加入了callback events 的测试

This commit is contained in:
YWMditto 2022-05-03 16:55:28 +08:00
parent 30af3b032f
commit b88a15dabb
2 changed files with 117 additions and 148 deletions

View File

@ -4,8 +4,8 @@ from functools import reduce
from fastNLP.core.callbacks.callback_events import Events, Filter
class TestFilter:
class TestFilter:
def test_params_check(self):
# 顺利通过
_filter1 = Filter(every=10)
@ -80,35 +80,6 @@ class TestFilter:
_res.append(cu_res)
assert _res == [9]
def test_filter_fn(self):
from torch.optim import SGD
from torch.utils.data import DataLoader
from fastNLP.core.controllers.trainer import Trainer
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10)
optimizer = SGD(model.parameters(), lr=0.0001)
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10)
dataloader = DataLoader(dataset=dataset, batch_size=4)
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer)
def filter_fn(filter, trainer):
if trainer.__heihei_test__ == 10:
return True
return False
@Filter(filter_fn=filter_fn)
def _fn(trainer, data):
return data
_res = []
for i in range(100):
trainer.__heihei_test__ = i
cu_res = _fn(trainer, i)
if cu_res is not None:
_res.append(cu_res)
assert _res == [10]
def test_extract_filter_from_fn(self):
@Filter(every=10)
@ -155,3 +126,119 @@ class TestFilter:
assert _res == [w - 1 for w in range(60, 101, 10)]
@pytest.mark.torch
def test_filter_fn_torch():
from torch.optim import SGD
from torch.utils.data import DataLoader
from fastNLP.core.controllers.trainer import Trainer
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10)
optimizer = SGD(model.parameters(), lr=0.0001)
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10)
dataloader = DataLoader(dataset=dataset, batch_size=4)
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer)
def filter_fn(filter, trainer):
if trainer.__heihei_test__ == 10:
return True
return False
@Filter(filter_fn=filter_fn)
def _fn(trainer, data):
return data
_res = []
for i in range(100):
trainer.__heihei_test__ = i
cu_res = _fn(trainer, i)
if cu_res is not None:
_res.append(cu_res)
assert _res == [10]
class TestCallbackEvents:
def test_every(self):
# 这里是什么样的事件是不影响的,因为我们是与 Trainer 拆分开了进行测试;
event_state = Events.on_train_begin() # 什么都不输入是应当默认 every=1
@Filter(every=event_state.every, once=event_state.once, filter_fn=event_state.filter_fn)
def _fn(data):
return data
_res = []
for i in range(100):
cu_res = _fn(i)
if cu_res is not None:
_res.append(cu_res)
assert _res == list(range(100))
event_state = Events.on_train_begin(every=10)
@Filter(every=event_state.every, once=event_state.once, filter_fn=event_state.filter_fn)
def _fn(data):
return data
_res = []
for i in range(100):
cu_res = _fn(i)
if cu_res is not None:
_res.append(cu_res)
assert _res == [w - 1 for w in range(10, 101, 10)]
def test_once(self):
event_state = Events.on_train_begin(once=10)
@Filter(once=event_state.once)
def _fn(data):
return data
_res = []
for i in range(100):
cu_res = _fn(i)
if cu_res is not None:
_res.append(cu_res)
assert _res == [9]
@pytest.mark.torch
def test_callback_events_torch():
from torch.optim import SGD
from torch.utils.data import DataLoader
from fastNLP.core.controllers.trainer import Trainer
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10)
optimizer = SGD(model.parameters(), lr=0.0001)
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10)
dataloader = DataLoader(dataset=dataset, batch_size=4)
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer)
def filter_fn(filter, trainer):
if trainer.__heihei_test__ == 10:
return True
return False
event_state = Events.on_train_begin(filter_fn=filter_fn)
@Filter(filter_fn=event_state.filter_fn)
def _fn(trainer, data):
return data
_res = []
for i in range(100):
trainer.__heihei_test__ = i
cu_res = _fn(trainer, i)
if cu_res is not None:
_res.append(cu_res)
assert _res == [10]

View File

@ -221,124 +221,6 @@ def test_trainer_event_trigger_2(
@pytest.mark.parametrize("driver,device", [("torch", "cpu")]) # , ("torch", 6), ("torch", [6, 7])
@pytest.mark.torch
@magic_argv_env_context
def test_trainer_event_trigger_3(
model_and_optimizers: TrainerParameters,
driver,
device,
n_epochs=2,
):
@Trainer.on(Events.on_after_trainer_initialized)
def on_after_trainer_initialized(trainer, driver):
print("on_after_trainer_initialized")
@Trainer.on(Events.on_sanity_check_begin)
def on_sanity_check_begin(trainer):
print("on_sanity_check_begin")
@Trainer.on(Events.on_sanity_check_end)
def on_sanity_check_end(trainer, sanity_check_res):
print("on_sanity_check_end")
@Trainer.on(Events.on_train_begin)
def on_train_begin(trainer):
print("on_train_begin")
@Trainer.on(Events.on_train_end)
def on_train_end(trainer):
print("on_train_end")
@Trainer.on(Events.on_train_epoch_begin)
def on_train_epoch_begin(trainer):
if trainer.cur_epoch_idx >= 1:
# 触发 on_exception
raise Exception
print("on_train_epoch_begin")
@Trainer.on(Events.on_train_epoch_end)
def on_train_epoch_end(trainer):
print("on_train_epoch_end")
@Trainer.on(Events.on_fetch_data_begin)
def on_fetch_data_begin(trainer):
print("on_fetch_data_begin")
@Trainer.on(Events.on_fetch_data_end)
def on_fetch_data_end(trainer):
print("on_fetch_data_end")
@Trainer.on(Events.on_train_batch_begin)
def on_train_batch_begin(trainer, batch, indices=None):
print("on_train_batch_begin")
@Trainer.on(Events.on_train_batch_end)
def on_train_batch_end(trainer):
print("on_train_batch_end")
@Trainer.on(Events.on_exception)
def on_exception(trainer, exception):
print("on_exception")
@Trainer.on(Events.on_before_backward)
def on_before_backward(trainer, outputs):
print("on_before_backward")
@Trainer.on(Events.on_after_backward)
def on_after_backward(trainer):
print("on_after_backward")
@Trainer.on(Events.on_before_optimizers_step)
def on_before_optimizers_step(trainer, optimizers):
print("on_before_optimizers_step")
@Trainer.on(Events.on_after_optimizers_step)
def on_after_optimizers_step(trainer, optimizers):
print("on_after_optimizers_step")
@Trainer.on(Events.on_before_zero_grad)
def on_before_zero_grad(trainer, optimizers):
print("on_before_zero_grad")
@Trainer.on(Events.on_after_zero_grad)
def on_after_zero_grad(trainer, optimizers):
print("on_after_zero_grad")
@Trainer.on(Events.on_evaluate_begin)
def on_evaluate_begin(trainer):
print("on_evaluate_begin")
@Trainer.on(Events.on_evaluate_end)
def on_evaluate_end(trainer, results):
print("on_evaluate_end")
with pytest.raises(Exception):
with Capturing() as output:
trainer = Trainer(
model=model_and_optimizers.model,
driver=driver,
device=device,
optimizers=model_and_optimizers.optimizers,
train_dataloader=model_and_optimizers.train_dataloader,
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders,
input_mapping=model_and_optimizers.input_mapping,
output_mapping=model_and_optimizers.output_mapping,
metrics=model_and_optimizers.metrics,
n_epochs=n_epochs,
)
trainer.run()
if dist.is_initialized():
dist.destroy_process_group()
for name, member in Events.__members__.items():
assert member.value in output[0]