Merge pull request #6 from henryL7/master

prototype and self-attention model
This commit is contained in:
Coet 2018-07-02 13:50:01 +08:00 committed by GitHub
commit 96c65993bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 474 additions and 0 deletions

View File

@ -0,0 +1,41 @@
# Prototype
## Word2Idx.py
A mapping model between words and indexes
## embedding.py
embedding modules
Contains a simple encapsulation for torch.nn.Embedding
## encoder.py
encoder modules
Contains a simple encapsulation for torch.nn.LSTM
## aggregation.py
aggregation modules
Contains a self-attention model, according to paper "A Structured Self-attentive Sentence Embedding", https://arxiv.org/abs/1703.03130
## predict.py
predict modules
Contains a two layers perceptron for classification
## example.py
An example showing how to use above modules to build a model
Contains a model for sentiment analysis on Yelp dataset, and its training and testing procedures. See https://arxiv.org/abs/1703.03130 for more details.
## prepare.py
A case of using Word2Idx to build Yelp datasets
## dataloader.py
A dataloader for Yelp dataset
It is an iterable object, returning a zero-padded batch every iteration.

View File

@ -0,0 +1,63 @@
import collections
import pickle
class Word2Idx():
"""
Build a word index according to word frequency.
If "min_freq" is given, then only words with a frequncy not lesser than min_freq will be kept.
If "max_num" is given, then at most the most frequent $max_num words will be kept.
"words" should be a list [ w_1,w_2,...,w_i,...,w_n ] where each w_i is a string representing a word.
num is the size of the lookup table.
w2i is a lookup table assigning each word an index.
i2w is a vector which serves as an invert mapping of w2i.
Note that index 0 is token "<PAD>" for padding
index 1 is token "<UNK>" for unregistered words
e.g. i2w[w2i["word"]] == "word"
"""
def __init__(self):
self.__w2i = dict()
self.__i2w = []
self.num = 0
def build(self, words, min_freq=0, max_num=None):
"""build a model from words"""
counter = collections.Counter(words)
word_set = set(words)
if max_num is not None:
most_common = counter.most_common(min(len(word_set), max_num - 1))
else:
most_common = counter.most_common()
self.__w2i = dict((w[0],i + 1) for i,w in enumerate(most_common) if w[1] >= min_freq)
self.__w2i["<PAD>"] = 0
self.__w2i["<UNK>"] = 1
self.__i2w = ["<PAD>", "<UNK>"] + [ w[0] for w in most_common if w[1] >= min_freq ]
self.num = len(self.__i2w)
def w2i(self, word):
"""word to index"""
if word in self.__w2i:
return self.__w2i[word]
return 0
def i2w(self, idx):
"""index to word"""
if idx >= self.num:
raise Exception("out of range\n")
return self.__i2w[idx]
def save(self, addr):
"""save the model to a file with address "addr" """
f = open(addr,"wb")
pickle.dump([self.__i2w, self.__w2i, self.num], f)
f.close()
def load(self, addr):
"""load a model from a file with address "addr" """
f = open(addr,"rb")
paras = pickle.load(f)
self.__i2w, self.__w2i, self.num = paras[0], paras[1], paras[2]
f.close()

View File

@ -0,0 +1,40 @@
import torch
import torch.nn as nn
from torch.autograd import Variable
class Selfattention(nn.Module):
"""
Self Attention Module.
Args:
input_size : the size for the input vector
d_a : the width of weight matrix
r : the number of encoded vectors
"""
def __init__(self, input_size, d_a, r):
super(Selfattention, self).__init__()
self.W_s1 = nn.Parameter(torch.randn(d_a, input_size), requires_grad=True)
self.W_s2 = nn.Parameter(torch.randn(r, d_a), requires_grad=True)
self.softmax = nn.Softmax(dim=2)
self.tanh = nn.Tanh()
def penalization(self, A):
"""
compute the penalization term for attention module
"""
if self.W_s1.is_cuda:
I = Variable(torch.eye(A.size(1)).cuda(), requires_grad=False)
else:
I = Variable(torch.eye(A.size(1)), requires_grad=False)
M = torch.matmul(A, torch.transpose(A, 1, 2)) - I
M = M.view(M.size(0), -1)
return torch.sum(M ** 2, dim=1)
def forward(self, x):
inter = self.tanh(torch.matmul(self.W_s1, torch.transpose(x, 1, 2)))
A = self.softmax(torch.matmul(self.W_s2, inter))
out = torch.matmul(A, x)
out = out.view(out.size(0), -1)
penalty = self.penalization(A)
return out, penalty

View File

@ -0,0 +1,81 @@
import random
import pickle
import torch
import numpy as np
from torch.autograd import Variable
def float_wrapper(x, requires_grad=True, using_cuda=True):
"""
transform float type list to pytorch variable
"""
if using_cuda==True:
return Variable(torch.FloatTensor(x).cuda(), requires_grad=requires_grad)
else:
return Variable(torch.FloatTensor(x), requires_grad=requires_grad)
def long_wrapper(x, requires_grad=True, using_cuda=True):
"""
transform long type list to pytorch variable
"""
if using_cuda==True:
return Variable(torch.LongTensor(x).cuda(), requires_grad=requires_grad)
else:
return Variable(torch.LongTensor(x), requires_grad=requires_grad)
def pad(X, using_cuda):
"""
zero-pad sequnces to same length then pack them together
"""
maxlen = max([x.size(0) for x in X])
Y = []
for x in X:
padlen = maxlen - x.size(0)
if padlen > 0:
if using_cuda:
paddings = Variable(torch.zeros(padlen).long()).cuda()
else:
paddings = Variable(torch.zeros(padlen).long())
x_ = torch.cat((x, paddings), 0)
Y.append(x_)
else:
Y.append(x)
return torch.stack(Y)
class DataLoader(object):
"""
load data with form {"feature", "class"}
Args:
fdir : data file address
batch_size : batch_size
shuffle : if True, shuffle dataset every epoch
using_cuda : if True, return tensors on GPU
"""
def __init__(self, fdir, batch_size, shuffle=True, using_cuda=True):
with open(fdir, "rb") as f:
self.data = pickle.load(f)
self.batch_size = batch_size
self.num = len(self.data)
self.count = 0
self.iters = int(self.num / batch_size)
self.shuffle = shuffle
self.using_cuda = using_cuda
def __iter__(self):
return self
def __next__(self):
if self.count == self.iters:
self.count = 0
if self.shuffle:
random.shuffle(self.data)
raise StopIteration()
else:
batch = self.data[self.count * self.batch_size : (self.count + 1) * self.batch_size]
self.count += 1
X = [long_wrapper(x["sent"], using_cuda=self.using_cuda, requires_grad=False) for x in batch]
X = pad(X, self.using_cuda)
y = long_wrapper([x["class"] for x in batch], using_cuda=self.using_cuda, requires_grad=False)
return {"feature" : X, "class" : y}

View File

@ -0,0 +1,23 @@
import torch
import torch.nn as nn
class Lookuptable(nn.Module):
"""
A simple lookup table
Args:
nums : the size of the lookup table
dims : the size of each vector
padding_idx : pads the tensor with zeros whenever it encounters this index
sparse : If True, gradient matrix will be a sparse tensor. In this case,
only optim.SGD(cuda and cpu) and optim.Adagrad(cpu) can be used
"""
def __init__(self, nums, dims, padding_idx=0, sparse=False):
super(Lookuptable, self).__init__()
self.embed = nn.Embedding(nums, dims, padding_idx, sparse=sparse)
def forward(self, x):
return self.embed(x)
if __name__ == "__main__":
model = Lookuptable(10, 20)

View File

@ -0,0 +1,22 @@
import torch
import torch.nn as nn
class Lstm(nn.Module):
"""
LSTM module
Args:
input_size : input size
hidden_size : hidden size
num_layers : number of hidden layers
dropout : dropout rate
bidirectional : If True, becomes a bidirectional RNN
"""
def __init__(self, input_size, hidden_size, num_layers, dropout, bidirectional):
super(Lstm, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=True, batch_first=True,\
dropout=dropout, bidirectional=bidirectional)
def forward(self, x):
x, _ = self.lstm(x)
return x

View File

@ -0,0 +1,129 @@
import torch
import torch.nn as nn
import encoder
import aggregation
import embedding
import predict
import torch.optim as optim
import time
import dataloader
WORD_NUM = 357361
WORD_SIZE = 100
HIDDEN_SIZE = 300
D_A = 350
R = 10
MLP_HIDDEN = 2000
CLASSES_NUM = 5
class Net(nn.Module):
"""
A model for sentiment analysis using lstm and self-attention
"""
def __init__(self):
super(Net, self).__init__()
self.embedding = embedding.Lookuptable(WORD_NUM, WORD_SIZE)
self.encoder = encoder.Lstm(WORD_SIZE, HIDDEN_SIZE, 1, 0.5, True)
self.aggregation = aggregation.Selfattention(2 * HIDDEN_SIZE, D_A, R)
self.predict = predict.MLP(R * HIDDEN_SIZE * 2, MLP_HIDDEN, CLASSES_NUM)
def forward(self, x):
x = self.embedding(x)
x = self.encoder(x)
x, penalty = self.aggregation(x)
x = self.predict(x)
return x, penalty
def train(model_dict=None, using_cuda=True, learning_rate=0.06,\
momentum=0.3, batch_size=32, epochs=5, coef=1.0, interval=10):
"""
training procedure
Args:
If model_dict is given (a file address), it will continue training on the given model.
Otherwise, it would train a new model from scratch.
If using_cuda is true, the training would be conducted on GPU.
Learning_rate and momentum is for SGD optimizer.
coef is the coefficent between the cross-entropy loss and the penalization term.
interval is the frequncy of reporting.
the result will be saved with a form "model_dict_+current time", which could be used for further training
"""
if using_cuda:
net = Net().cuda()
else:
net = Net()
if model_dict != None:
net.load_state_dict(torch.load(model_dict))
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)
criterion = nn.CrossEntropyLoss()
dataset = dataloader.DataLoader("train_set.pkl", batch_size, using_cuda=using_cuda)
#statistics
loss_count = 0
prepare_time = 0
run_time = 0
count = 0
for epoch in range(epochs):
print("epoch: %d"%(epoch))
for i, batch in enumerate(dataset):
t1 = time.time()
X = batch["feature"]
y = batch["class"]
t2 = time.time()
y_pred, y_penl = net(X)
loss = criterion(y_pred, y) + torch.sum(y_penl) / batch_size * coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm(net.parameters(), 0.5)
optimizer.step()
t3 = time.time()
loss_count += torch.sum(y_penl).data[0]
prepare_time += (t2 - t1)
run_time += (t3 - t2)
p, idx = torch.max(y_pred.data, dim=1)
count += torch.sum(torch.eq(idx.cpu(), y.data.cpu()))
if (i + 1) % interval == 0:
print("epoch : %d, iters: %d"%(epoch, i + 1))
print("loss count:" + str(loss_count / (interval * batch_size)))
print("acuracy:" + str(count / (interval * batch_size)))
print("penalty:" + str(torch.sum(y_penl).data[0] / batch_size))
print("prepare time:" + str(prepare_time))
print("run time:" + str(run_time))
prepare_time = 0
run_time = 0
loss_count = 0
count = 0
string = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
torch.save(net.state_dict(), "model_dict_%s.dict"%(string))
def test(model_dict, using_cuda=True):
if using_cuda:
net = Net().cuda()
else:
net = Net()
net.load_state_dict(torch.load(model_dict))
dataset = dataloader.DataLoader("test_set.pkl", batch_size=1, using_cuda=using_cuda)
count = 0
for i, batch in enumerate(dataset):
X = batch["feature"]
y = batch["class"]
y_pred, _ = net(X)
p, idx = torch.max(y_pred.data, dim=1)
count += torch.sum(torch.eq(idx.cpu(), y.data.cpu()))
print("accuracy: %f"%(count / dataset.num))
if __name__ == "__main__":
train(using_cuda=torch.cuda.is_available())

View File

@ -0,0 +1,25 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class MLP(nn.Module):
"""
A two layers perceptron for classification.
Output : Unnormalized possibility distribution
Args:
input_size : the size of input
hidden_size : the size of hidden layer
output_size : the size of output
"""
def __init__(self, input_size, hidden_size, output_size):
super(MLP,self).__init__()
self.L1 = nn.Linear(input_size, hidden_size)
self.L2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
out = self.L2(F.relu(self.L1(x)))
return out
if __name__ == "__main__":
MLP(20, 30, 20)

View File

@ -0,0 +1,50 @@
import pickle
import Word2Idx
def get_sets(m, n):
"""
get a train set containing m samples and a test set containing n samples
"""
samples = pickle.load(open("tuples.pkl","rb"))
if m+n > len(samples):
print("asking for too many tuples\n")
return
train_samples = samples[ : m]
test_samples = samples[m: m+n]
return train_samples, test_samples
def build_wordidx():
"""
build wordidx using word2idx
"""
train, test = get_sets(500000, 2000)
words = []
for x in train:
words += x[0]
wordidx = Word2Idx.Word2Idx()
wordidx.build(words)
print(wordidx.num)
print(wordidx.i2w(0))
wordidx.save("wordidx.pkl")
def build_sets():
"""
build train set and test set, transform word to index
"""
train, test = get_sets(500000, 2000)
wordidx = Word2Idx.Word2Idx()
wordidx.load("wordidx.pkl")
train_set = []
for x in train:
sent = [wordidx.w2i(w) for w in x[0]]
train_set.append({"sent" : sent, "class" : x[1]})
test_set = []
for x in test:
sent = [wordidx.w2i(w) for w in x[0]]
test_set.append({"sent" : sent, "class" : x[1]})
pickle.dump(train_set, open("train_set.pkl", "wb"))
pickle.dump(test_set, open("test_set.pkl", "wb"))
if __name__ == "__main__":
build_wordidx()
build_sets()