mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-02 20:27:35 +08:00
1.修改ProgressBart在Trainer中的一个bug;2修复pytest的bug
This commit is contained in:
parent
b78cea7ff9
commit
b38fc1136e
@ -9,6 +9,8 @@ __all__ = [
|
||||
from .callback_events import Events
|
||||
from .callback import Callback
|
||||
from fastNLP.core.log import logger
|
||||
from .progress_callback import ProgressCallback, choose_progress_callback
|
||||
from fastNLP.envs import rank_zero_call
|
||||
|
||||
|
||||
def _transfer(func):
|
||||
@ -26,6 +28,43 @@ def _transfer(func):
|
||||
return wrapper
|
||||
|
||||
|
||||
def prepare_callbacks(callbacks, progress_bar):
|
||||
"""
|
||||
|
||||
:param callbacks:
|
||||
:param progress_bar:
|
||||
:return:
|
||||
"""
|
||||
_callbacks = []
|
||||
if callbacks is not None:
|
||||
if isinstance(callbacks, Callback):
|
||||
callbacks = [callbacks]
|
||||
if not isinstance(callbacks, Sequence):
|
||||
raise ValueError("Parameter `callbacks` should be type 'List' or 'Tuple'.")
|
||||
callbacks = list(callbacks)
|
||||
for _callback in callbacks:
|
||||
if not isinstance(_callback, Callback):
|
||||
raise TypeError(f"callbacks must be of Callback type, instead of `{type(_callback)}`")
|
||||
_callbacks += callbacks
|
||||
|
||||
has_no_progress = False
|
||||
for _callback in _callbacks:
|
||||
if isinstance(_callback, ProgressCallback):
|
||||
has_no_progress = True
|
||||
if not has_no_progress:
|
||||
callback = choose_progress_callback(progress_bar)
|
||||
if callback is not None:
|
||||
_callbacks.append(callback)
|
||||
elif progress_bar is not None and progress_bar != 'auto':
|
||||
logger.warning(f"Since you have passed in ProgressBar callback, progress_bar will be ignored.")
|
||||
|
||||
if has_no_progress and progress_bar is None:
|
||||
rank_zero_call(logger.warning)("No progress bar is provided, there will have no information output "
|
||||
"during training.")
|
||||
|
||||
return _callbacks
|
||||
|
||||
|
||||
class CallbackManager:
|
||||
r"""
|
||||
用来管理训练过程中的所有的 callback 实例;
|
||||
@ -45,24 +84,13 @@ class CallbackManager:
|
||||
"""
|
||||
self._need_reproducible_sampler = False
|
||||
|
||||
_callbacks = []
|
||||
if callbacks is not None:
|
||||
if isinstance(callbacks, Callback):
|
||||
callbacks = [callbacks]
|
||||
if not isinstance(callbacks, Sequence):
|
||||
raise ValueError("Parameter `callbacks` should be type 'List' or 'Tuple'.")
|
||||
callbacks = list(callbacks)
|
||||
for _callback in callbacks:
|
||||
if not isinstance(_callback, Callback):
|
||||
raise TypeError(f"callbacks must be of Callback type, instead of `{type(_callback)}`")
|
||||
_callbacks += callbacks
|
||||
self.callback_fns = defaultdict(list)
|
||||
# 因为理论上用户最多只能通过 'trainer.on_train_begin' 或者 'trainer.callback_manager.on_train_begin' 来调用,即其是没办法
|
||||
# 直接调用具体的某一个 callback 函数,而不调用其余的同名的 callback 函数的,因此我们只需要记录具体 Event 的时机即可;
|
||||
self.callback_counter = defaultdict(lambda: 0)
|
||||
if len(_callbacks):
|
||||
if len(callbacks):
|
||||
# 这一对象是为了保存原始的类 callback 对象来帮助用户进行 debug,理论上在正常的使用中你并不会需要它;
|
||||
self.class_callbacks = _callbacks
|
||||
self.class_callbacks = callbacks
|
||||
else:
|
||||
self.class_callbacks: Optional[List[Callback]] = []
|
||||
|
||||
|
@ -11,8 +11,6 @@ __all__ = [
|
||||
from .has_monitor_callback import HasMonitorCallback
|
||||
from fastNLP.core.utils import f_rich_progress
|
||||
from fastNLP.core.log import logger
|
||||
from fastNLP.core.utils.utils import is_notebook
|
||||
|
||||
|
||||
|
||||
class ProgressCallback(HasMonitorCallback):
|
||||
|
@ -19,8 +19,8 @@ from .evaluator import Evaluator
|
||||
from fastNLP.core.controllers.utils.utils import TrainerEventTrigger, _TruncatedDataLoader
|
||||
from fastNLP.core.callbacks import Callback, CallbackManager, Events, EventsList
|
||||
from fastNLP.core.callbacks.callback import _CallbackWrapper
|
||||
from fastNLP.core.callbacks.callback_manager import prepare_callbacks
|
||||
from fastNLP.core.callbacks.callback_events import _SingleEventState
|
||||
from fastNLP.core.callbacks.progress_callback import choose_progress_callback
|
||||
from fastNLP.core.drivers import Driver
|
||||
from fastNLP.core.drivers.utils import choose_driver
|
||||
from fastNLP.core.utils import get_fn_arg_names, match_and_substitute_params, nullcontext
|
||||
@ -133,7 +133,7 @@ class Trainer(TrainerEventTrigger):
|
||||
["all", "ignore", "only_error"];当该参数的值不是以上值时,该值应当表示一个文件夹的名字,我们会将其他 rank 的输出流重定向到
|
||||
log 文件中,然后将 log 文件保存在通过该参数值设定的文件夹中;默认为 "only_error";
|
||||
progress_bar: 以哪种方式显示 progress ,目前支持[None, 'raw', 'rich', 'auto'] 或者 RichCallback, RawTextCallback对象,
|
||||
默认为 auto , auto 表示如果检测到当前 terminal 为交互型 则使用 RichCallback,否则使用 RawTextCallback对象。如果
|
||||
默认为 auto , auto 表示如果检测到当前 terminal 为交互型则使用 RichCallback,否则使用 RawTextCallback对象。如果
|
||||
需要定制 progress bar 的参数,例如打印频率等,可以传入 RichCallback, RawTextCallback 对象。
|
||||
train_input_mapping: 与 input_mapping 一致,但是只用于 train 中。与 input_mapping 互斥。
|
||||
train_output_mapping: 与 output_mapping 一致,但是只用于 train 中。与 output_mapping 互斥。
|
||||
@ -212,17 +212,7 @@ class Trainer(TrainerEventTrigger):
|
||||
self.driver.set_optimizers(optimizers=optimizers)
|
||||
|
||||
# 根据 progress_bar 参数选择 ProgressBarCallback
|
||||
progress_bar_callback = choose_progress_callback(kwargs.get('progress_bar', 'auto'))
|
||||
if progress_bar_callback is not None:
|
||||
if callbacks is None:
|
||||
callbacks = []
|
||||
elif not isinstance(callbacks, Sequence):
|
||||
callbacks = [callbacks]
|
||||
|
||||
callbacks = list(callbacks) + [progress_bar_callback]
|
||||
else:
|
||||
rank_zero_call(logger.warning)("No progress bar is provided, there will have no information output "
|
||||
"during training.")
|
||||
callbacks = prepare_callbacks(callbacks, kwargs.get('progress_bar', 'auto'))
|
||||
# 初始化 callback manager;
|
||||
self.callback_manager = CallbackManager(callbacks)
|
||||
# 添加所有的函数式 callbacks;
|
||||
|
@ -73,7 +73,7 @@ def model_and_optimizers(request):
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)
|
||||
@pytest.mark.parametrize("version", [0, 1])
|
||||
@pytest.mark.parametrize("only_state_dict", [True, False])
|
||||
@magic_argv_env_context
|
||||
@magic_argv_env_context(timeout=100)
|
||||
def test_model_checkpoint_callback_1(
|
||||
model_and_optimizers: TrainerParameters,
|
||||
driver,
|
||||
@ -193,7 +193,7 @@ def test_model_checkpoint_callback_1(
|
||||
trainer.load_model(folder, only_state_dict=only_state_dict)
|
||||
|
||||
trainer.run()
|
||||
|
||||
trainer.driver.barrier()
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
||||
@ -203,7 +203,7 @@ def test_model_checkpoint_callback_1(
|
||||
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)
|
||||
@pytest.mark.parametrize("only_state_dict", [True])
|
||||
@magic_argv_env_context
|
||||
@magic_argv_env_context(timeout=100)
|
||||
def test_model_checkpoint_callback_2(
|
||||
model_and_optimizers: TrainerParameters,
|
||||
driver,
|
||||
@ -283,6 +283,7 @@ def test_model_checkpoint_callback_2(
|
||||
|
||||
trainer.load_model(folder, only_state_dict=only_state_dict)
|
||||
trainer.run()
|
||||
trainer.driver.barrier()
|
||||
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
@ -295,7 +296,7 @@ def test_model_checkpoint_callback_2(
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 0)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)
|
||||
@pytest.mark.parametrize("version", [0, 1])
|
||||
@pytest.mark.parametrize("only_state_dict", [True, False])
|
||||
@magic_argv_env_context
|
||||
@magic_argv_env_context(timeout=100)
|
||||
def test_trainer_checkpoint_callback_1(
|
||||
model_and_optimizers: TrainerParameters,
|
||||
driver,
|
||||
@ -413,6 +414,7 @@ def test_trainer_checkpoint_callback_1(
|
||||
trainer.load(folder, only_state_dict=only_state_dict)
|
||||
|
||||
trainer.run()
|
||||
trainer.driver.barrier()
|
||||
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
@ -661,6 +663,7 @@ def test_trainer_checkpoint_callback_2(
|
||||
trainer.load(folder, model_load_fn=model_load_fn)
|
||||
|
||||
trainer.run()
|
||||
trainer.driver.barrier()
|
||||
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
@ -16,7 +16,6 @@ from fastNLP.core.controllers.trainer import Trainer
|
||||
from fastNLP.core.metrics.accuracy import Accuracy
|
||||
from fastNLP.core.callbacks.load_best_model_callback import LoadBestModelCallback
|
||||
from fastNLP.core import Evaluator
|
||||
from fastNLP.core.utils.utils import safe_rm
|
||||
from fastNLP.core.drivers.torch_driver import TorchSingleDriver
|
||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.datasets.torch_data import TorchArgMaxDataset
|
||||
@ -112,7 +111,8 @@ def test_load_best_model_callback(
|
||||
results = evaluator.run()
|
||||
assert np.allclose(callbacks[0].monitor_value, results['acc#acc#dl1'])
|
||||
if save_folder:
|
||||
safe_rm(save_folder)
|
||||
import shutil
|
||||
shutil.rmtree(save_folder, ignore_errors=True)
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
@ -171,7 +171,7 @@ def test_model_more_evaluate_callback_1(
|
||||
trainer.load_model(folder, only_state_dict=only_state_dict)
|
||||
|
||||
trainer.run()
|
||||
|
||||
trainer.driver.barrier()
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
||||
@ -255,6 +255,7 @@ def test_trainer_checkpoint_callback_1(
|
||||
trainer.load(folder, only_state_dict=only_state_dict)
|
||||
|
||||
trainer.run()
|
||||
trainer.driver.barrier()
|
||||
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
@ -33,6 +33,8 @@ def recover_logger(fn):
|
||||
def magic_argv_env_context(fn=None, timeout=600):
|
||||
"""
|
||||
用来在测试时包裹每一个单独的测试函数,使得 ddp 测试正确;
|
||||
会丢掉 pytest 中的 arg 参数。
|
||||
|
||||
:param timeout: 表示一个测试如果经过多久还没有通过的话就主动将其 kill 掉,默认为 10 分钟,单位为秒;
|
||||
:return:
|
||||
"""
|
||||
@ -46,9 +48,10 @@ def magic_argv_env_context(fn=None, timeout=600):
|
||||
env = deepcopy(os.environ.copy())
|
||||
|
||||
used_args = []
|
||||
for each_arg in sys.argv[1:]:
|
||||
if "test" not in each_arg:
|
||||
used_args.append(each_arg)
|
||||
# for each_arg in sys.argv[1:]:
|
||||
# # warning,否则 可能导致 pytest -s . 中的点混入其中,导致多卡启动的 collect tests items 不为 1
|
||||
# if each_arg.startswith('-'):
|
||||
# used_args.append(each_arg)
|
||||
|
||||
pytest_current_test = os.environ.get('PYTEST_CURRENT_TEST')
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user