mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-04 05:07:44 +08:00
Merge pull request #211 from lyhuang18/lyhuang-reproduction
datasetloader改成pipe
This commit is contained in:
commit
b134c9f7e7
@ -1,11 +1,9 @@
|
||||
# 这个模型需要在pytorch=0.4下运行,weight_drop不支持1.0
|
||||
|
||||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
|
||||
import os
|
||||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
|
||||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
|
||||
import sys
|
||||
sys.path.append('../..')
|
||||
|
||||
from fastNLP.io.data_loader import IMDBLoader
|
||||
from fastNLP.io.pipe.classification import IMDBPipe
|
||||
from fastNLP.embeddings import StaticEmbedding
|
||||
from model.awd_lstm import AWDLSTMSentiment
|
||||
|
||||
@ -32,15 +30,14 @@ opt=Config()
|
||||
|
||||
|
||||
# load data
|
||||
dataloader=IMDBLoader()
|
||||
datainfo=dataloader.process(opt.datapath)
|
||||
data_bundle=IMDBPipe.process_from_file(opt.datapath)
|
||||
|
||||
# print(datainfo.datasets["train"])
|
||||
# print(datainfo)
|
||||
# print(data_bundle.datasets["train"])
|
||||
# print(data_bundle)
|
||||
|
||||
|
||||
# define model
|
||||
vocab=datainfo.vocabs['words']
|
||||
vocab=data_bundle.vocabs['words']
|
||||
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
|
||||
model=AWDLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc, wdrop=opt.wdrop)
|
||||
|
||||
@ -52,11 +49,11 @@ optimizer= Adam([param for param in model.parameters() if param.requires_grad==T
|
||||
|
||||
|
||||
def train(datainfo, model, optimizer, loss, metrics, opt):
|
||||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
|
||||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
|
||||
trainer = Trainer(data_bundle.datasets['train'], model, optimizer=optimizer, loss=loss,
|
||||
metrics=metrics, dev_data=data_bundle.datasets['test'], device=0, check_code_level=-1,
|
||||
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
|
||||
trainer.train()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train(datainfo, model, optimizer, loss, metrics, opt)
|
||||
train(data_bundle, model, optimizer, loss, metrics, opt)
|
||||
|
@ -1,9 +1,7 @@
|
||||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
|
||||
import os
|
||||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
|
||||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
|
||||
import sys
|
||||
sys.path.append('../..')
|
||||
|
||||
from fastNLP.io.data_loader import IMDBLoader
|
||||
from fastNLP.io.pipe.classification import IMDBPipe
|
||||
from fastNLP.embeddings import StaticEmbedding
|
||||
from model.lstm import BiLSTMSentiment
|
||||
|
||||
@ -29,15 +27,14 @@ opt=Config()
|
||||
|
||||
|
||||
# load data
|
||||
dataloader=IMDBLoader()
|
||||
datainfo=dataloader.process(opt.datapath)
|
||||
data_bundle=IMDBPipe.process_from_file(opt.datapath)
|
||||
|
||||
# print(datainfo.datasets["train"])
|
||||
# print(datainfo)
|
||||
# print(data_bundle.datasets["train"])
|
||||
# print(data_bundle)
|
||||
|
||||
|
||||
# define model
|
||||
vocab=datainfo.vocabs['words']
|
||||
vocab=data_bundle.vocabs['words']
|
||||
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
|
||||
model=BiLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc)
|
||||
|
||||
@ -48,12 +45,12 @@ metrics=AccuracyMetric()
|
||||
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr)
|
||||
|
||||
|
||||
def train(datainfo, model, optimizer, loss, metrics, opt):
|
||||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
|
||||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
|
||||
def train(data_bundle, model, optimizer, loss, metrics, opt):
|
||||
trainer = Trainer(data_bundle.datasets['train'], model, optimizer=optimizer, loss=loss,
|
||||
metrics=metrics, dev_data=data_bundle.datasets['test'], device=0, check_code_level=-1,
|
||||
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
|
||||
trainer.train()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train(datainfo, model, optimizer, loss, metrics, opt)
|
||||
train(data_bundle, model, optimizer, loss, metrics, opt)
|
@ -1,9 +1,7 @@
|
||||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
|
||||
import os
|
||||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
|
||||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
|
||||
import sys
|
||||
sys.path.append('../..')
|
||||
|
||||
from fastNLP.io.data_loader import IMDBLoader
|
||||
from fastNLP.io.pipe.classification import IMDBPipe
|
||||
from fastNLP.embeddings import StaticEmbedding
|
||||
from model.lstm_self_attention import BiLSTM_SELF_ATTENTION
|
||||
|
||||
@ -31,15 +29,14 @@ opt=Config()
|
||||
|
||||
|
||||
# load data
|
||||
dataloader=IMDBLoader()
|
||||
datainfo=dataloader.process(opt.datapath)
|
||||
data_bundle=IMDBPipe.process_from_file(opt.datapath)
|
||||
|
||||
# print(datainfo.datasets["train"])
|
||||
# print(datainfo)
|
||||
# print(data_bundle.datasets["train"])
|
||||
# print(data_bundle)
|
||||
|
||||
|
||||
# define model
|
||||
vocab=datainfo.vocabs['words']
|
||||
vocab=data_bundle.vocabs['words']
|
||||
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
|
||||
model=BiLSTM_SELF_ATTENTION(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, attention_unit=opt.attention_unit, attention_hops=opt.attention_hops, nfc=opt.nfc)
|
||||
|
||||
@ -50,12 +47,12 @@ metrics=AccuracyMetric()
|
||||
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr)
|
||||
|
||||
|
||||
def train(datainfo, model, optimizer, loss, metrics, opt):
|
||||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
|
||||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
|
||||
def train(data_bundle, model, optimizer, loss, metrics, opt):
|
||||
trainer = Trainer(data_bundle.datasets['train'], model, optimizer=optimizer, loss=loss,
|
||||
metrics=metrics, dev_data=data_bundle.datasets['test'], device=0, check_code_level=-1,
|
||||
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
|
||||
trainer.train()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train(datainfo, model, optimizer, loss, metrics, opt)
|
||||
train(data_bundle, model, optimizer, loss, metrics, opt)
|
||||
|
Loading…
Reference in New Issue
Block a user