* FieldArray添加对list of np.array的支持

* 添加测试:FieldArray的初始化
This commit is contained in:
FengZiYjun 2019-01-17 15:39:13 +08:00
parent e4f997d52a
commit b93ca9bb30
4 changed files with 61 additions and 5 deletions

View File

@ -112,13 +112,17 @@ class FieldArray(object):
2.3) 二维list DataSet([Instance(x=[[1, 2], [3, 4]])]) 2.3) 二维list DataSet([Instance(x=[[1, 2], [3, 4]])])
2.4) 二维array DataSet([Instance(x=np.array([[1, 2], [3, 4]]))]) 2.4) 二维array DataSet([Instance(x=np.array([[1, 2], [3, 4]]))])
注意np.array必须仅在最外层即np.array([np.array, np.array]) list of np.array不考虑
类型检查(dtype check)发生在当该field被设置为is_input或者is_target时 类型检查(dtype check)发生在当该field被设置为is_input或者is_target时
""" """
self.name = name self.name = name
if isinstance(content, list): if isinstance(content, list):
content = content # 如果DataSet使用dict初始化, content 可能是二维list/二维array/三维list
# 如果DataSet使用list of Instance 初始化, content可能是 [list]/[array]/[2D list]
if len(content) == 1 and isinstance(content[0], np.ndarray):
# 这是使用list of Instance 初始化时第一个样本FieldArray(name, [field])
# 将[np.array] 转化为 list of list
content[0] = content[0].tolist()
elif isinstance(content, np.ndarray): elif isinstance(content, np.ndarray):
content = content.tolist() # convert np.ndarray into 2-D list content = content.tolist() # convert np.ndarray into 2-D list
else: else:

View File

@ -144,6 +144,7 @@ if __name__ == "__main__":
parser.add_argument("--train", type=str, help="training conll file", default="/home/zyfeng/data/sample.conllx") parser.add_argument("--train", type=str, help="training conll file", default="/home/zyfeng/data/sample.conllx")
parser.add_argument("--dev", type=str, help="dev conll file", default="/home/zyfeng/data/sample.conllx") parser.add_argument("--dev", type=str, help="dev conll file", default="/home/zyfeng/data/sample.conllx")
parser.add_argument("--test", type=str, help="test conll file", default=None) parser.add_argument("--test", type=str, help="test conll file", default=None)
parser.add_argument("--save", type=str, help="path to save", default=None)
parser.add_argument("-c", "--restart", action="store_true", help="whether to continue training") parser.add_argument("-c", "--restart", action="store_true", help="whether to continue training")
parser.add_argument("-cp", "--checkpoint", type=str, help="checkpoint of the trained model") parser.add_argument("-cp", "--checkpoint", type=str, help="checkpoint of the trained model")

View File

@ -5,8 +5,59 @@ import numpy as np
from fastNLP.core.fieldarray import FieldArray from fastNLP.core.fieldarray import FieldArray
class TestFieldArrayInit(unittest.TestCase):
"""
1 如果DataSet使用dict初始化那么在add_field中会构造FieldArray
1.1) 二维list DataSet({"x": [[1, 2], [3, 4]]})
1.2) 二维array DataSet({"x": np.array([[1, 2], [3, 4]])})
1.3) 三维list DataSet({"x": [[[1, 2], [3, 4]], [[1, 2], [3, 4]]]})
2 如果DataSet使用list of Instance 初始化,那么在append中会先对第一个样本初始化FieldArray
然后后面的样本使用FieldArray.append进行添加
2.1) 一维list DataSet([Instance(x=[1, 2, 3, 4])])
2.2) 一维array DataSet([Instance(x=np.array([1, 2, 3, 4]))])
2.3) 二维list DataSet([Instance(x=[[1, 2], [3, 4]])])
2.4) 二维array DataSet([Instance(x=np.array([[1, 2], [3, 4]]))])
"""
def test_init_v1(self):
# 二维list
fa = FieldArray("x", [[1, 2], [3, 4]] * 5, is_input=True)
def test_init_v2(self):
# 二维array
fa = FieldArray("x", np.array([[1, 2], [3, 4]] * 5), is_input=True)
def test_init_v3(self):
# 三维list
fa = FieldArray("x", [[[1, 2], [3, 4]], [[1, 2], [3, 4]]], is_input=True)
def test_init_v4(self):
# 一维list
val = [1, 2, 3, 4]
fa = FieldArray("x", [val], is_input=True)
fa.append(val)
def test_init_v5(self):
# 一维array
val = np.array([1, 2, 3, 4])
fa = FieldArray("x", [val], is_input=True)
fa.append(val)
def test_init_v6(self):
# 二维array
val = [[1, 2], [3, 4]]
fa = FieldArray("x", [val], is_input=True)
fa.append(val)
def test_init_v7(self):
# 二维list
val = np.array([[1, 2], [3, 4]])
fa = FieldArray("x", [val], is_input=True)
fa.append(val)
class TestFieldArray(unittest.TestCase): class TestFieldArray(unittest.TestCase):
def test(self): def test_main(self):
fa = FieldArray("x", [1, 2, 3, 4, 5], is_input=True) fa = FieldArray("x", [1, 2, 3, 4, 5], is_input=True)
self.assertEqual(len(fa), 5) self.assertEqual(len(fa), 5)
fa.append(6) fa.append(6)

View File

@ -408,12 +408,12 @@ class TestTutorial(unittest.TestCase):
model=model, model=model,
loss=CrossEntropyLoss(pred='pred', target='label'), loss=CrossEntropyLoss(pred='pred', target='label'),
metrics=AccuracyMetric(), metrics=AccuracyMetric(),
n_epochs=5, n_epochs=3,
batch_size=16, batch_size=16,
print_every=-1, print_every=-1,
validate_every=-1, validate_every=-1,
dev_data=dev_data, dev_data=dev_data,
use_cuda=True, use_cuda=False,
optimizer=Adam(lr=1e-3, weight_decay=0), optimizer=Adam(lr=1e-3, weight_decay=0),
check_code_level=-1, check_code_level=-1,
metric_key='acc', metric_key='acc',