], list)
for t in res["dict"]["list"]:
self.check_paddle_tensor(t, "cpu", True)
self.check_paddle_tensor(res["dict"]["tensor"], "cpu", True)
############################################################################
#
# 测试jittor到torch的转换
#
############################################################################
class Jittor2TorchTestCase(unittest.TestCase):
def check_torch_tensor(self, tensor, device, requires_grad):
"""
检查得到的torch张量的工具函数
"""
assert isinstance(tensor, torch.Tensor)
if device == "cpu":
assert not tensor.is_cuda
else:
assert tensor.device == torch.device(device)
assert tensor.requires_grad == requires_grad
def test_var_transfer(self):
"""
测试单个Jittor Var的转换
"""
jittor_var = jittor.rand((3, 4, 5))
res = jittor2torch(jittor_var)
self.check_torch_tensor(res, "cpu", True)
res = jittor2torch(jittor_var, target_device="cuda:2", no_gradient=None)
self.check_torch_tensor(res, "cuda:2", True)
res = jittor2torch(jittor_var, target_device="cuda:2", no_gradient=True)
self.check_torch_tensor(res, "cuda:2", False)
res = jittor2torch(jittor_var, target_device="cuda:2", no_gradient=False)
self.check_torch_tensor(res, "cuda:2", True)
def test_var_list_transfer(self):
"""
测试Jittor列表的转换
"""
jittor_list = [jittor.rand((6, 4, 2)) for i in range(10)]
res = jittor2torch(jittor_list)
assert isinstance(res, list)
for t in res:
self.check_torch_tensor(t, "cpu", True)
res = jittor2torch(jittor_list, target_device="cuda:1", no_gradient=False)
assert isinstance(res, list)
for t in res:
self.check_torch_tensor(t, "cuda:1", True)
def test_var_tuple_transfer(self):
"""
测试Jittor变量元组的转换
"""
jittor_list = [jittor.rand((6, 4, 2)) for i in range(10)]
jittor_tuple = tuple(jittor_list)
res = jittor2torch(jittor_tuple, target_device="cpu")
assert isinstance(res, tuple)
for t in res:
self.check_torch_tensor(t, "cpu", True)
def test_dict_transfer(self):
"""
测试字典结构的转换
"""
jittor_dict = {
"tensor": jittor.rand((3, 4)),
"list": [jittor.rand(6, 4, 2) for i in range(10)],
"dict":{
"list": [jittor.rand(6, 4, 2) for i in range(10)],
"tensor": jittor.rand((3, 4))
},
"int": 2,
"string": "test string"
}
res = jittor2torch(jittor_dict)
assert isinstance(res, dict)
self.check_torch_tensor(res["tensor"], "cpu", True)
assert isinstance(res["list"], list)
for t in res["list"]:
self.check_torch_tensor(t, "cpu", True)
assert isinstance(res["int"], int)
assert isinstance(res["string"], str)
assert isinstance(res["dict"], dict)
assert isinstance(res["dict"]["list"], list)
for t in res["dict"]["list"]:
self.check_torch_tensor(t, "cpu", True)
self.check_torch_tensor(res["dict"]["tensor"], "cpu", True)
############################################################################
#
# 测试torch到jittor的转换
#
############################################################################
class Torch2JittorTestCase(unittest.TestCase):
def check_jittor_var(self, var, requires_grad):
"""
检查得到的Jittor Var梯度情况的工具函数
"""
assert isinstance(var, jittor.Var)
assert var.requires_grad == requires_grad
def test_gradient(self):
"""
测试反向传播的梯度
"""
x = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0], requires_grad=True)
y = torch2jittor(x)
z = 3 * (y ** 2)
grad = jittor.grad(z, y)
assert grad.tolist() == [6.0, 12.0, 18.0, 24.0, 30.0]
def test_tensor_transfer(self):
"""
测试单个张量转换为Jittor
"""
torch_tensor = torch.rand((3, 4, 5))
res = torch2jittor(torch_tensor)
self.check_jittor_var(res, False)
res = torch2jittor(torch_tensor, no_gradient=None)
self.check_jittor_var(res, False)
res = torch2jittor(torch_tensor, no_gradient=True)
self.check_jittor_var(res, False)
res = torch2jittor(torch_tensor, no_gradient=False)
self.check_jittor_var(res, True)
def test_tensor_list_transfer(self):
"""
测试张量列表的转换
"""
torch_list = [torch.rand((6, 4, 2)) for i in range(10)]
res = torch2jittor(torch_list)
assert isinstance(res, list)
for t in res:
self.check_jittor_var(t, False)
res = torch2jittor(torch_list, no_gradient=False)
assert isinstance(res, list)
for t in res:
self.check_jittor_var(t, True)
def test_tensor_tuple_transfer(self):
"""
测试张量元组的转换
"""
torch_list = [torch.rand((6, 4, 2)) for i in range(10)]
torch_tuple = tuple(torch_list)
res = torch2jittor(torch_tuple)
assert isinstance(res, tuple)
for t in res:
self.check_jittor_var(t, False)
def test_dict_transfer(self):
"""
测试字典结构的转换
"""
torch_dict = {
"tensor": torch.rand((3, 4)),
"list": [torch.rand(6, 4, 2) for i in range(10)],
"dict":{
"list": [torch.rand(6, 4, 2) for i in range(10)],
"tensor": torch.rand((3, 4))
},
"int": 2,
"string": "test string"
}
res = torch2jittor(torch_dict)
assert isinstance(res, dict)
self.check_jittor_var(res["tensor"], False)
assert isinstance(res["list"], list)
for t in res["list"]:
self.check_jittor_var(t, False)
assert isinstance(res["int"], int)
assert isinstance(res["string"], str)
assert isinstance(res["dict"], dict)
assert isinstance(res["dict"]["list"], list)
for t in res["dict"]["list"]:
self.check_jittor_var(t, False)
self.check_jittor_var(res["dict"]["tensor"], False)