mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-03 12:47:35 +08:00
Merge branch 'dev0.8.0' of github.com:fastnlp/fastNLP into dev0.8.0
This commit is contained in:
commit
afb87b4375
131
README.md
131
README.md
@ -6,4 +6,133 @@
|
||||
![Hex.pm](https://img.shields.io/hexpm/l/plug.svg)
|
||||
[![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest)
|
||||
|
||||
dev0.8.0正在开发中
|
||||
fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。
|
||||
|
||||
fastNLP具有如下的特性:
|
||||
|
||||
- 统一的Tabular式数据容器,简化数据预处理过程;
|
||||
- 内置多种数据集的Loader和Pipe,省去预处理代码;
|
||||
- 各种方便的NLP工具,例如Embedding加载(包括ELMo和BERT)、中间数据cache等;
|
||||
- 部分[数据集与预训练模型](https://docs.qq.com/sheet/DVnpkTnF6VW9UeXdh?c=A1A0A0)的自动下载;
|
||||
- 提供多种神经网络组件以及复现模型(涵盖中文分词、命名实体识别、句法分析、文本分类、文本匹配、指代消解、摘要等任务);
|
||||
- Trainer提供多种内置Callback函数,方便实验记录、异常捕获等。
|
||||
|
||||
## 安装指南
|
||||
|
||||
fastNLP 依赖以下包:
|
||||
|
||||
+ numpy>=1.14.2
|
||||
+ torch>=1.0.0
|
||||
+ tqdm>=4.28.1
|
||||
+ nltk>=3.4.1
|
||||
+ requests
|
||||
+ spacy
|
||||
+ prettytable>=0.7.2
|
||||
|
||||
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 [PyTorch 官网](https://pytorch.org/) 。
|
||||
在依赖包安装完成后,您可以在命令行执行如下指令完成安装
|
||||
|
||||
```shell
|
||||
pip install fastNLP
|
||||
python -m spacy download en
|
||||
```
|
||||
|
||||
|
||||
## fastNLP教程
|
||||
中文[文档](https://fastnlp.readthedocs.io/)、[教程](https://fastnlp.readthedocs.io/zh/latest/user/tutorials.html)
|
||||
|
||||
### 快速入门
|
||||
|
||||
- [0. 快速入门](https://fastnlp.readthedocs.io/zh/latest/user/quickstart.html)
|
||||
|
||||
### 详细使用教程
|
||||
|
||||
- [1. 使用DataSet预处理文本](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_1_data_preprocess.html)
|
||||
- [2. 使用Vocabulary转换文本与index](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_2_vocabulary.html)
|
||||
- [3. 使用Embedding模块将文本转成向量](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_3_embedding.html)
|
||||
- [4. 使用Loader和Pipe加载并处理数据集](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_4_load_dataset.html)
|
||||
- [5. 动手实现一个文本分类器I-使用Trainer和Tester快速训练和测试](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_5_loss_optimizer.html)
|
||||
- [6. 动手实现一个文本分类器II-使用DataSetIter实现自定义训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_6_datasetiter.html)
|
||||
- [7. 使用Metric快速评测你的模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_7_metrics.html)
|
||||
- [8. 使用Modules和Models快速搭建自定义模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_8_modules_models.html)
|
||||
- [9. 快速实现序列标注模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_9_seq_labeling.html)
|
||||
- [10. 使用Callback自定义你的训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_10_callback.html)
|
||||
|
||||
### 扩展教程
|
||||
|
||||
- [Extend-1. BertEmbedding的各种用法](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_1_bert_embedding.html)
|
||||
- [Extend-2. 分布式训练简介](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_2_dist.html)
|
||||
- [Extend-3. 使用fitlog 辅助 fastNLP 进行科研](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_3_fitlog.html)
|
||||
|
||||
|
||||
## 内置组件
|
||||
|
||||
大部分用于的 NLP 任务神经网络都可以看做由词嵌入(embeddings)和两种模块:编码器(encoder)、解码器(decoder)组成。
|
||||
|
||||
以文本分类任务为例,下图展示了一个BiLSTM+Attention实现文本分类器的模型流程图:
|
||||
|
||||
|
||||
![](./docs/source/figures/text_classification.png)
|
||||
|
||||
fastNLP 在 embeddings 模块中内置了几种不同的embedding:静态embedding(GloVe、word2vec)、上下文相关embedding
|
||||
(ELMo、BERT)、字符embedding(基于CNN或者LSTM的CharEmbedding)
|
||||
|
||||
与此同时,fastNLP 在 modules 模块中内置了两种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 两种模块的功能和常见组件如下:
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><b> 类型 </b></td>
|
||||
<td><b> 功能 </b></td>
|
||||
<td><b> 例子 </b></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td> encoder </td>
|
||||
<td> 将输入编码为具有具有表示能力的向量 </td>
|
||||
<td> Embedding, RNN, CNN, Transformer, ...
|
||||
</tr>
|
||||
<tr>
|
||||
<td> decoder </td>
|
||||
<td> 将具有某种表示意义的向量解码为需要的输出形式 </td>
|
||||
<td> MLP, CRF, ... </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
|
||||
## 项目结构
|
||||
|
||||
<div align=center><img width="450" height="350" src="./docs/source/figures/workflow.png"/></div>
|
||||
|
||||
|
||||
|
||||
fastNLP的大致工作流程如上图所示,而项目结构如下:
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><b> fastNLP </b></td>
|
||||
<td> 开源的自然语言处理库 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><b> fastNLP.core </b></td>
|
||||
<td> 实现了核心功能,包括数据处理组件、训练器、测试器等 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><b> fastNLP.models </b></td>
|
||||
<td> 实现了一些完整的神经网络模型 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><b> fastNLP.modules </b></td>
|
||||
<td> 实现了用于搭建神经网络模型的诸多组件 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><b> fastNLP.embeddings </b></td>
|
||||
<td> 实现了将序列index转为向量序列的功能,包括读取预训练embedding等 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><b> fastNLP.io </b></td>
|
||||
<td> 实现了读写功能,包括数据读入与预处理,模型读写,数据与模型自动下载等 </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<hr>
|
||||
|
||||
*In memory of @FengZiYjun. May his soul rest in peace. We will miss you very very much!*
|
||||
|
@ -19,7 +19,7 @@ from fastNLP.core.utils import (
|
||||
paddle_move_data_to_device,
|
||||
is_in_paddle_dist,
|
||||
)
|
||||
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedDistributedSampler
|
||||
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedSampler
|
||||
from fastNLP.envs.env import FASTNLP_DISTRIBUTED_CHECK, USER_CUDA_VISIBLE_DEVICES
|
||||
from fastNLP.core.log import logger
|
||||
|
||||
@ -362,7 +362,7 @@ class PaddleFleetDriver(PaddleDriver):
|
||||
return dataloader
|
||||
# evaluator
|
||||
elif dist == "unrepeatdist":
|
||||
sampler = UnrepeatedDistributedSampler(
|
||||
sampler = UnrepeatedSampler(
|
||||
dataset=dataloader.dataset,
|
||||
shuffle=shuffle,
|
||||
seed=int(os.environ.get("FASTNLP_SEED", 0))
|
||||
|
@ -28,7 +28,7 @@ from fastNLP.core.drivers.torch_driver.utils import (
|
||||
)
|
||||
from fastNLP.core.drivers.utils import distributed_open_proc
|
||||
from fastNLP.core.utils import auto_param_call, check_user_specific_params
|
||||
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedDistributedSampler, ReproducibleBatchSampler
|
||||
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedSampler, ReproducibleBatchSampler
|
||||
from fastNLP.envs import FASTNLP_DISTRIBUTED_CHECK, FASTNLP_GLOBAL_RANK, FASTNLP_GLOBAL_SEED
|
||||
from fastNLP.core.log import logger
|
||||
from fastNLP.core.drivers.torch_driver.dist_utils import fastnlp_torch_all_gather, fastnlp_torch_broadcast_object
|
||||
@ -507,7 +507,7 @@ class TorchDDPDriver(TorchDriver):
|
||||
args = self.get_dataloader_args(dataloader)
|
||||
|
||||
# todo 判断 batch_sampler;
|
||||
sampler = UnrepeatedDistributedSampler(
|
||||
sampler = UnrepeatedSampler(
|
||||
dataset=args.dataset,
|
||||
shuffle=args.shuffle,
|
||||
)
|
||||
|
@ -3,19 +3,24 @@ __all__ = [
|
||||
'SortedSampler',
|
||||
'ConstTokenNumSampler',
|
||||
'ConstantTokenNumSampler',
|
||||
'UnrepeatedDistributedSampler',
|
||||
|
||||
'MixSampler',
|
||||
'InnerSampler',
|
||||
'DopedSampler',
|
||||
'MixSequentialSampler',
|
||||
'PollingSampler',
|
||||
|
||||
'ReproducibleIterator',
|
||||
'RandomSampler',
|
||||
're_instantiate_sampler'
|
||||
|
||||
're_instantiate_sampler',
|
||||
|
||||
'UnrepeatedSampler',
|
||||
"UnrepeatedSortedSampler"
|
||||
]
|
||||
|
||||
from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler, UnrepeatedDistributedSampler
|
||||
from .mix_sampler import MixSampler, InnerSampler, DopedSampler, MixSequentialSampler, PollingSampler
|
||||
from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler
|
||||
from .unrepeated_sampler import UnrepeatedSampler, UnrepeatedSortedSampler
|
||||
from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, PollingSampler
|
||||
from .reproducible_sampler import ReproducibleIterator, RandomSampler, re_instantiate_sampler
|
||||
from .reproducible_batch_sampler import ReproducibleBatchSampler, BucketedBatchSampler
|
||||
|
||||
|
@ -4,7 +4,6 @@ from typing import Union, List, Iterable, Dict
|
||||
|
||||
__all__ = [
|
||||
'MixSampler',
|
||||
'InnerSampler',
|
||||
'DopedSampler',
|
||||
'MixSequentialSampler',
|
||||
'PollingSampler'
|
||||
|
@ -7,7 +7,6 @@ __all__ = [
|
||||
"SortedSampler",
|
||||
'ConstTokenNumSampler',
|
||||
"ConstantTokenNumSampler",
|
||||
"UnrepeatedDistributedSampler",
|
||||
]
|
||||
|
||||
from itertools import chain
|
||||
@ -18,7 +17,7 @@ import numpy as np
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
|
||||
if _NEED_IMPORT_TORCH:
|
||||
from torch.utils.data import SequentialSampler, Sampler, RandomSampler
|
||||
from torch.utils.data import Sampler
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as Sampler
|
||||
|
||||
@ -727,87 +726,3 @@ def k_means_bucketing(lengths, buckets):
|
||||
if buckets[bucket_id] is None or lengths[idx] <= buckets[bucket_id]:
|
||||
bucket_data[bucket_id].append(idx)
|
||||
return bucket_data
|
||||
|
||||
|
||||
class UnrepeatedDistributedSampler:
|
||||
def __init__(self, dataset, shuffle: bool = False, seed: int = 0):
|
||||
"""
|
||||
考虑在多卡evaluate的场景下,不能重复sample。
|
||||
|
||||
:param dataset:
|
||||
:param shuffle:
|
||||
:param seed:
|
||||
"""
|
||||
self.dataset = dataset
|
||||
self.shuffle = shuffle
|
||||
self.seed = seed
|
||||
|
||||
# 多卡的相关的参数
|
||||
self.num_replicas = 1
|
||||
self.rank = 0
|
||||
self.epoch = -1
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
返回 sampler 一次完整的迭代过程会产生多少个index。多卡的情况下,只考虑当前rank;
|
||||
:return:
|
||||
"""
|
||||
num_common = len(self.dataset)//self.num_replicas
|
||||
self.num_samples = num_common + int(self.rank < (len(self.dataset)-num_common*self.num_replicas))
|
||||
return self.num_samples
|
||||
|
||||
def __iter__(self):
|
||||
r"""
|
||||
当前使用num_consumed_samples做法会在交替使用的时候遇到问题;
|
||||
Example:
|
||||
>>> sampler = RandomSampler()
|
||||
>>> iter1 = iter(sampler)
|
||||
>>> iter2 = iter(sampler)
|
||||
>>> next(iter1)
|
||||
>>> next(iter2) # 当前num_consumed_samples的数量会发生变化
|
||||
"""
|
||||
|
||||
indices = self.generate_indices()
|
||||
|
||||
# subsample
|
||||
indices = indices[self.rank:len(indices):self.num_replicas]
|
||||
assert len(indices) == len(self)
|
||||
|
||||
for index in indices:
|
||||
yield index
|
||||
|
||||
def generate_indices(self) -> List[int]:
|
||||
"""
|
||||
生成随机序列
|
||||
|
||||
:return:
|
||||
"""
|
||||
if self.shuffle:
|
||||
indices = list(range(len(self.dataset)))
|
||||
seed = self.seed + self.epoch
|
||||
rng = np.random.default_rng(abs(seed))
|
||||
rng.shuffle(indices)
|
||||
if self.epoch < 0: # 防止用户忘记调用 set_epoch,至少这样可以保证每次epoch出来的index顺序不同。
|
||||
self.epoch -= 1
|
||||
else:
|
||||
indices = list(range(len(self.dataset)))
|
||||
return indices
|
||||
|
||||
def set_epoch(self, epoch: int) -> None:
|
||||
self.epoch = epoch
|
||||
|
||||
def set_distributed(self, num_replicas, rank):
|
||||
"""
|
||||
该方法本质上等同于 ddp 情形下的没有完成的初始化,应当在初始化该 sampler 本身后立即被调用;
|
||||
|
||||
:param num_replicas:
|
||||
:param rank:
|
||||
:return:
|
||||
"""
|
||||
assert num_replicas>0 and isinstance(num_replicas, int)
|
||||
assert isinstance(rank, int) and 0<=rank<num_replicas
|
||||
# 注意初始化该函数时,所有的状态都应当默认是一个 epoch 刚开始训练的状态;
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
|
||||
return self
|
114
fastNLP/core/samplers/unrepeated_sampler.py
Normal file
114
fastNLP/core/samplers/unrepeated_sampler.py
Normal file
@ -0,0 +1,114 @@
|
||||
__all__ = [
|
||||
'UnrepeatedSortedSampler',
|
||||
'UnrepeatedSampler'
|
||||
]
|
||||
|
||||
from typing import List, Union
|
||||
from fastNLP.core.dataset import DataSet
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class UnrepeatedSampler:
|
||||
def __init__(self, dataset, shuffle: bool = False, seed: int = 0, **kwargs):
|
||||
"""
|
||||
考虑在多卡evaluate的场景下,不能重复sample。
|
||||
|
||||
:param dataset:
|
||||
:param shuffle:
|
||||
:param seed:
|
||||
"""
|
||||
self.dataset = dataset
|
||||
self.shuffle = shuffle
|
||||
self.seed = seed
|
||||
|
||||
# 多卡的相关的参数
|
||||
self.num_replicas = kwargs.get('num_replicas', 1)
|
||||
self.rank = kwargs.get('rank', 0)
|
||||
self.epoch = kwargs.get('epoch', -1)
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
返回 sampler 一次完整的迭代过程会产生多少个index。多卡的情况下,只考虑当前rank;
|
||||
:return:
|
||||
"""
|
||||
num_common = len(self.dataset)//self.num_replicas
|
||||
self.num_samples = num_common + int(self.rank < (len(self.dataset)-num_common*self.num_replicas))
|
||||
return self.num_samples
|
||||
|
||||
def __iter__(self):
|
||||
indices = self.generate_indices()
|
||||
|
||||
# subsample
|
||||
indices = indices[self.rank:len(indices):self.num_replicas]
|
||||
assert len(indices) == len(self)
|
||||
|
||||
for index in indices:
|
||||
yield index
|
||||
|
||||
def generate_indices(self) -> List[int]:
|
||||
"""
|
||||
生成随机序列
|
||||
|
||||
:return:
|
||||
"""
|
||||
if self.shuffle:
|
||||
indices = list(range(len(self.dataset)))
|
||||
seed = self.seed + self.epoch
|
||||
rng = np.random.default_rng(abs(seed))
|
||||
rng.shuffle(indices)
|
||||
if self.epoch < 0: # 防止用户忘记调用 set_epoch,至少这样可以保证每次epoch出来的index顺序不同。
|
||||
self.epoch -= 1
|
||||
else:
|
||||
indices = list(range(len(self.dataset)))
|
||||
return indices
|
||||
|
||||
def set_epoch(self, epoch: int) -> None:
|
||||
self.epoch = epoch
|
||||
|
||||
def set_distributed(self, num_replicas, rank):
|
||||
"""
|
||||
该方法本质上等同于 ddp 情形下的没有完成的初始化,应当在初始化该 sampler 本身后立即被调用;
|
||||
|
||||
:param num_replicas:
|
||||
:param rank:
|
||||
:return:
|
||||
"""
|
||||
assert num_replicas>0 and isinstance(num_replicas, int)
|
||||
assert isinstance(rank, int) and 0<=rank<num_replicas
|
||||
# 注意初始化该函数时,所有的状态都应当默认是一个 epoch 刚开始训练的状态;
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
|
||||
return self
|
||||
|
||||
|
||||
class UnrepeatedSortedSampler(UnrepeatedSampler):
|
||||
def __init__(self, dataset, length:Union[str, List], seed: int = 0):
|
||||
"""
|
||||
将 dataset 中的数据根据 length 从长到短进行迭代,并且保证在多卡场景下数据不重复。本 sampler 可能导致各个机器上的
|
||||
batch 数量不完全一致。
|
||||
|
||||
:param dataset: 实现了 __len__ 方法的数据容器。
|
||||
:param length: 如果为 List,应当与 dataset 有一样的长度,表示 dataset 中每个元素的数量;仅当传入的 dataset 为 fastNLP 的
|
||||
DataSet 时支持传入 str,会将该str理解为 dataset 的 field 名称,若 field 中的元素为 int,则认为该值是 sample 的长度。
|
||||
:param shuffle: 如果为 True,将不进行 shuffle,实际上数据会以从长到短的方式输出。
|
||||
:param seed: 设置的随机数种子
|
||||
:param kwargs: fastNLP 保留使用
|
||||
"""
|
||||
super().__init__(dataset=dataset, shuffle=False, seed=seed)
|
||||
if isinstance(dataset, DataSet):
|
||||
length = dataset.get_field(length)
|
||||
if not isinstance(length[0], int):
|
||||
length = list(map(len, length))
|
||||
else:
|
||||
assert len(length) == len(dataset), "When the dataset is not fastNLP.DataSet, " \
|
||||
"the length parameter can only be List[int]"
|
||||
|
||||
assert len(length) == len(dataset), "The length of `data` and `length` should be equal."
|
||||
|
||||
self.length = np.array(length, dtype=int) # 按照长到短排列的序号。
|
||||
self.sorted_indices = np.argsort(self.length)[::-1].tolist() # 按长度从高到低排序的
|
||||
|
||||
def generate_indices(self) -> List[int]:
|
||||
return self.sorted_indices
|
@ -1,5 +1,5 @@
|
||||
import pytest
|
||||
import unittest
|
||||
|
||||
from collections import Counter
|
||||
import os, sys
|
||||
import copy
|
||||
|
64
tests/core/samplers/test_unrepeated_sampler.py
Normal file
64
tests/core/samplers/test_unrepeated_sampler.py
Normal file
@ -0,0 +1,64 @@
|
||||
from itertools import chain
|
||||
|
||||
import pytest
|
||||
|
||||
from fastNLP.core.samplers import UnrepeatedSampler, UnrepeatedSortedSampler
|
||||
|
||||
|
||||
class DatasetWithVaryLength:
|
||||
def __init__(self, num_of_data=100):
|
||||
self.data = list(range(num_of_data))
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.data[item]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
|
||||
class TestUnrepeatedSampler:
|
||||
@pytest.mark.parametrize('shuffle', [True, False])
|
||||
def test_single(self, shuffle):
|
||||
num_of_data = 100
|
||||
data = DatasetWithVaryLength(num_of_data)
|
||||
sampler = UnrepeatedSampler(data, shuffle)
|
||||
indexes = set(sampler)
|
||||
assert indexes==set(range(num_of_data))
|
||||
|
||||
@pytest.mark.parametrize('num_replica', [2, 3])
|
||||
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
|
||||
@pytest.mark.parametrize('shuffle', [False, True])
|
||||
def test_multi(self, num_replica, num_of_data, shuffle):
|
||||
data = DatasetWithVaryLength(num_of_data=num_of_data)
|
||||
samplers = []
|
||||
for i in range(num_replica):
|
||||
sampler = UnrepeatedSampler(dataset=data, shuffle=shuffle)
|
||||
sampler.set_distributed(num_replica, rank=i)
|
||||
samplers.append(sampler)
|
||||
|
||||
indexes = set(chain(*samplers))
|
||||
assert indexes==set(range(num_of_data))
|
||||
|
||||
|
||||
class TestUnrepeatedSortedSampler:
|
||||
@pytest.mark.parametrize('shuffle', [True, False])
|
||||
def test_single(self, shuffle):
|
||||
num_of_data = 100
|
||||
data = DatasetWithVaryLength(num_of_data)
|
||||
sampler = UnrepeatedSortedSampler(data, length=data.data)
|
||||
indexes = list(sampler)
|
||||
assert indexes==list(range(num_of_data-1, -1, -1))
|
||||
|
||||
@pytest.mark.parametrize('num_replica', [2, 3])
|
||||
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
|
||||
@pytest.mark.parametrize('shuffle', [False, True])
|
||||
def test_multi(self, num_replica, num_of_data, shuffle):
|
||||
data = DatasetWithVaryLength(num_of_data=num_of_data)
|
||||
samplers = []
|
||||
for i in range(num_replica):
|
||||
sampler = UnrepeatedSortedSampler(dataset=data, length=data.data)
|
||||
sampler.set_distributed(num_replica, rank=i)
|
||||
samplers.append(sampler)
|
||||
|
||||
indexes = set(chain(*samplers))
|
||||
assert indexes==set(range(num_of_data))
|
Loading…
Reference in New Issue
Block a user