Merge branch 'dev0.8.0' of github.com:fastnlp/fastNLP into dev0.8.0

This commit is contained in:
YWMditto 2022-04-11 18:59:04 +08:00
commit afb87b4375
9 changed files with 324 additions and 98 deletions

131
README.md
View File

@ -6,4 +6,133 @@
![Hex.pm](https://img.shields.io/hexpm/l/plug.svg)
[![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest)
dev0.8.0正在开发中
fastNLP是一款轻量级的自然语言处理NLP工具包目标是快速实现NLP任务以及构建复杂模型。
fastNLP具有如下的特性
- 统一的Tabular式数据容器简化数据预处理过程
- 内置多种数据集的Loader和Pipe省去预处理代码;
- 各种方便的NLP工具例如Embedding加载包括ELMo和BERT、中间数据cache等;
- 部分[数据集与预训练模型](https://docs.qq.com/sheet/DVnpkTnF6VW9UeXdh?c=A1A0A0)的自动下载;
- 提供多种神经网络组件以及复现模型(涵盖中文分词、命名实体识别、句法分析、文本分类、文本匹配、指代消解、摘要等任务);
- Trainer提供多种内置Callback函数方便实验记录、异常捕获等。
## 安装指南
fastNLP 依赖以下包:
+ numpy>=1.14.2
+ torch>=1.0.0
+ tqdm>=4.28.1
+ nltk>=3.4.1
+ requests
+ spacy
+ prettytable>=0.7.2
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 [PyTorch 官网](https://pytorch.org/) 。
在依赖包安装完成后,您可以在命令行执行如下指令完成安装
```shell
pip install fastNLP
python -m spacy download en
```
## fastNLP教程
中文[文档](https://fastnlp.readthedocs.io/)、[教程](https://fastnlp.readthedocs.io/zh/latest/user/tutorials.html)
### 快速入门
- [0. 快速入门](https://fastnlp.readthedocs.io/zh/latest/user/quickstart.html)
### 详细使用教程
- [1. 使用DataSet预处理文本](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_1_data_preprocess.html)
- [2. 使用Vocabulary转换文本与index](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_2_vocabulary.html)
- [3. 使用Embedding模块将文本转成向量](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_3_embedding.html)
- [4. 使用Loader和Pipe加载并处理数据集](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_4_load_dataset.html)
- [5. 动手实现一个文本分类器I-使用Trainer和Tester快速训练和测试](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_5_loss_optimizer.html)
- [6. 动手实现一个文本分类器II-使用DataSetIter实现自定义训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_6_datasetiter.html)
- [7. 使用Metric快速评测你的模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_7_metrics.html)
- [8. 使用Modules和Models快速搭建自定义模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_8_modules_models.html)
- [9. 快速实现序列标注模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_9_seq_labeling.html)
- [10. 使用Callback自定义你的训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_10_callback.html)
### 扩展教程
- [Extend-1. BertEmbedding的各种用法](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_1_bert_embedding.html)
- [Extend-2. 分布式训练简介](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_2_dist.html)
- [Extend-3. 使用fitlog 辅助 fastNLP 进行科研](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_3_fitlog.html)
## 内置组件
大部分用于的 NLP 任务神经网络都可以看做由词嵌入embeddings和两种模块编码器encoder、解码器decoder组成。
以文本分类任务为例下图展示了一个BiLSTM+Attention实现文本分类器的模型流程图
![](./docs/source/figures/text_classification.png)
fastNLP 在 embeddings 模块中内置了几种不同的embedding静态embeddingGloVe、word2vec、上下文相关embedding
ELMo、BERT、字符embedding基于CNN或者LSTM的CharEmbedding
与此同时fastNLP 在 modules 模块中内置了两种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 两种模块的功能和常见组件如下:
<table>
<tr>
<td><b> 类型 </b></td>
<td><b> 功能 </b></td>
<td><b> 例子 </b></td>
</tr>
<tr>
<td> encoder </td>
<td> 将输入编码为具有具有表示能力的向量 </td>
<td> Embedding, RNN, CNN, Transformer, ...
</tr>
<tr>
<td> decoder </td>
<td> 将具有某种表示意义的向量解码为需要的输出形式 </td>
<td> MLP, CRF, ... </td>
</tr>
</table>
## 项目结构
<div align=center><img width="450" height="350" src="./docs/source/figures/workflow.png"/></div>
fastNLP的大致工作流程如上图所示而项目结构如下
<table>
<tr>
<td><b> fastNLP </b></td>
<td> 开源的自然语言处理库 </td>
</tr>
<tr>
<td><b> fastNLP.core </b></td>
<td> 实现了核心功能,包括数据处理组件、训练器、测试器等 </td>
</tr>
<tr>
<td><b> fastNLP.models </b></td>
<td> 实现了一些完整的神经网络模型 </td>
</tr>
<tr>
<td><b> fastNLP.modules </b></td>
<td> 实现了用于搭建神经网络模型的诸多组件 </td>
</tr>
<tr>
<td><b> fastNLP.embeddings </b></td>
<td> 实现了将序列index转为向量序列的功能包括读取预训练embedding等 </td>
</tr>
<tr>
<td><b> fastNLP.io </b></td>
<td> 实现了读写功能,包括数据读入与预处理,模型读写,数据与模型自动下载等 </td>
</tr>
</table>
<hr>
*In memory of @FengZiYjun. May his soul rest in peace. We will miss you very very much!*

View File

@ -19,7 +19,7 @@ from fastNLP.core.utils import (
paddle_move_data_to_device,
is_in_paddle_dist,
)
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedDistributedSampler
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedSampler
from fastNLP.envs.env import FASTNLP_DISTRIBUTED_CHECK, USER_CUDA_VISIBLE_DEVICES
from fastNLP.core.log import logger
@ -362,7 +362,7 @@ class PaddleFleetDriver(PaddleDriver):
return dataloader
# evaluator
elif dist == "unrepeatdist":
sampler = UnrepeatedDistributedSampler(
sampler = UnrepeatedSampler(
dataset=dataloader.dataset,
shuffle=shuffle,
seed=int(os.environ.get("FASTNLP_SEED", 0))

View File

@ -28,7 +28,7 @@ from fastNLP.core.drivers.torch_driver.utils import (
)
from fastNLP.core.drivers.utils import distributed_open_proc
from fastNLP.core.utils import auto_param_call, check_user_specific_params
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedDistributedSampler, ReproducibleBatchSampler
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedSampler, ReproducibleBatchSampler
from fastNLP.envs import FASTNLP_DISTRIBUTED_CHECK, FASTNLP_GLOBAL_RANK, FASTNLP_GLOBAL_SEED
from fastNLP.core.log import logger
from fastNLP.core.drivers.torch_driver.dist_utils import fastnlp_torch_all_gather, fastnlp_torch_broadcast_object
@ -507,7 +507,7 @@ class TorchDDPDriver(TorchDriver):
args = self.get_dataloader_args(dataloader)
# todo 判断 batch_sampler
sampler = UnrepeatedDistributedSampler(
sampler = UnrepeatedSampler(
dataset=args.dataset,
shuffle=args.shuffle,
)

View File

@ -3,19 +3,24 @@ __all__ = [
'SortedSampler',
'ConstTokenNumSampler',
'ConstantTokenNumSampler',
'UnrepeatedDistributedSampler',
'MixSampler',
'InnerSampler',
'DopedSampler',
'MixSequentialSampler',
'PollingSampler',
'ReproducibleIterator',
'RandomSampler',
're_instantiate_sampler'
're_instantiate_sampler',
'UnrepeatedSampler',
"UnrepeatedSortedSampler"
]
from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler, UnrepeatedDistributedSampler
from .mix_sampler import MixSampler, InnerSampler, DopedSampler, MixSequentialSampler, PollingSampler
from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler
from .unrepeated_sampler import UnrepeatedSampler, UnrepeatedSortedSampler
from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, PollingSampler
from .reproducible_sampler import ReproducibleIterator, RandomSampler, re_instantiate_sampler
from .reproducible_batch_sampler import ReproducibleBatchSampler, BucketedBatchSampler

View File

@ -4,7 +4,6 @@ from typing import Union, List, Iterable, Dict
__all__ = [
'MixSampler',
'InnerSampler',
'DopedSampler',
'MixSequentialSampler',
'PollingSampler'

View File

@ -7,7 +7,6 @@ __all__ = [
"SortedSampler",
'ConstTokenNumSampler',
"ConstantTokenNumSampler",
"UnrepeatedDistributedSampler",
]
from itertools import chain
@ -18,7 +17,7 @@ import numpy as np
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
if _NEED_IMPORT_TORCH:
from torch.utils.data import SequentialSampler, Sampler, RandomSampler
from torch.utils.data import Sampler
else:
from fastNLP.core.utils.dummy_class import DummyClass as Sampler
@ -727,87 +726,3 @@ def k_means_bucketing(lengths, buckets):
if buckets[bucket_id] is None or lengths[idx] <= buckets[bucket_id]:
bucket_data[bucket_id].append(idx)
return bucket_data
class UnrepeatedDistributedSampler:
def __init__(self, dataset, shuffle: bool = False, seed: int = 0):
"""
考虑在多卡evaluate的场景下不能重复sample
:param dataset:
:param shuffle:
:param seed:
"""
self.dataset = dataset
self.shuffle = shuffle
self.seed = seed
# 多卡的相关的参数
self.num_replicas = 1
self.rank = 0
self.epoch = -1
def __len__(self):
"""
返回 sampler 一次完整的迭代过程会产生多少个index多卡的情况下只考虑当前rank
:return:
"""
num_common = len(self.dataset)//self.num_replicas
self.num_samples = num_common + int(self.rank < (len(self.dataset)-num_common*self.num_replicas))
return self.num_samples
def __iter__(self):
r"""
当前使用num_consumed_samples做法会在交替使用的时候遇到问题
Example:
>>> sampler = RandomSampler()
>>> iter1 = iter(sampler)
>>> iter2 = iter(sampler)
>>> next(iter1)
>>> next(iter2) # 当前num_consumed_samples的数量会发生变化
"""
indices = self.generate_indices()
# subsample
indices = indices[self.rank:len(indices):self.num_replicas]
assert len(indices) == len(self)
for index in indices:
yield index
def generate_indices(self) -> List[int]:
"""
生成随机序列
:return:
"""
if self.shuffle:
indices = list(range(len(self.dataset)))
seed = self.seed + self.epoch
rng = np.random.default_rng(abs(seed))
rng.shuffle(indices)
if self.epoch < 0: # 防止用户忘记调用 set_epoch至少这样可以保证每次epoch出来的index顺序不同。
self.epoch -= 1
else:
indices = list(range(len(self.dataset)))
return indices
def set_epoch(self, epoch: int) -> None:
self.epoch = epoch
def set_distributed(self, num_replicas, rank):
"""
该方法本质上等同于 ddp 情形下的没有完成的初始化应当在初始化该 sampler 本身后立即被调用
:param num_replicas:
:param rank:
:return:
"""
assert num_replicas>0 and isinstance(num_replicas, int)
assert isinstance(rank, int) and 0<=rank<num_replicas
# 注意初始化该函数时,所有的状态都应当默认是一个 epoch 刚开始训练的状态;
self.num_replicas = num_replicas
self.rank = rank
return self

View File

@ -0,0 +1,114 @@
__all__ = [
'UnrepeatedSortedSampler',
'UnrepeatedSampler'
]
from typing import List, Union
from fastNLP.core.dataset import DataSet
import numpy as np
class UnrepeatedSampler:
def __init__(self, dataset, shuffle: bool = False, seed: int = 0, **kwargs):
"""
考虑在多卡evaluate的场景下不能重复sample
:param dataset:
:param shuffle:
:param seed:
"""
self.dataset = dataset
self.shuffle = shuffle
self.seed = seed
# 多卡的相关的参数
self.num_replicas = kwargs.get('num_replicas', 1)
self.rank = kwargs.get('rank', 0)
self.epoch = kwargs.get('epoch', -1)
def __len__(self):
"""
返回 sampler 一次完整的迭代过程会产生多少个index多卡的情况下只考虑当前rank
:return:
"""
num_common = len(self.dataset)//self.num_replicas
self.num_samples = num_common + int(self.rank < (len(self.dataset)-num_common*self.num_replicas))
return self.num_samples
def __iter__(self):
indices = self.generate_indices()
# subsample
indices = indices[self.rank:len(indices):self.num_replicas]
assert len(indices) == len(self)
for index in indices:
yield index
def generate_indices(self) -> List[int]:
"""
生成随机序列
:return:
"""
if self.shuffle:
indices = list(range(len(self.dataset)))
seed = self.seed + self.epoch
rng = np.random.default_rng(abs(seed))
rng.shuffle(indices)
if self.epoch < 0: # 防止用户忘记调用 set_epoch至少这样可以保证每次epoch出来的index顺序不同。
self.epoch -= 1
else:
indices = list(range(len(self.dataset)))
return indices
def set_epoch(self, epoch: int) -> None:
self.epoch = epoch
def set_distributed(self, num_replicas, rank):
"""
该方法本质上等同于 ddp 情形下的没有完成的初始化应当在初始化该 sampler 本身后立即被调用
:param num_replicas:
:param rank:
:return:
"""
assert num_replicas>0 and isinstance(num_replicas, int)
assert isinstance(rank, int) and 0<=rank<num_replicas
# 注意初始化该函数时,所有的状态都应当默认是一个 epoch 刚开始训练的状态;
self.num_replicas = num_replicas
self.rank = rank
return self
class UnrepeatedSortedSampler(UnrepeatedSampler):
def __init__(self, dataset, length:Union[str, List], seed: int = 0):
"""
dataset 中的数据根据 length 从长到短进行迭代并且保证在多卡场景下数据不重复 sampler 可能导致各个机器上的
batch 数量不完全一致
:param dataset: 实现了 __len__ 方法的数据容器
:param length: 如果为 List应当与 dataset 有一样的长度表示 dataset 中每个元素的数量仅当传入的 dataset fastNLP
DataSet 时支持传入 str会将该str理解为 dataset field 名称 field 中的元素为 int则认为该值是 sample 的长度
:param shuffle: 如果为 True将不进行 shuffle实际上数据会以从长到短的方式输出
:param seed: 设置的随机数种子
:param kwargs: fastNLP 保留使用
"""
super().__init__(dataset=dataset, shuffle=False, seed=seed)
if isinstance(dataset, DataSet):
length = dataset.get_field(length)
if not isinstance(length[0], int):
length = list(map(len, length))
else:
assert len(length) == len(dataset), "When the dataset is not fastNLP.DataSet, " \
"the length parameter can only be List[int]"
assert len(length) == len(dataset), "The length of `data` and `length` should be equal."
self.length = np.array(length, dtype=int) # 按照长到短排列的序号。
self.sorted_indices = np.argsort(self.length)[::-1].tolist() # 按长度从高到低排序的
def generate_indices(self) -> List[int]:
return self.sorted_indices

View File

@ -1,5 +1,5 @@
import pytest
import unittest
from collections import Counter
import os, sys
import copy

View File

@ -0,0 +1,64 @@
from itertools import chain
import pytest
from fastNLP.core.samplers import UnrepeatedSampler, UnrepeatedSortedSampler
class DatasetWithVaryLength:
def __init__(self, num_of_data=100):
self.data = list(range(num_of_data))
def __getitem__(self, item):
return self.data[item]
def __len__(self):
return len(self.data)
class TestUnrepeatedSampler:
@pytest.mark.parametrize('shuffle', [True, False])
def test_single(self, shuffle):
num_of_data = 100
data = DatasetWithVaryLength(num_of_data)
sampler = UnrepeatedSampler(data, shuffle)
indexes = set(sampler)
assert indexes==set(range(num_of_data))
@pytest.mark.parametrize('num_replica', [2, 3])
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
@pytest.mark.parametrize('shuffle', [False, True])
def test_multi(self, num_replica, num_of_data, shuffle):
data = DatasetWithVaryLength(num_of_data=num_of_data)
samplers = []
for i in range(num_replica):
sampler = UnrepeatedSampler(dataset=data, shuffle=shuffle)
sampler.set_distributed(num_replica, rank=i)
samplers.append(sampler)
indexes = set(chain(*samplers))
assert indexes==set(range(num_of_data))
class TestUnrepeatedSortedSampler:
@pytest.mark.parametrize('shuffle', [True, False])
def test_single(self, shuffle):
num_of_data = 100
data = DatasetWithVaryLength(num_of_data)
sampler = UnrepeatedSortedSampler(data, length=data.data)
indexes = list(sampler)
assert indexes==list(range(num_of_data-1, -1, -1))
@pytest.mark.parametrize('num_replica', [2, 3])
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
@pytest.mark.parametrize('shuffle', [False, True])
def test_multi(self, num_replica, num_of_data, shuffle):
data = DatasetWithVaryLength(num_of_data=num_of_data)
samplers = []
for i in range(num_replica):
sampler = UnrepeatedSortedSampler(dataset=data, length=data.data)
sampler.set_distributed(num_replica, rank=i)
samplers.append(sampler)
indexes = set(chain(*samplers))
assert indexes==set(range(num_of_data))