Merge branch 'dev' of https://gitee.com/fastnlp/fastNLP into dev

This commit is contained in:
Yige Xu 2020-12-14 15:34:50 +08:00
commit bf9d834821
18 changed files with 328 additions and 630 deletions

View File

@ -27,7 +27,6 @@ pipeline {
}
stage('Package Testing') {
steps {
sh 'python -m spacy download en'
sh 'pip install fitlog'
sh 'pytest ./tests --html=test_results.html --self-contained-html'
}

View File

@ -13,7 +13,7 @@ install:
- pip install pytest-cov
# command to run tests
script:
- python -m spacy download en
# - python -m spacy download en
- pytest --cov=fastNLP tests/
after_success:

View File

@ -46,10 +46,8 @@
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP.io import ChnSentiCorpLoader\n",
@ -68,22 +66,9 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In total 3 datasets:\n",
"\tdev has 1200 instances.\n",
"\ttrain has 9600 instances.\n",
"\ttest has 1200 instances.\n",
"In total 0 vocabs:\n",
"\n"
]
}
],
"outputs": [],
"source": [
"print(data_bundle)"
]
@ -97,20 +82,9 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DataSet({'raw_chars': 选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般 type=str,\n",
"'target': 1 type=str},\n",
"{'raw_chars': 15.4寸笔记本的键盘确实爽,基本跟台式机差不多了,蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错 type=str,\n",
"'target': 1 type=str})\n"
]
}
],
"outputs": [],
"source": [
"print(data_bundle.get_dataset('train')[:2]) # 查看Train集前两个sample"
]
@ -127,10 +101,8 @@
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP.io import ChnSentiCorpPipe\n",
@ -141,24 +113,9 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In total 3 datasets:\n",
"\tdev has 1200 instances.\n",
"\ttrain has 9600 instances.\n",
"\ttest has 1200 instances.\n",
"In total 2 vocabs:\n",
"\tchars has 4409 entries.\n",
"\ttarget has 2 entries.\n",
"\n"
]
}
],
"outputs": [],
"source": [
"print(data_bundle) # 打印data_bundle查看其变化"
]
@ -172,24 +129,9 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DataSet({'raw_chars': 选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般 type=str,\n",
"'target': 1 type=int,\n",
"'chars': [338, 464, 1400, 784, 468, 739, 3, 289, 151, 21, 5, 88, 143, 2, 9, 81, 134, 2573, 766, 233, 196, 23, 536, 342, 297, 2, 405, 698, 132, 281, 74, 744, 1048, 74, 420, 387, 74, 412, 433, 74, 2021, 180, 8, 219, 1929, 213, 4, 34, 31, 96, 363, 8, 230, 2, 66, 18, 229, 331, 768, 4, 11, 1094, 479, 17, 35, 593, 3, 1126, 967, 2, 151, 245, 12, 44, 2, 6, 52, 260, 263, 635, 5, 152, 162, 4, 11, 336, 3, 154, 132, 5, 236, 443, 3, 2, 18, 229, 761, 700, 4, 11, 48, 59, 653, 2, 8, 230] type=list,\n",
"'seq_len': 106 type=int},\n",
"{'raw_chars': 15.4寸笔记本的键盘确实爽,基本跟台式机差不多了,蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错 type=str,\n",
"'target': 1 type=int,\n",
"'chars': [50, 133, 20, 135, 945, 520, 343, 24, 3, 301, 176, 350, 86, 785, 2, 456, 24, 461, 163, 443, 128, 109, 6, 47, 7, 2, 916, 152, 162, 524, 296, 44, 301, 176, 2, 1384, 524, 296, 259, 88, 143, 2, 92, 67, 26, 12, 277, 269, 2, 188, 223, 26, 228, 83, 6, 63] type=list,\n",
"'seq_len': 56 type=int})\n"
]
}
],
"outputs": [],
"source": [
"print(data_bundle.get_dataset('train')[:2])"
]
@ -203,17 +145,9 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vocabulary(['选', '择', '珠', '江', '花']...)\n"
]
}
],
"outputs": [],
"source": [
"char_vocab = data_bundle.get_vocab('chars')\n",
"print(char_vocab)"
@ -228,18 +162,9 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"'选'的index是338\n",
"index:338对应的汉字是选\n"
]
}
],
"outputs": [],
"source": [
"index = char_vocab.to_index('选')\n",
"print(\"'选'的index是{}\".format(index)) # 这个值与上面打印出来的第一个instance的chars的第一个index是一致的\n",
@ -256,17 +181,9 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 4321 out of 4409 words in the pre-training embedding.\n"
]
}
],
"outputs": [],
"source": [
"from fastNLP.embeddings import StaticEmbedding\n",
"\n",
@ -283,10 +200,8 @@
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from torch import nn\n",
@ -329,288 +244,9 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\tchars: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 106]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"Evaluate data in 0.01 seconds!\n",
"training epochs started 2019-09-03-23-57-10\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=3000), HTML(value='')), layout=Layout(display…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"\r",
"Evaluation on dev at Epoch 1/10. Step:300/3000: \n",
"\r",
"AccuracyMetric: acc=0.81\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.44 seconds!\n",
"\r",
"Evaluation on dev at Epoch 2/10. Step:600/3000: \n",
"\r",
"AccuracyMetric: acc=0.8675\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.44 seconds!\n",
"\r",
"Evaluation on dev at Epoch 3/10. Step:900/3000: \n",
"\r",
"AccuracyMetric: acc=0.878333\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"\r",
"Evaluation on dev at Epoch 4/10. Step:1200/3000: \n",
"\r",
"AccuracyMetric: acc=0.873333\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.44 seconds!\n",
"\r",
"Evaluation on dev at Epoch 5/10. Step:1500/3000: \n",
"\r",
"AccuracyMetric: acc=0.878333\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.42 seconds!\n",
"\r",
"Evaluation on dev at Epoch 6/10. Step:1800/3000: \n",
"\r",
"AccuracyMetric: acc=0.895833\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.44 seconds!\n",
"\r",
"Evaluation on dev at Epoch 7/10. Step:2100/3000: \n",
"\r",
"AccuracyMetric: acc=0.8975\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"\r",
"Evaluation on dev at Epoch 8/10. Step:2400/3000: \n",
"\r",
"AccuracyMetric: acc=0.894167\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.48 seconds!\n",
"\r",
"Evaluation on dev at Epoch 9/10. Step:2700/3000: \n",
"\r",
"AccuracyMetric: acc=0.8875\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"\r",
"Evaluation on dev at Epoch 10/10. Step:3000/3000: \n",
"\r",
"AccuracyMetric: acc=0.895833\n",
"\n",
"\r\n",
"In Epoch:7/Step:2100, got best dev performance:\n",
"AccuracyMetric: acc=0.8975\n",
"Reloaded the best model.\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=19), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.34 seconds!\n",
"[tester] \n",
"AccuracyMetric: acc=0.8975\n"
]
},
{
"data": {
"text/plain": [
"{'AccuracyMetric': {'acc': 0.8975}}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"from fastNLP import Trainer\n",
"from fastNLP import CrossEntropyLoss\n",
@ -643,139 +279,9 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"loading vocabulary file /home/yh/.fastNLP/embedding/bert-chinese-wwm/vocab.txt\n",
"Load pre-trained BERT parameters from file /home/yh/.fastNLP/embedding/bert-chinese-wwm/chinese_wwm_pytorch.bin.\n",
"Start to generating word pieces for word.\n",
"Found(Or segment into word pieces) 4286 words out of 4409.\n",
"input fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\tchars: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 106]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"Evaluate data in 0.05 seconds!\n",
"training epochs started 2019-09-04-00-02-37\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=3600), HTML(value='')), layout=Layout(display…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 15.89 seconds!\n",
"\r",
"Evaluation on dev at Epoch 1/3. Step:1200/3600: \n",
"\r",
"AccuracyMetric: acc=0.9\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 15.92 seconds!\n",
"\r",
"Evaluation on dev at Epoch 2/3. Step:2400/3600: \n",
"\r",
"AccuracyMetric: acc=0.904167\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 15.91 seconds!\n",
"\r",
"Evaluation on dev at Epoch 3/3. Step:3600/3600: \n",
"\r",
"AccuracyMetric: acc=0.918333\n",
"\n",
"\r\n",
"In Epoch:3/Step:3600, got best dev performance:\n",
"AccuracyMetric: acc=0.918333\n",
"Reloaded the best model.\n",
"Performance on test is:\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=19), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 29.24 seconds!\n",
"[tester] \n",
"AccuracyMetric: acc=0.919167\n"
]
},
{
"data": {
"text/plain": [
"{'AccuracyMetric': {'acc': 0.919167}}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"# 只需要切换一下Embedding即可\n",
"from fastNLP.embeddings import BertEmbedding\n",
@ -840,9 +346,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"from fastNLP.io import ChnSentiCorpLoader\n",
@ -861,9 +365,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"import os\n",
@ -912,15 +414,14 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"from fastHan import FastHan\n",
"from fastNLP import Vocabulary\n",
"\n",
"model=FastHan()\n",
"# model.set_device('cuda')\n",
"\n",
"# 定义分词处理操作\n",
"def word_seg(ins):\n",
@ -933,6 +434,8 @@
" # apply函数将对内部的instance依次执行word_seg操作并把其返回值放入到raw_words这个field\n",
" ds.apply(word_seg, new_field_name='raw_words')\n",
" # 除了apply函数fastNLP还支持apply_field, apply_more(可同时创建多个field)等操作\n",
" # 同时我们增加一个seq_len的field\n",
" ds.add_seq_len('raw_words')\n",
"\n",
"vocab = Vocabulary()\n",
"\n",
@ -961,11 +464,14 @@
"# 我们把words和target分别设置为input和target这样它们才会在训练循环中被取出并自动padding, 有关这部分更多的内容参考\n",
"# http://www.fastnlp.top/docs/fastNLP/tutorials/tutorial_6_datasetiter.html\n",
"data_bundle.set_target('target')\n",
"data_bundle.set_input('words') # DataSet也有这两个接口\n",
"data_bundle.set_input('words', 'seq_len') # DataSet也有这两个接口\n",
"# 如果某些field您希望它被设置为target或者input但是不希望fastNLP自动padding或需要使用特定的padding方式请参考\n",
"# http://www.fastnlp.top/docs/fastNLP/fastNLP.core.dataset.html\n",
"\n",
"print(data_bundle.get_dataset('train')[:2]) # 我们可以看一下当前dataset的内容"
"print(data_bundle.get_dataset('train')[:2]) # 我们可以看一下当前dataset的内容\n",
"\n",
"# 由于之后需要使用之前定义的BiLSTMMaxPoolCls模型所以需要将words这个field修改为chars(因为该模型的forward接受chars参数)\n",
"data_bundle.rename_field('words', 'chars')"
]
},
{
@ -985,9 +491,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"from fastNLP.embeddings import StaticEmbedding\n",
@ -999,11 +503,14 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"from fastNLP import Trainer\n",
"from fastNLP import CrossEntropyLoss\n",
"from torch.optim import Adam\n",
"from fastNLP import AccuracyMetric\n",
"\n",
"# 初始化模型\n",
"model = BiLSTMMaxPoolCls(word2vec_embed, len(data_bundle.get_vocab('target')))\n",
"\n",
@ -1024,6 +531,13 @@
"tester = Tester(data=data_bundle.get_dataset('test'), model=model, metrics=metric, batch_size=64, device=device)\n",
"tester.test()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@ -1042,7 +556,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
"version": "3.6.8"
}
},
"nbformat": 4,

View File

@ -447,6 +447,7 @@ PS: 基于词进行文本分类
from fastNLP import Vocabulary
model=FastHan()
# model.set_device('cuda') # 可以注视掉这一行增加速度
# 定义分词处理操作
def word_seg(ins):
@ -459,6 +460,8 @@ PS: 基于词进行文本分类
# apply函数将对内部的instance依次执行word_seg操作并把其返回值放入到raw_words这个field
ds.apply(word_seg, new_field_name='raw_words')
# 除了apply函数fastNLP还支持apply_field, apply_more(可同时创建多个field)等操作
# 同时我们增加一个seq_len的field
ds.add_seq_len('raw_words')
vocab = Vocabulary()
@ -500,11 +503,14 @@ PS: 基于词进行文本分类
# | 0 | 15.4寸笔记本的键盘... | ['15.4', '寸', '笔... | [71, 72, 73, 74, ... |
# +--------+-----------------------+-----------------------+----------------------+
# 由于之后需要使用之前定义的BiLSTMMaxPoolCls模型所以需要将words这个field修改为chars
data_bundle.rename_field('words', 'chars')
我们可以打印一下vocab看一下当前的词表内容
.. code-block:: python
print(data_bundle.get_vocab('words'))
print(data_bundle.get_vocab('chars'))
# Vocabulary([选择, 珠江, 花园, 的, 原因]...)
(3) 选择预训练词向量
@ -520,7 +526,7 @@ PS: 基于词进行文本分类
from fastNLP.embeddings import StaticEmbedding
word2vec_embed = StaticEmbedding(data_bundle.get_vocab('words'), model_dir_or_name='/path/to/Tencent_AILab_ChineseEmbedding.txt')
word2vec_embed = StaticEmbedding(data_bundle.get_vocab('chars'), model_dir_or_name='/path/to/Tencent_AILab_ChineseEmbedding.txt')
再之后的模型定义与训练过程与上面是一致的,这里就不再赘述了。

View File

@ -531,11 +531,11 @@ class DataSet(object):
| pad_value | 0 | |
+-------------+-------+-------+
:param field_names: DataSet中field的名称
:param is_input: field是否为input
:param is_target: field是否为target
:param ignore_type: 是否忽略该field的type, 一般仅在该field至少为input或target时才有意义
:param pad_value: 该field的pad的值仅在该field为input或target时有意义
str field_names: DataSet中field的名称
bool is_input: field是否为input
bool is_target: field是否为target
bool ignore_type: 是否忽略该field的type, 一般仅在该field至少为input或target时才有意义
int pad_value: 该field的pad的值仅在该field为input或target时有意义
:return:
"""
if len(self.field_arrays)>0:
@ -1146,3 +1146,40 @@ class DataSet(object):
def _collate_batch(self, ins_list):
return self.collater.collate_batch(ins_list)
def concat(self, dataset, inplace=True, field_mapping=None):
"""
将当前dataset与输入的dataset结合成一个更大的dataset需要保证两个dataset都包含了相同的field结合后的dataset的input,target
以及collate_fn以当前dataset为准当dataset中包含的field多于当前的dataset则多余的field会被忽略若dataset中未包含所有
当前dataset含有field则会报错
:param DataSet, dataset: 需要和当前dataset concat的dataset
:param bool, inplace: 是否直接将dataset组合到当前dataset中
:param dict, field_mapping: 当dataset中的field名称和当前dataset不一致时需要通过field_mapping把输入的dataset中的field
名称映射到当前field. field_mapping为dict类型key为dataset中的field名称value是需要映射成的名称
:return: DataSet
"""
assert isinstance(dataset, DataSet), "Can only concat two datasets."
fns_in_this_dataset = set(self.get_field_names())
fns_in_other_dataset = dataset.get_field_names()
reverse_field_mapping = {}
if field_mapping is not None:
fns_in_other_dataset = [field_mapping.get(fn, fn) for fn in fns_in_other_dataset]
reverse_field_mapping = {v:k for k, v in field_mapping.items()}
fns_in_other_dataset = set(fns_in_other_dataset)
fn_not_seen = list(fns_in_this_dataset - fns_in_other_dataset)
if fn_not_seen:
raise RuntimeError(f"The following fields are not provided in the dataset:{fn_not_seen}")
if inplace:
ds = self
else:
ds = deepcopy(self)
for fn in fns_in_this_dataset:
ds.get_field(fn).content.extend(deepcopy(dataset.get_field(reverse_field_mapping.get(fn, fn)).content))
return ds

View File

@ -13,6 +13,7 @@ import torch
from torch import nn as nn
from .embedding import TokenEmbedding
from .utils import _check_vocab_has_same_index
class StackEmbedding(TokenEmbedding):
@ -44,8 +45,9 @@ class StackEmbedding(TokenEmbedding):
vocabs.append(embed.get_word_vocab())
_vocab = vocabs[0]
for vocab in vocabs[1:]:
assert vocab == _vocab, "All embeddings in StackEmbedding should use the same word vocabulary."
if _vocab!=vocab:
_check_vocab_has_same_index(_vocab, vocab)
super(StackEmbedding, self).__init__(_vocab, word_dropout=word_dropout, dropout=dropout)
assert isinstance(embeds, list)
for embed in embeds:
@ -60,6 +62,7 @@ class StackEmbedding(TokenEmbedding):
:return:
"""
assert isinstance(embed, TokenEmbedding)
_check_vocab_has_same_index(self.get_word_vocab(), embed.get_word_vocab())
self._embed_size += embed.embed_size
self.embeds.append(embed)
return self

View File

@ -81,7 +81,7 @@ class StaticEmbedding(TokenEmbedding):
init_method=None, lower=False, dropout=0, word_dropout=0, normalize=False, min_freq=1, **kwargs):
r"""
:param vocab: Vocabulary. 若该项为None则会读取所有的embedding
:param Vocabulary vocab: 词表. StaticEmbedding只会加载包含在词表中的词的词向量在预训练向量中没找到的使用随机初始化
:param model_dir_or_name: 可以有两种方式调用预训练好的static embedding第一种是传入embedding文件夹(文件夹下应该只有一个
.txt作为后缀的文件)或文件路径第二种是传入embedding的名称第二种情况将自动查看缓存中是否存在该模型没有的话将自动下载
如果输入为None则使用embedding_dim的维度随机初始化一个embedding

View File

@ -89,3 +89,16 @@ def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
return torch.FloatTensor(sinusoid_table)
def _check_vocab_has_same_index(vocab, other_vocab):
"""
检查两个vocabulary是否含有相同的word idx
:param Vocabulary vocab:
:param Vocabulary other_vocab:
:return:
"""
if other_vocab != vocab:
for word, word_ix in vocab:
other_word_idx = other_vocab.to_index(word)
assert other_word_idx == word_ix, f"Word {word} has different index in vocabs, {word_ix} Vs. {other_word_idx}."

View File

@ -34,56 +34,3 @@ class NaiveClassifier(BaseModel):
def predict(self, x):
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}
class NaiveClassifier2(BaseModel):
r"""
一个简单的分类器例子可用于各种测试
"""
def __init__(self, in_feature_dim, out_feature_dim):
super(NaiveClassifier2, self).__init__()
self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim])
def forward(self, x):
return {"predict": self.mlp(x)}
def predict(self, x):
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}
class NaiveClassifier3(BaseModel):
r"""
一个简单的分类器例子可用于各种测试
"""
def __init__(self, in_feature_dim, out_feature_dim):
super(NaiveClassifier3, self).__init__()
self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim])
@torch.cuda.amp.autocast()
def forward(self, x):
return {"predict": self.mlp(x)}
@torch.cuda.amp.autocast()
def predict(self, x):
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}
class NaiveClassifier4(BaseModel):
r"""
一个简单的分类器例子可用于各种测试
"""
def __init__(self, in_feature_dim, out_feature_dim):
super(NaiveClassifier4, self).__init__()
self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim])
def forward(self, x):
with torch.cuda.amp.autocast():
return {"predict": self.mlp(x)}
def predict(self, x):
with torch.cuda.amp.autocast():
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}

View File

@ -464,6 +464,24 @@ class BertModel(nn.Module):
logger.info('DistilBert has NOT pooler, will use hidden states of [CLS] token as pooled output.')
self.apply(self.init_bert_weights)
@property
def dtype(self):
"""
:obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
try:
return next(self.parameters()).dtype
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: nn.Module):
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = self._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
def init_bert_weights(self, module):
r""" Initialize the weights.
"""
@ -477,7 +495,8 @@ class BertModel(nn.Module):
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True):
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True,
position_ids=None):
"""
:param torch.LongTensor input_ids: bsz x max_len的输入id
@ -485,6 +504,7 @@ class BertModel(nn.Module):
:param attention_mask: 需要attend的为1不需要为0
:param bool output_all_encoded_layers: 是否输出所有层默认输出token embedding(包含bpe, position以及type embedding)
及每一层的hidden states如果为False只输出最后一层的结果
:param torch.LongTensor position_ids: bsz x max_len, position的id
:return: encode_layers: 如果output_all_encoded_layers为True返回list(共num_layers+1个元素)每个元素为
bsz x max_len x hidden_size否则返回bsz x max_len x hidden_size的tensor;
pooled_output: bsz x hidden_size为cls的表示可以用于句子的分类
@ -506,10 +526,12 @@ class BertModel(nn.Module):
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
# this will case an issue when DataParallel: https://github.com/pytorch/pytorch/issues/40457#issuecomment-648396469
# extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = extended_attention_mask.to(self.dtype)
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids, token_type_ids)
embedding_output = self.embeddings(input_ids, token_type_ids=token_type_ids, position_ids=position_ids)
encoded_layers = self.encoder(embedding_output,
extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers)

View File

@ -787,6 +787,24 @@ class GPT2Model(GPT2PreTrainedModel):
for layer, heads in heads_to_prune.items():
self.h[layer].attn.prune_heads(heads)
@property
def dtype(self):
"""
:obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
try:
return next(self.parameters()).dtype
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: nn.Module):
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = self._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
def forward(self, input_ids, state=None, attention_mask=None, token_type_ids=None, position_ids=None,
head_mask=None, output_attentions=True):
"""
@ -834,7 +852,9 @@ class GPT2Model(GPT2PreTrainedModel):
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
# this will case an issue when DataParallel: https://github.com/pytorch/pytorch/issues/40457#issuecomment-648396469
# attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
attention_mask = attention_mask.to(self.dtype)
attention_mask = (1.0 - attention_mask) * -10000.0
# attention_mask = attention_mask.masked_fill(attention_mask.eq(0), -10000.0)

View File

@ -39,7 +39,7 @@ class RobertaEmbeddings(BertEmbeddings):
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(self, input_ids, token_type_ids, words_embeddings=None):
def forward(self, input_ids, token_type_ids, words_embeddings=None, **kwargs):
position_ids = self.create_position_ids_from_input_ids(input_ids)
return super().forward(

View File

@ -3,6 +3,5 @@ torch>=1.0.0
tqdm>=4.28.1
prettytable>=0.7.2
requests
spacy
prettytable>=0.7.2
regex!=2019.12.17

View File

@ -268,6 +268,57 @@ class TestDataSetMethods(unittest.TestCase):
with self.assertRaises(RuntimeError) as RE:
ds.add_field('test', [])
def test_concat(self):
"""
测试两个dataset能否正确concat
"""
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
ds2 = DataSet({"x": [[4,3,2,1] for i in range(10)], "y": [[6,5] for i in range(10)]})
ds3 = ds1.concat(ds2)
self.assertEqual(len(ds3), 20)
self.assertListEqual(ds1[9]['x'], [1, 2, 3, 4])
self.assertListEqual(ds1[10]['x'], [4,3,2,1])
ds2[0]['x'][0] = 100
self.assertEqual(ds3[10]['x'][0], 4) # 不改变copy后的field了
ds3[10]['x'][0] = -100
self.assertEqual(ds2[0]['x'][0], 100) # 不改变copy前的field了
# 测试inplace
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
ds2 = DataSet({"x": [[4, 3, 2, 1] for i in range(10)], "y": [[6, 5] for i in range(10)]})
ds3 = ds1.concat(ds2, inplace=True)
ds2[0]['x'][0] = 100
self.assertEqual(ds3[10]['x'][0], 4) # 不改变copy后的field了
ds3[10]['x'][0] = -100
self.assertEqual(ds2[0]['x'][0], 100) # 不改变copy前的field了
ds3[0]['x'][0] = 100
self.assertEqual(ds1[0]['x'][0], 100) # 改变copy前的field了
# 测试mapping
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
ds2 = DataSet({"X": [[4, 3, 2, 1] for i in range(10)], "Y": [[6, 5] for i in range(10)]})
ds3 = ds1.concat(ds2, field_mapping={'X':'x', 'Y':'y'})
self.assertEqual(len(ds3), 20)
# 测试忽略掉多余的
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
ds2 = DataSet({"X": [[4, 3, 2, 1] for i in range(10)], "Y": [[6, 5] for i in range(10)], 'Z':[0]*10})
ds3 = ds1.concat(ds2, field_mapping={'X':'x', 'Y':'y'})
# 测试报错
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
ds2 = DataSet({"X": [[4, 3, 2, 1] for i in range(10)]})
with self.assertRaises(RuntimeError):
ds3 = ds1.concat(ds2, field_mapping={'X':'x'})
class TestDataSetIter(unittest.TestCase):
def test__repr__(self):

View File

@ -14,8 +14,12 @@ from fastNLP import CrossEntropyLoss
from fastNLP import AccuracyMetric
from fastNLP import SGD
from fastNLP import Trainer
from fastNLP.models.base_model import NaiveClassifier, NaiveClassifier2, NaiveClassifier3, NaiveClassifier4
from fastNLP.models.base_model import NaiveClassifier
from fastNLP import TorchLoaderIter
from fastNLP.models import BaseModel
from fastNLP.modules import MLP
from pkg_resources import parse_version
def prepare_fake_dataset():
@ -577,6 +581,22 @@ class TrainerTestGround(unittest.TestCase):
"""
class NaiveClassifier2(BaseModel):
r"""
一个简单的分类器例子可用于各种测试
"""
def __init__(self, in_feature_dim, out_feature_dim):
super(NaiveClassifier2, self).__init__()
self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim])
def forward(self, x):
return {"predict": self.mlp(x)}
def predict(self, x):
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}
class Fp16TrainerTest(unittest.TestCase):
def test_raise_error(self):
data_set = prepare_fake_dataset()
@ -605,7 +625,7 @@ class Fp16TrainerTest(unittest.TestCase):
metrics=AccuracyMetric(pred="predict", target="y"), validate_every=-1, save_path=None,
use_tqdm=True, check_code_level=2, fp16=True, device=torch.device('cpu'))
@unittest.skipIf(torch.cuda.is_available()==False, "Skip when no cuda device detch")
@unittest.skipIf(torch.cuda.is_available()==False or parse_version(torch.__version__) < parse_version('1.6'), "Skip when no cuda device detch")
def test_run_fp16(self):
data_set = prepare_fake_dataset()
data_set.set_input("x", flag=True)
@ -627,7 +647,7 @@ class Fp16TrainerTest(unittest.TestCase):
use_tqdm=True, check_code_level=2, fp16=True, device=0, test_use_fp16=False)
trainer.train(load_best_model=False)
@unittest.skipIf(torch.cuda.device_count()<2, "Skip when lower than 1 gpus.")
@unittest.skipIf(torch.cuda.device_count()<2 or parse_version(torch.__version__) < parse_version('1.6'), "Skip when lower than 1 gpus.")
def test_run_data_parallel(self):
data_set = prepare_fake_dataset()
data_set.set_input("x", flag=True)
@ -635,6 +655,21 @@ class Fp16TrainerTest(unittest.TestCase):
train_set, dev_set = data_set.split(0.3)
class NaiveClassifier2(BaseModel):
r"""
一个简单的分类器例子可用于各种测试
"""
def __init__(self, in_feature_dim, out_feature_dim):
super(NaiveClassifier2, self).__init__()
self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim])
def forward(self, x):
return {"predict": self.mlp(x)}
def predict(self, x):
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}
model = NaiveClassifier2(2, 1)
with self.assertRaises(RuntimeError):
trainer = Trainer(train_set, model, optimizer=SGD(lr=0.1), loss=BCEWithLogits(pred="predict", target="y"),
@ -643,12 +678,46 @@ class Fp16TrainerTest(unittest.TestCase):
use_tqdm=True, check_code_level=2, fp16=True, device=[0, 1])
with self.assertRaises(RuntimeError):
class NaiveClassifier3(BaseModel):
r"""
一个简单的分类器例子可用于各种测试
"""
def __init__(self, in_feature_dim, out_feature_dim):
super(NaiveClassifier3, self).__init__()
self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim])
@torch.cuda.amp.autocast()
def forward(self, x):
return {"predict": self.mlp(x)}
@torch.cuda.amp.autocast()
def predict(self, x):
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}
model = NaiveClassifier3(2, 1)
trainer = Trainer(train_set, model, optimizer=SGD(lr=0.1), loss=BCEWithLogits(pred="predict", target="y"),
batch_size=32, n_epochs=10, print_every=50, dev_data=dev_set,
metrics=AccuracyMetric(pred="predict", target="y"), validate_every=-1, save_path=None,
use_tqdm=True, check_code_level=2, fp16=True, device=[0, 1], test_use_fp16=True)
class NaiveClassifier4(BaseModel):
r"""
一个简单的分类器例子可用于各种测试
"""
def __init__(self, in_feature_dim, out_feature_dim):
super(NaiveClassifier4, self).__init__()
self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim])
def forward(self, x):
with torch.cuda.amp.autocast():
return {"predict": self.mlp(x)}
def predict(self, x):
with torch.cuda.amp.autocast():
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}
model = NaiveClassifier4(2, 1)
trainer = Trainer(train_set, model, optimizer=SGD(lr=0.1), loss=BCEWithLogits(pred="predict", target="y"),
batch_size=32, n_epochs=10, print_every=50, dev_data=dev_set,

View File

@ -31,29 +31,33 @@ class TestDownload(unittest.TestCase):
class TestBertEmbedding(unittest.TestCase):
def test_bert_embedding_1(self):
vocab = Vocabulary().add_word_lst("this is a test . [SEP] NotInBERT".split())
embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1)
requires_grad = embed.requires_grad
embed.requires_grad = not requires_grad
embed.train()
words = torch.LongTensor([[2, 3, 4, 0]])
result = embed(words)
self.assertEqual(result.size(), (1, 4, 16))
for pool_method in ['first', 'last', 'max', 'avg']:
with self.subTest(pool_method=pool_method):
vocab = Vocabulary().add_word_lst("this is a test . [SEP] NotInBERT".split())
embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1,
pool_method=pool_method)
requires_grad = embed.requires_grad
embed.requires_grad = not requires_grad
embed.train()
words = torch.LongTensor([[2, 3, 4, 0]])
result = embed(words)
self.assertEqual(result.size(), (1, 4, 16))
embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1)
embed.eval()
words = torch.LongTensor([[2, 3, 4, 0]])
result = embed(words)
self.assertEqual(result.size(), (1, 4, 16))
embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1,
pool_method=pool_method)
embed.eval()
words = torch.LongTensor([[2, 3, 4, 0]])
result = embed(words)
self.assertEqual(result.size(), (1, 4, 16))
# 自动截断而不报错
embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1,
auto_truncate=True)
# 自动截断而不报错
embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1,
auto_truncate=True, pool_method=pool_method)
words = torch.LongTensor([[2, 3, 4, 1]*10,
[2, 3]+[0]*38])
result = embed(words)
self.assertEqual(result.size(), (2, 40, 16))
words = torch.LongTensor([[2, 3, 4, 1]*10,
[2, 3]+[0]*38])
result = embed(words)
self.assertEqual(result.size(), (2, 40, 16))
def test_save_load(self):
bert_save_test = 'bert_save_test'

View File

@ -18,3 +18,16 @@ class TestCharEmbed(unittest.TestCase):
y = embed(x)
self.assertEqual(tuple(y.size()), (2, 3, 130))
def test_case_2(self):
# 测试只需要拥有一样的index就可以concat
ds = DataSet([Instance(words=['hello', 'world']), Instance(words=['hello', 'Jack'])])
vocab1 = Vocabulary().from_dataset(ds, field_name='words')
vocab2 = Vocabulary().from_dataset(ds, field_name='words')
self.assertEqual(len(vocab1), 5)
cnn_embed = CNNCharEmbedding(vocab1, embed_size=60)
lstm_embed = LSTMCharEmbedding(vocab2, embed_size=70)
embed = StackEmbedding([cnn_embed, lstm_embed])
x = torch.LongTensor([[2, 1, 0], [4, 3, 4]])
y = embed(x)
self.assertEqual(tuple(y.size()), (2, 3, 130))

View File

@ -74,6 +74,7 @@ class TestRunMatchingPipe(unittest.TestCase):
name, vocabs = y
self.assertEqual(x + 1 if name == 'words' else x, len(vocabs))
@unittest.skipIf('TRAVIS' in os.environ, "Skip in travis")
def test_spacy(self):
data_set_dict = {
'Quora': ('tests/data_for_tests/io/Quora', QuoraPipe, QuoraBertPipe, (2, 2, 2), (93, 2)),