merge master

This commit is contained in:
choosewhatulike 2018-08-01 00:20:14 +08:00
commit c42487f987
43 changed files with 1701 additions and 154109 deletions

140
README.md
View File

@ -1,58 +1,92 @@
# FastNLP
```
FastNLP
│ LICENSE
│ README.md
│ requirements.txt
│ setup.py
├── docs
│   └── quick_tutorial.md
├── fastNLP
│   ├── action
│   │   ├── action.py
│   │   ├── inference.py
│   │   ├── __init__.py
│   │   ├── metrics.py
│   │   ├── optimizer.py
│   │   ├── README.md
│   │   ├── tester.py
│   │   └── trainer.py
│   ├── fastnlp.py
│   ├── __init__.py
│   ├── loader
│   │   ├── base_loader.py
│   │   ├── config_loader.py
│   │   ├── dataset_loader.py
│   │   ├── embed_loader.py
│   │   ├── __init__.py
│   │   ├── model_loader.py
│   │   └── preprocess.py
│   ├── models
│   │   ├── base_model.py
│   │   ├── char_language_model.py
│   │   ├── cnn_text_classification.py
│   │   ├── __init__.py
│   │   └── sequence_modeling.py
│   ├── modules
│   │   ├── aggregation
│   │   │   ├── attention.py
│   │   │   ├── avg_pool.py
│   │   │   ├── __init__.py
│   │   │   ├── kmax_pool.py
│   │   │   ├── max_pool.py
│   │   │   └── self_attention.py
│   │   ├── decoder
│   │   │   ├── CRF.py
│   │   │   └── __init__.py
│   │   ├── encoder
│   │   │   ├── char_embedding.py
│   │   │   ├── conv_maxpool.py
│   │   │   ├── conv.py
│   │   │   ├── embedding.py
│   │   │   ├── __init__.py
│   │   │   ├── linear.py
│   │   │   ├── lstm.py
│   │   │   ├── masked_rnn.py
│   │   │   └── variational_rnn.py
│   │   ├── __init__.py
│   │   ├── interaction
│   │   │   └── __init__.py
│   │   ├── other_modules.py
│   │   └── utils.py
│   └── saver
│   ├── base_saver.py
│   ├── __init__.py
│   ├── logger.py
│   └── model_saver.py
├── LICENSE
├── README.md
├── reproduction
│   ├── Char-aware_NLM
│   │  
│   ├── CNN-sentence_classification
│   │  
│   ├── HAN-document_classification
│   │  
│   └── LSTM+self_attention_sentiment_analysis
|
├─docs (documentation)
|
└─tests (unit tests, intergrating tests, system tests)
| │ test_charlm.py
| │ test_loader.py
| │ test_trainer.py
| │ test_word_seg.py
| │
| └─data_for_tests (test data used by models)
| charlm.txt
| cws_test
| cws_train
|
└─fastNLP
├─action (model independent process)
│ │ action.py (base class)
│ │ README.md
│ │ tester.py (model testing, for deployment and validation)
│ │ trainer.py (main logic for model training)
│ │ __init__.py
│ │
|
├─loader (file loader for all loading operations)
│ | base_loader.py (base class)
│ | config_loader.py (model-specific configuration/parameter loader)
│ | dataset_loader.py (data set loader, base class)
│ | embed_loader.py (embedding loader, base class)
│ | __init__.py
├─model (definitions of PyTorch models)
│ │ base_model.py (base class, abstract)
│ │ char_language_model.py (derived class, to implement abstract methods)
│ │ word_seg_model.py
│ │ __init__.py
│ │
├─reproduction (code library for paper reproduction)
│ ├─Char-aware_NLM
│ │
│ ├─CNN-sentence_classification
│ │
│ └─HAN-document_classification
├─saver (file saver for all saving operations)
│ base_saver.py
│ logger.py
│ model_saver.py
├── requirements.txt
├── setup.py
└── test
├── data_for_tests
│   ├── charlm.txt
│   ├── config
│   ├── cws_test
│   ├── cws_train
│   ├── people_infer.txt
│   └── people.txt
├── test_charlm.py
├── test_cws.py
├── test_fastNLP.py
├── test_loader.py
├── test_seq_labeling.py
├── test_tester.py
└── test_trainer.py
```

View File

@ -1,71 +0,0 @@
import numpy as np
class Action(object):
"""
base class for Trainer and Tester
"""
def __init__(self):
super(Action, self).__init__()
class BaseSampler(object):
"""
Base class for all samplers.
"""
def __init__(self, data_set):
self.data_set_length = len(data_set)
def __len__(self):
return self.data_set_length
def __iter__(self):
raise NotImplementedError
class SequentialSampler(BaseSampler):
"""
Sample data in the original order.
"""
def __init__(self, data_set):
super(SequentialSampler, self).__init__(data_set)
def __iter__(self):
return iter(range(self.data_set_length))
class RandomSampler(BaseSampler):
"""
Sample data in random permutation order.
"""
def __init__(self, data_set):
super(RandomSampler, self).__init__(data_set)
def __iter__(self):
return iter(np.random.permutation(self.data_set_length))
class Batchifier(object):
"""
Wrap random or sequential sampler to generate a mini-batch.
"""
def __init__(self, sampler, batch_size, drop_last=True):
super(Batchifier, self).__init__()
self.sampler = sampler
self.batch_size = batch_size
self.drop_last = drop_last
def __iter__(self):
batch = []
for idx in self.sampler:
batch.append(idx)
if len(batch) == self.batch_size:
yield batch
batch = []
if 0 < len(batch) < self.batch_size and self.drop_last is False:
yield batch

View File

@ -1,26 +0,0 @@
class Inference(object):
"""
This is an interface focusing on predicting output based on trained models.
It does not care about evaluations of the model.
"""
def __init__(self):
pass
def predict(self, model, data):
"""
this is actually a forward pass. shall be shared by Trainer/Tester
:param model:
:param data:
:return result: the output results
"""
raise NotImplementedError
def prepare_input(self, data_path):
"""
This can also be shared.
:param data_path:
:return:
"""
raise NotImplementedError

150
fastNLP/core/action.py Normal file
View File

@ -0,0 +1,150 @@
from collections import Counter
import numpy as np
class Action(object):
"""
base class for Trainer and Tester
"""
def __init__(self):
super(Action, self).__init__()
def k_means_1d(x, k, max_iter=100):
"""
Perform k-means on 1-D data.
:param x: list of int, representing points in 1-D.
:param k: the number of clusters required.
:param max_iter: maximum iteration
:return centroids: numpy array, centroids of the k clusters
assignment: numpy array, 1-D, the bucket id assigned to each example.
"""
sorted_x = sorted(list(set(x)))
if len(sorted_x) < k:
raise ValueError("too few buckets")
gap = len(sorted_x) / k
centroids = np.array([sorted_x[int(x * gap)] for x in range(k)])
assign = None
for i in range(max_iter):
# Cluster Assignment step
assign = np.array([np.argmin([np.absolute(x_i - x) for x in centroids]) for x_i in x])
# Move centroids step
new_centroids = np.array([x[assign == k].mean() for k in range(k)])
if (new_centroids == centroids).all():
centroids = new_centroids
break
centroids = new_centroids
return np.array(centroids), assign
def k_means_bucketing(all_inst, buckets):
"""
:param all_inst: 3-level list
[
[[word_11, word_12, word_13], [label_11. label_12]], # sample 1
[[word_21, word_22, word_23], [label_21. label_22]], # sample 2
...
]
:param buckets: list of int. The length of the list is the number of buckets. Each integer is the maximum length
threshold for each bucket (This is usually None.).
:return data: 2-level list
[
[index_11, index_12, ...], # bucket 1
[index_21, index_22, ...], # bucket 2
...
]
"""
bucket_data = [[] for _ in buckets]
num_buckets = len(buckets)
lengths = np.array([len(inst[0]) for inst in all_inst])
_, assignments = k_means_1d(lengths, num_buckets)
for idx, bucket_id in enumerate(assignments):
if buckets[bucket_id] is None or lengths[idx] <= buckets[bucket_id]:
bucket_data[bucket_id].append(idx)
return bucket_data
class BaseSampler(object):
"""
Base class for all samplers.
"""
def __init__(self, data_set):
self.data_set_length = len(data_set)
def __len__(self):
return self.data_set_length
def __iter__(self):
raise NotImplementedError
class SequentialSampler(BaseSampler):
"""
Sample data in the original order.
"""
def __init__(self, data_set):
super(SequentialSampler, self).__init__(data_set)
def __iter__(self):
return iter(range(self.data_set_length))
class RandomSampler(BaseSampler):
"""
Sample data in random permutation order.
"""
def __init__(self, data_set):
super(RandomSampler, self).__init__(data_set)
def __iter__(self):
return iter(np.random.permutation(self.data_set_length))
class BucketSampler(BaseSampler):
"""
Partition all samples into multiple buckets, each of which contains sentences of approximately the same length.
In sampling, first random choose a bucket. Then sample data from it.
The number of buckets is decided dynamically by the variance of sentence lengths.
"""
def __init__(self, data_set):
super(BucketSampler, self).__init__(data_set)
BUCKETS = ([None] * 20)
self.length_freq = dict(Counter([len(example) for example in data_set]))
self.buckets = k_means_bucketing(data_set, BUCKETS)
def __iter__(self):
bucket_samples = self.buckets[np.random.randint(0, len(self.buckets))]
np.random.shuffle(bucket_samples)
return iter(bucket_samples)
class Batchifier(object):
"""
Wrap random or sequential sampler to generate a mini-batch.
"""
def __init__(self, sampler, batch_size, drop_last=True):
super(Batchifier, self).__init__()
self.sampler = sampler
self.batch_size = batch_size
self.drop_last = drop_last
def __iter__(self):
batch = []
while True:
for idx in self.sampler:
batch.append(idx)
if len(batch) == self.batch_size:
yield batch
batch = []
if 0 < len(batch) < self.batch_size and self.drop_last is False:
yield batch

118
fastNLP/core/inference.py Normal file
View File

@ -0,0 +1,118 @@
import torch
from fastNLP.core.action import Batchifier, SequentialSampler
from fastNLP.loader.preprocess import load_pickle, DEFAULT_UNKNOWN_LABEL
class Inference(object):
"""
This is an interface focusing on predicting output based on trained models.
It does not care about evaluations of the model, which is different from Tester.
This is a high-level model wrapper to be called by FastNLP.
"""
def __init__(self, pickle_path):
self.batch_size = 1
self.batch_output = []
self.iterator = None
self.pickle_path = pickle_path
self.index2label = load_pickle(self.pickle_path, "id2class.pkl")
self.word2index = load_pickle(self.pickle_path, "word2id.pkl")
def predict(self, network, data):
"""
Perform inference.
:param network:
:param data: multi-level lists of strings
:return result: the model outputs
"""
# transform strings into indices
data = self.prepare_input(data)
# turn on the testing mode; clean up the history
self.mode(network, test=True)
self.iterator = iter(Batchifier(SequentialSampler(data), self.batch_size, drop_last=False))
num_iter = len(data) // self.batch_size
for step in range(num_iter):
batch_x = self.make_batch(data)
prediction = self.data_forward(network, batch_x)
self.batch_output.append(prediction)
return self.prepare_output(self.batch_output)
def mode(self, network, test=True):
if test:
network.eval()
else:
network.train()
self.batch_output.clear()
def data_forward(self, network, x):
"""
This is only for sequence labeling with CRF decoder. TODO: more general ?
:param network:
:param x:
:return:
"""
seq_len = [len(seq) for seq in x]
x = torch.Tensor(x).long()
y = network(x)
prediction = network.prediction(y, seq_len)
# To do: hide framework
results = torch.Tensor(prediction).view(-1, )
return list(results.data)
def make_batch(self, data):
indices = next(self.iterator)
batch_x = [data[idx] for idx in indices]
if self.batch_size > 1:
batch_x = self.pad(batch_x)
return batch_x
@staticmethod
def pad(batch, fill=0):
"""
Pad a batch of samples to maximum length.
:param batch: list of list
:param fill: word index to pad, default 0.
:return: a padded batch
"""
max_length = max([len(x) for x in batch])
for idx, sample in enumerate(batch):
if len(sample) < max_length:
batch[idx] = sample + [fill * (max_length - len(sample))]
return batch
def prepare_input(self, data):
"""
Transform three-level list of strings into that of index.
:param data:
[
[word_11, word_12, ...],
[word_21, word_22, ...],
...
]
"""
assert isinstance(data, list)
data_index = []
default_unknown_index = self.word2index[DEFAULT_UNKNOWN_LABEL]
for example in data:
data_index.append([self.word2index.get(w, default_unknown_index) for w in example])
return data_index
def prepare_output(self, batch_outputs):
"""
Transform list of batch outputs into strings.
:param batch_outputs: list of list, of shape [num_batch, tag_seq_length]. Element type is Tensor.
:return:
"""
results = []
for batch in batch_outputs:
results.append([self.index2label[int(x.data)] for x in batch])
return results

View File

@ -4,9 +4,8 @@ import os
import numpy as np
import torch
from fastNLP.action.action import Action
from fastNLP.action.action import RandomSampler, Batchifier
from fastNLP.modules.utils import seq_mask
from fastNLP.core.action import Action
from fastNLP.core.action import RandomSampler, Batchifier
class BaseTester(Action):
@ -26,14 +25,17 @@ class BaseTester(Action):
self.batch_size = test_args["batch_size"]
self.pickle_path = test_args["pickle_path"]
self.iterator = None
self.use_cuda = test_args["use_cuda"]
self.model = None
self.eval_history = []
self.batch_output = []
def test(self, network):
# print("--------------testing----------------")
self.model = network
if torch.cuda.is_available() and self.use_cuda:
self.model = network.cuda()
else:
self.model = network
# turn on the testing mode; clean up the history
self.mode(network, test=True)
@ -45,7 +47,7 @@ class BaseTester(Action):
num_iter = len(dev_data) // self.batch_size
for step in range(num_iter):
batch_x, batch_y = self.batchify(dev_data)
batch_x, batch_y = self.make_batch(dev_data)
prediction = self.data_forward(network, batch_x)
eval_results = self.evaluate(prediction, batch_y)
@ -66,7 +68,7 @@ class BaseTester(Action):
self.save_dev_data = data_dev
return self.save_dev_data
def batchify(self, data):
def make_batch(self, data, output_length=True):
"""
1. Perform batching from data and produce a batch of training data.
2. Add padding.
@ -84,8 +86,13 @@ class BaseTester(Action):
batch = [data[idx] for idx in indices]
batch_x = [sample[0] for sample in batch]
batch_y = [sample[1] for sample in batch]
batch_x = self.pad(batch_x)
return batch_x, batch_y
batch_x_pad = self.pad(batch_x)
batch_y_pad = self.pad(batch_y)
if output_length:
seq_len = [len(x) for x in batch_x]
return (batch_x_pad, seq_len), batch_y_pad
else:
return batch_x_pad, batch_y_pad
@staticmethod
def pad(batch, fill=0):
@ -98,7 +105,7 @@ class BaseTester(Action):
max_length = max([len(x) for x in batch])
for idx, sample in enumerate(batch):
if len(sample) < max_length:
batch[idx] = sample + [fill * (max_length - len(sample))]
batch[idx] = sample + ([fill] * (max_length - len(sample)))
return batch
def data_forward(self, network, data):
@ -112,7 +119,7 @@ class BaseTester(Action):
raise NotImplementedError
def mode(self, model, test=True):
"""To do: combine this function with Trainer ?? """
"""TODO: combine this function with Trainer ?? """
if test:
model.eval()
else:
@ -141,25 +148,37 @@ class POSTester(BaseTester):
self.mask = None
self.batch_result = None
def data_forward(self, network, x):
"""To Do: combine with Trainer
def data_forward(self, network, inputs):
"""TODO: combine with Trainer
:param network: the PyTorch model
:param x: list of list, [batch_size, max_len]
:return y: [batch_size, num_classes]
"""
seq_len = [len(seq) for seq in x]
# unpack the returned value from make_batch
if isinstance(inputs, tuple):
x = inputs[0]
self.seq_len = inputs[1]
else:
x = inputs
x = torch.Tensor(x).long()
if torch.cuda.is_available() and self.use_cuda:
x = x.cuda()
self.batch_size = x.size(0)
self.max_len = x.size(1)
self.mask = seq_mask(seq_len, self.max_len)
y = network(x)
return y
def evaluate(self, predict, truth):
truth = torch.Tensor(truth)
loss, prediction = self.model.loss(predict, truth, self.mask, self.batch_size, self.max_len)
results = torch.Tensor(prediction[0][0]).view((-1,))
if torch.cuda.is_available() and self.use_cuda:
truth = truth.cuda()
loss = self.model.loss(predict, truth, self.seq_len) / self.batch_size
prediction = self.model.prediction(predict, self.seq_len)
results = torch.Tensor(prediction).view(-1,)
if torch.cuda.is_available() and self.use_cuda:
results = results.cuda()
accuracy = float(torch.sum(results == truth.view((-1,)))) / results.shape[0]
return [loss.data, accuracy]
@ -256,7 +275,7 @@ class ClassTester(BaseTester):
n_batches = len(data_test) // self.batch_size
n_print = n_batches // 10
step = 0
for batch_x, batch_y in self.batchify(data_test, max_len=self.max_len):
for batch_x, batch_y in self.make_batch(data_test, max_len=self.max_len):
prediction = self.data_forward(network, batch_x)
eval_results = self.evaluate(prediction, batch_y)
@ -277,7 +296,7 @@ class ClassTester(BaseTester):
data = _pickle.load(f)
return data
def batchify(self, data, max_len=None):
def make_batch(self, data, max_len=None):
"""Batch and pad data."""
for indices in self.iterator:
# generate batch and pad
@ -319,7 +338,7 @@ class ClassTester(BaseTester):
return y_true.cpu().numpy(), y_prob.cpu().numpy(), acc
def mode(self, model, test=True):
"""To do: combine this function with Trainer ?? """
"""TODO: combine this function with Trainer ?? """
if test:
model.eval()
else:

View File

@ -7,10 +7,9 @@ import numpy as np
import torch
import torch.nn as nn
from fastNLP.action.action import Action
from fastNLP.action.action import RandomSampler, Batchifier
from fastNLP.action.tester import POSTester
from fastNLP.modules.utils import seq_mask
from fastNLP.core.action import Action
from fastNLP.core.action import RandomSampler, Batchifier, BucketSampler
from fastNLP.core.tester import POSTester
from fastNLP.saver.model_saver import ModelSaver
@ -45,6 +44,7 @@ class BaseTrainer(Action):
self.validate = train_args["validate"]
self.save_best_dev = train_args["save_best_dev"]
self.model_saved_path = train_args["model_saved_path"]
self.use_cuda = train_args["use_cuda"]
self.model = None
self.iterator = None
@ -66,13 +66,19 @@ class BaseTrainer(Action):
- update
Subclasses must implement these methods with a specific framework.
"""
# prepare model and data
self.model = network
# prepare model and data, transfer model to gpu if available
if torch.cuda.is_available() and self.use_cuda:
self.model = network.cuda()
else:
self.model = network
data_train, data_dev, data_test, embedding = self.prepare_input(self.pickle_path)
# define tester over dev data
# TODO: more flexible
valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True,
"save_loss": True, "batch_size": self.batch_size, "pickle_path": self.pickle_path}
"save_loss": True, "batch_size": self.batch_size, "pickle_path": self.pickle_path,
"use_cuda": self.use_cuda}
validator = POSTester(valid_args)
# main training epochs
@ -83,11 +89,11 @@ class BaseTrainer(Action):
# turn on network training mode; define optimizer; prepare batch iterator
self.mode(test=False)
self.iterator = iter(Batchifier(RandomSampler(data_train), self.batch_size, drop_last=True))
self.iterator = iter(Batchifier(BucketSampler(data_train), self.batch_size, drop_last=True))
# training iterations in one epoch
for step in range(iterations):
batch_x, batch_y = self.batchify(data_train) # pad ?
batch_x, batch_y = self.make_batch(data_train)
prediction = self.data_forward(network, batch_x)
@ -95,6 +101,9 @@ class BaseTrainer(Action):
self.grad_backward(loss)
self.update()
if step % 10 == 0:
print("[epoch {} step {}] train loss={:.2f}".format(epoch, step, loss.data))
if self.validate:
if data_dev is None:
raise RuntimeError("No validation data provided.")
@ -110,9 +119,6 @@ class BaseTrainer(Action):
# finish training
def prepare_input(self, data_path):
"""
To do: Load pkl files of train/dev/test and embedding
"""
data_train = _pickle.load(open(data_path + "data_train.pkl", "rb"))
data_dev = _pickle.load(open(data_path + "data_dev.pkl", "rb"))
data_test = _pickle.load(open(data_path + "data_test.pkl", "rb"))
@ -181,7 +187,7 @@ class BaseTrainer(Action):
"""
raise NotImplementedError
def batchify(self, data, output_length=True):
def make_batch(self, data, output_length=True):
"""
1. Perform batching from data and produce a batch of training data.
2. Add padding.
@ -192,20 +198,24 @@ class BaseTrainer(Action):
[[word_21, word_22, word_23], [label_21. label_22]], # sample 2
...
]
:return batch_x: list. Each entry is a list of features of a sample. [batch_size, max_len]
:return (batch_x, seq_len): tuple of two elements, if output_length is true.
batch_x: list. Each entry is a list of features of a sample. [batch_size, max_len]
seq_len: list. The length of the pre-padded sequence, if output_length is True.
batch_y: list. Each entry is a list of labels of a sample. [batch_size, num_labels]
seq_len: list. The length of the pre-padded sequence, if output_length is True.
return batch_x and batch_y, if output_length is False
"""
indices = next(self.iterator)
batch = [data[idx] for idx in indices]
batch_x = [sample[0] for sample in batch]
batch_y = [sample[1] for sample in batch]
batch_x_pad = self.pad(batch_x)
batch_y_pad = self.pad(batch_y)
if output_length:
seq_len = [len(x) for x in batch_x]
return batch_x_pad, batch_y, seq_len
return (batch_x_pad, seq_len), batch_y_pad
else:
return batch_x_pad, batch_y
return batch_x_pad, batch_y_pad
@staticmethod
def pad(batch, fill=0):
@ -286,24 +296,30 @@ class POSTrainer(BaseTrainer):
self.best_accuracy = 0.0
def prepare_input(self, data_path):
"""
To do: Load pkl files of train/dev/test and embedding
"""
data_train = _pickle.load(open(data_path + "/data_train.pkl", "rb"))
data_dev = _pickle.load(open(data_path + "/data_train.pkl", "rb"))
return data_train, data_dev, 0, 1
def data_forward(self, network, x):
def data_forward(self, network, inputs):
"""
:param network: the PyTorch model
:param x: list of list, [batch_size, max_len]
:return y: [batch_size, num_classes]
:param inputs: list of list, [batch_size, max_len],
or tuple of (batch_x, seq_len), batch_x == [batch_size, max_len]
:return y: [batch_size, max_len, tag_size]
"""
seq_len = [len(seq) for seq in x]
# unpack the returned value from make_batch
if isinstance(inputs, tuple):
x = inputs[0]
self.seq_len = inputs[1]
else:
x = inputs
x = torch.Tensor(x).long()
if torch.cuda.is_available() and self.use_cuda:
x = x.cuda()
self.batch_size = x.size(0)
self.max_len = x.size(1)
self.mask = seq_mask(seq_len, self.max_len)
y = network(x)
return y
@ -326,17 +342,20 @@ class POSTrainer(BaseTrainer):
def get_loss(self, predict, truth):
"""
Compute loss given prediction and ground truth.
:param predict: prediction label vector, [batch_size, num_classes]
:param predict: prediction label vector, [batch_size, max_len, tag_size]
:param truth: ground truth label vector, [batch_size, max_len]
:return: a scalar
"""
truth = torch.Tensor(truth)
if torch.cuda.is_available() and self.use_cuda:
truth = truth.cuda()
assert truth.shape == (self.batch_size, self.max_len)
if self.loss_func is None:
if hasattr(self.model, "loss"):
self.loss_func = self.model.loss
else:
self.define_loss()
loss, prediction = self.loss_func(predict, truth, self.mask, self.batch_size, self.max_len)
loss = self.loss_func(predict, truth, self.seq_len)
# print("loss={:.2f}".format(loss.data))
return loss
@ -348,6 +367,36 @@ class POSTrainer(BaseTrainer):
else:
return False
def make_batch(self, data, output_length=True):
"""
1. Perform batching from data and produce a batch of training data.
2. Add padding.
:param data: list. Each entry is a sample, which is also a list of features and label(s).
E.g.
[
[[word_11, word_12, word_13], [label_11. label_12]], # sample 1
[[word_21, word_22, word_23], [label_21. label_22]], # sample 2
...
]
:return (batch_x, seq_len): tuple of two elements, if output_length is true.
batch_x: list. Each entry is a list of features of a sample. [batch_size, max_len]
seq_len: list. The length of the pre-padded sequence, if output_length is True.
batch_y: list. Each entry is a list of labels of a sample. [batch_size, num_labels]
return batch_x and batch_y, if output_length is False
"""
indices = next(self.iterator)
batch = [data[idx] for idx in indices]
batch_x = [sample[0] for sample in batch]
batch_y = [sample[1] for sample in batch]
batch_x_pad = self.pad(batch_x)
batch_y_pad = self.pad(batch_y)
if output_length:
seq_len = [len(x) for x in batch_x]
return (batch_x_pad, seq_len), batch_y_pad
else:
return batch_x_pad, batch_y_pad
class LanguageModelTrainer(BaseTrainer):
"""
@ -439,7 +488,7 @@ class ClassTrainer(BaseTrainer):
# training iterations in one epoch
step = 0
for batch_x, batch_y in self.batchify(data_train):
for batch_x, batch_y in self.make_batch(data_train):
prediction = self.data_forward(network, batch_x)
loss = self.get_loss(prediction, batch_y)
@ -466,9 +515,6 @@ class ClassTrainer(BaseTrainer):
# finish training
def prepare_input(self, data_path):
"""
To do: Load pkl files of train/dev/test and embedding
"""
names = [
"data_train.pkl", "data_dev.pkl",
@ -534,7 +580,7 @@ class ClassTrainer(BaseTrainer):
"""Apply gradient."""
self.optimizer.step()
def batchify(self, data):
def make_batch(self, data):
"""Batch and pad data."""
for indices in self.iterator:
batch = [data[idx] for idx in indices]
@ -560,4 +606,4 @@ if __name__ == "__name__":
train_args = {"epochs": 1, "validate": False, "batch_size": 3, "pickle_path": "./"}
trainer = BaseTrainer(train_args)
data_train = [[[1, 2, 3, 4], [0]] * 10] + [[[1, 3, 5, 2], [1]] * 10]
trainer.batchify(data=data_train)
trainer.make_batch(data=data_train)

173
fastNLP/fastnlp.py Normal file
View File

@ -0,0 +1,173 @@
from fastNLP.core.inference import Inference
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.loader.model_loader import ModelLoader
"""
mapping from model name to [URL, file_name.class_name, model_pickle_name]
Notice that the class of the model should be in "models" directory.
Example:
"zh_pos_tag_model": ["www.fudan.edu.cn", "sequence_modeling.SeqLabeling", "saved_model.pkl"]
"""
FastNLP_MODEL_COLLECTION = {
"zh_pos_tag_model": ["www.fudan.edu.cn", "sequence_modeling.SeqLabeling", "saved_model.pkl"]
}
class FastNLP(object):
"""
High-level interface for direct model inference.
Usage:
fastnlp = FastNLP()
fastnlp.load("zh_pos_tag_model")
text = "这是最好的基于深度学习的中文分词系统。"
result = fastnlp.run(text)
print(result) # ["这", "是", "最好", "的", "基于", "深度学习", "的", "中文", "分词", "系统", "。"]
"""
def __init__(self, model_dir="./"):
"""
:param model_dir: this directory should contain the following files:
1. a pre-trained model
2. a config file
3. "id2class.pkl"
4. "word2id.pkl"
"""
self.model_dir = model_dir
self.model = None
def load(self, model_name):
"""
Load a pre-trained FastNLP model together with additional data.
:param model_name: str, the name of a FastNLP model.
"""
assert type(model_name) is str
if model_name not in FastNLP_MODEL_COLLECTION:
raise ValueError("No FastNLP model named {}.".format(model_name))
if not self.model_exist(model_dir=self.model_dir):
self._download(model_name, FastNLP_MODEL_COLLECTION[model_name][0])
model_class = self._get_model_class(FastNLP_MODEL_COLLECTION[model_name][1])
model_args = ConfigSection()
# To do: customized config file for model init parameters
ConfigLoader.load_config(self.model_dir + "config", {"POS_infer": model_args})
# Construct the model
model = model_class(model_args)
# To do: framework independent
ModelLoader.load_pytorch(model, self.model_dir + FastNLP_MODEL_COLLECTION[model_name][2])
self.model = model
print("Model loaded. ")
def run(self, raw_input):
"""
Perform inference over given input using the loaded model.
:param raw_input: str, raw text
:return results:
"""
infer = Inference(self.model_dir)
infer_input = self.string_to_list(raw_input)
results = infer.predict(self.model, infer_input)
outputs = self.make_output(results)
return outputs
@staticmethod
def _get_model_class(file_class_name):
"""
Feature the class specified by <file_class_name>
:param file_class_name: str, contains the name of the Python module followed by the name of the class.
Example: "sequence_modeling.SeqLabeling"
:return module: the model class
"""
import_prefix = "fastNLP.models."
parts = (import_prefix + file_class_name).split(".")
from_module = ".".join(parts[:-1])
module = __import__(from_module)
for sub in parts[1:]:
module = getattr(module, sub)
return module
def _load(self, model_dir, model_name):
# To do
return 0
def _download(self, model_name, url):
"""
Download the model weights from <url> and save in <self.model_dir>.
:param model_name:
:param url:
"""
print("Downloading {} from {}".format(model_name, url))
# To do
def model_exist(self, model_dir):
"""
Check whether the desired model is already in the directory.
:param model_dir:
"""
return True
def string_to_list(self, text, delimiter="\n"):
"""
For word seg only, currently.
This function is used to transform raw input to lists, which is done by DatasetLoader in training.
Split text string into three-level lists.
[
[word_11, word_12, ...],
[word_21, word_22, ...],
...
]
:param text: string
:param delimiter: str, character used to split text into sentences.
:return data: three-level lists
"""
data = []
sents = text.strip().split(delimiter)
for sent in sents:
characters = []
for ch in sent:
characters.append(ch)
data.append(characters)
# To refactor: this is used in make_output
self.data = data
return data
def make_output(self, results):
"""
Transform model output into user-friendly contents.
Example: In CWS, convert <BMES> labeling into segmented text.
:param results:
:return:
"""
outputs = []
for sent_char, sent_label in zip(self.data, results):
words = []
word = ""
for char, label in zip(sent_char, sent_label):
if label[0] == "B":
if word != "":
words.append(word)
word = char
elif label[0] == "M":
word += char
elif label[0] == "E":
word += char
words.append(word)
word = ""
elif label[0] == "S":
if word != "":
words.append(word)
word = ""
words.append(char)
else:
raise ValueError("invalid label")
outputs.append(" ".join(words))
return outputs

View File

@ -17,7 +17,7 @@ class BaseLoader(object):
def load_lines(self):
with open(self.data_path, "r", encoding="utf=8") as f:
text = f.readlines()
return text
return [line.strip() for line in text]
class ToyLoader0(BaseLoader):

View File

@ -20,9 +20,13 @@ class ConfigLoader(BaseLoader):
def load_config(file_path, sections):
"""
:param file_path: the path of config file
:param sections: the dict of sections
:return:
:param sections: the dict of {section_name(string): Section instance}
Example:
test_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
:return: return nothing, but the value of attributes are saved in sessions
"""
assert isinstance(sections, dict)
cfg = configparser.ConfigParser()
if not os.path.exists(file_path):
raise FileNotFoundError("config file {} not found. ".format(file_path))

View File

@ -22,6 +22,7 @@ class POSDatasetLoader(DatasetLoader):
and label2
Jerry label1
. label3
(separated by an empty line)
Hello label4
world label5
! label3
@ -29,6 +30,7 @@ class POSDatasetLoader(DatasetLoader):
and "Hello world !". Each word has its own label from label1
to label5.
"""
def __init__(self, data_name, data_path):
super(POSDatasetLoader, self).__init__(data_name, data_path)
@ -77,6 +79,62 @@ class POSDatasetLoader(DatasetLoader):
return data
class TokenizeDatasetLoader(DatasetLoader):
"""
Data set loader for tokenization data sets
"""
def __init__(self, data_name, data_path):
super(TokenizeDatasetLoader, self).__init__(data_name, data_path)
def load_pku(self, max_seq_len=32):
"""
load pku dataset for Chinese word segmentation
CWS (Chinese Word Segmentation) pku training dataset format:
1. Each line is a sentence.
2. Each word in a sentence is separated by space.
This function convert the pku dataset into three-level lists with labels <BMES>.
B: beginning of a word
M: middle of a word
E: ending of a word
S: single character
:param max_seq_len: int, the maximum length of a sequence. If a sequence is longer than it, split it into
several sequences.
:return: three-level lists
"""
assert isinstance(max_seq_len, int) and max_seq_len > 0
with open(self.data_path, "r", encoding="utf-8") as f:
sentences = f.readlines()
data = []
for sent in sentences:
tokens = sent.strip().split()
words = []
labels = []
for token in tokens:
if len(token) == 1:
words.append(token)
labels.append("S")
else:
words.append(token[0])
labels.append("B")
for idx in range(1, len(token) - 1):
words.append(token[idx])
labels.append("M")
words.append(token[-1])
labels.append("E")
num_samples = len(words) // max_seq_len
if len(words) % max_seq_len != 0:
num_samples += 1
for sample_idx in range(num_samples):
start = sample_idx * max_seq_len
end = (sample_idx + 1) * max_seq_len
seq_words = words[start:end]
seq_labels = labels[start:end]
data.append([seq_words, seq_labels])
return data
class ClassDatasetLoader(DatasetLoader):
"""Loader for classification data sets"""
@ -163,7 +221,12 @@ class LMDatasetLoader(DatasetLoader):
if __name__ == "__main__":
"""
data = POSDatasetLoader("xxx", "../../test/data_for_tests/people.txt").load_lines()
for example in data:
for w, l in zip(example[0], example[1]):
print(w, l)
"""
ans = TokenizeDatasetLoader("xxx", "/home/zyfeng/Desktop/data/icwb2-data/training/test").load_pku()
print(ans)

View File

@ -11,9 +11,11 @@ class ModelLoader(BaseLoader):
def __init__(self, data_name, data_path):
super(ModelLoader, self).__init__(data_name, data_path)
def load_pytorch(self, empty_model):
@staticmethod
def load_pytorch(empty_model, model_path):
"""
Load model parameters from .pkl files into the empty PyTorch model.
:param empty_model: a PyTorch model with initialized parameters.
:param model_path: str, the path to the saved model.
"""
empty_model.load_state_dict(torch.load(self.data_path))
empty_model.load_state_dict(torch.load(model_path))

View File

@ -1,346 +1,363 @@
import _pickle
import os
DEFAULT_PADDING_LABEL = '<pad>' # dict index = 0
DEFAULT_UNKNOWN_LABEL = '<unk>' # dict index = 1
DEFAULT_RESERVED_LABEL = ['<reserved-2>',
'<reserved-3>',
'<reserved-4>'] # dict index = 2~4
DEFAULT_WORD_TO_INDEX = {DEFAULT_PADDING_LABEL: 0, DEFAULT_UNKNOWN_LABEL: 1,
DEFAULT_RESERVED_LABEL[0]: 2, DEFAULT_RESERVED_LABEL[1]: 3,
DEFAULT_RESERVED_LABEL[2]: 4}
# the first vocab in dict with the index = 5
class BasePreprocess(object):
def __init__(self, data, pickle_path):
super(BasePreprocess, self).__init__()
self.data = data
self.pickle_path = pickle_path
if not self.pickle_path.endswith('/'):
self.pickle_path = self.pickle_path + '/'
class POSPreprocess(BasePreprocess):
"""
This class are used to preprocess the pos datasets.
"""
def __init__(self, data, pickle_path="./", train_dev_split=0):
"""
Preprocess pipeline, including building mapping from words to index, from index to words,
from labels/classes to index, from index to labels/classes.
:param data: three-level list
[
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
...
]
:param pickle_path: str, the directory to the pickle files. Default: "./"
:param train_dev_split: float in [0, 1]. The ratio of dev data split from training data. Default: 0.
To do:
1. simplify __init__
"""
super(POSPreprocess, self).__init__(data, pickle_path)
self.pickle_path = pickle_path
if self.pickle_exist("word2id.pkl"):
# load word2index because the construction of the following objects needs it
with open(os.path.join(self.pickle_path, "word2id.pkl"), "rb") as f:
self.word2index = _pickle.load(f)
else:
self.word2index, self.label2index = self.build_dict(data)
with open(os.path.join(self.pickle_path, "word2id.pkl"), "wb") as f:
_pickle.dump(self.word2index, f)
if self.pickle_exist("class2id.pkl"):
with open(os.path.join(self.pickle_path, "class2id.pkl"), "rb") as f:
self.label2index = _pickle.load(f)
else:
with open(os.path.join(self.pickle_path, "class2id.pkl"), "wb") as f:
_pickle.dump(self.label2index, f)
#something will be wrong if word2id.pkl is found but class2id.pkl is not found
if not self.pickle_exist("id2word.pkl"):
index2word = self.build_reverse_dict(self.word2index)
with open(os.path.join(self.pickle_path, "id2word.pkl"), "wb") as f:
_pickle.dump(index2word, f)
if not self.pickle_exist("id2class.pkl"):
index2label = self.build_reverse_dict(self.label2index)
with open(os.path.join(self.pickle_path, "word2id.pkl"), "wb") as f:
_pickle.dump(index2label, f)
if not self.pickle_exist("data_train.pkl"):
data_train = self.to_index(data)
if train_dev_split > 0 and not self.pickle_exist("data_dev.pkl"):
data_dev = data_train[: int(len(data_train) * train_dev_split)]
with open(os.path.join(self.pickle_path, "data_dev.pkl"), "wb") as f:
_pickle.dump(data_dev, f)
with open(os.path.join(self.pickle_path, "data_train.pkl"), "wb") as f:
_pickle.dump(data_train, f)
def build_dict(self, data):
"""
Add new words with indices into self.word_dict, new labels with indices into self.label_dict.
:param data: three-level list
[
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
...
]
:return word2index: dict of {str, int}
label2index: dict of {str, int}
"""
label2index = {}
word2index = DEFAULT_WORD_TO_INDEX
for example in data:
for word, label in zip(example[0], example[1]):
if word not in word2index:
word2index[word] = len(word2index)
if label not in label2index:
label2index[label] = len(label2index)
return word2index, label2index
def pickle_exist(self, pickle_name):
"""
:param pickle_name: the filename of target pickle file
:return: True if file exists else False
"""
if not os.path.exists(self.pickle_path):
os.makedirs(self.pickle_path)
file_name = os.path.join(self.pickle_path, pickle_name)
if os.path.exists(file_name):
return True
else:
return False
def build_reverse_dict(self, word_dict):
id2word = {word_dict[w]: w for w in word_dict}
return id2word
def to_index(self, data):
"""
Convert word strings and label strings into indices.
:param data: three-level list
[
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
...
]
:return data_index: the shape of data, but each string is replaced by its corresponding index
"""
data_index = []
for example in data:
word_list = []
label_list = []
for word, label in zip(example[0], example[1]):
word_list.append(self.word2index[word])
label_list.append(self.label2index[label])
data_index.append([word_list, label_list])
return data_index
@property
def vocab_size(self):
return len(self.word2index)
@property
def num_classes(self):
return len(self.label2index)
class ClassPreprocess(BasePreprocess):
"""
Pre-process the classification datasets.
Params:
pickle_path - directory to save result of pre-processing
Saves:
word2id.pkl
id2word.pkl
class2id.pkl
id2class.pkl
embedding.pkl
data_train.pkl
data_dev.pkl
data_test.pkl
"""
def __init__(self, pickle_path):
# super(ClassPreprocess, self).__init__(data, pickle_path)
self.word_dict = None
self.label_dict = None
self.pickle_path = pickle_path # save directory
def process(self, data, save_name):
"""
Process data.
Params:
data - nested list, data = [sample1, sample2, ...],
sample = [sentence, label], sentence = [word1, word2, ...]
save_name - name of processed data, such as data_train.pkl
Returns:
vocab_size - vocabulary size
n_classes - number of classes
"""
self.build_dict(data)
self.word2id()
vocab_size = self.id2word()
self.class2id()
num_classes = self.id2class()
self.embedding()
self.data_generate(data, save_name)
return vocab_size, num_classes
def build_dict(self, data):
"""Build vocabulary."""
# just read if word2id.pkl and class2id.pkl exists
if self.pickle_exist("word2id.pkl") and \
self.pickle_exist("class2id.pkl"):
file_name = os.path.join(self.pickle_path, "word2id.pkl")
with open(file_name, 'rb') as f:
self.word_dict = _pickle.load(f)
file_name = os.path.join(self.pickle_path, "class2id.pkl")
with open(file_name, 'rb') as f:
self.label_dict = _pickle.load(f)
return
# build vocabulary from scratch if nothing exists
self.word_dict = {
DEFAULT_PADDING_LABEL: 0,
DEFAULT_UNKNOWN_LABEL: 1,
DEFAULT_RESERVED_LABEL[0]: 2,
DEFAULT_RESERVED_LABEL[1]: 3,
DEFAULT_RESERVED_LABEL[2]: 4}
self.label_dict = {}
# collect every word and label
for sent, label in data:
if len(sent) <= 1:
continue
if label not in self.label_dict:
index = len(self.label_dict)
self.label_dict[label] = index
for word in sent:
if word not in self.word_dict:
index = len(self.word_dict)
self.word_dict[word[0]] = index
def pickle_exist(self, pickle_name):
"""
Check whether a pickle file exists.
Params
pickle_name: the filename of target pickle file
Return
True if file exists else False
"""
if not os.path.exists(self.pickle_path):
os.makedirs(self.pickle_path)
file_name = os.path.join(self.pickle_path, pickle_name)
if os.path.exists(file_name):
return True
else:
return False
def word2id(self):
"""Save vocabulary of {word:id} mapping format."""
# nothing will be done if word2id.pkl exists
if self.pickle_exist("word2id.pkl"):
return
file_name = os.path.join(self.pickle_path, "word2id.pkl")
with open(file_name, "wb") as f:
_pickle.dump(self.word_dict, f)
def id2word(self):
"""Save vocabulary of {id:word} mapping format."""
# nothing will be done if id2word.pkl exists
if self.pickle_exist("id2word.pkl"):
file_name = os.path.join(self.pickle_path, "id2word.pkl")
with open(file_name, 'rb') as f:
id2word_dict = _pickle.load(f)
return len(id2word_dict)
id2word_dict = {self.word_dict[w]: w for w in self.word_dict}
file_name = os.path.join(self.pickle_path, "id2word.pkl")
with open(file_name, "wb") as f:
_pickle.dump(id2word_dict, f)
return len(id2word_dict)
def class2id(self):
"""Save mapping of {class:id}."""
# nothing will be done if class2id.pkl exists
if self.pickle_exist("class2id.pkl"):
return
file_name = os.path.join(self.pickle_path, "class2id.pkl")
with open(file_name, "wb") as f:
_pickle.dump(self.label_dict, f)
def id2class(self):
"""Save mapping of {id:class}."""
# nothing will be done if id2class.pkl exists
if self.pickle_exist("id2class.pkl"):
file_name = os.path.join(self.pickle_path, "id2class.pkl")
with open(file_name, "rb") as f:
id2class_dict = _pickle.load(f)
return len(id2class_dict)
id2class_dict = {self.label_dict[c]: c for c in self.label_dict}
file_name = os.path.join(self.pickle_path, "id2class.pkl")
with open(file_name, "wb") as f:
_pickle.dump(id2class_dict, f)
return len(id2class_dict)
def embedding(self):
"""Save embedding lookup table corresponding to vocabulary."""
# nothing will be done if embedding.pkl exists
if self.pickle_exist("embedding.pkl"):
return
# retrieve vocabulary from pre-trained embedding (not implemented)
def data_generate(self, data_src, save_name):
"""Convert dataset from text to digit."""
# nothing will be done if file exists
save_path = os.path.join(self.pickle_path, save_name)
if os.path.exists(save_path):
return
data = []
# for every sample
for sent, label in data_src:
if len(sent) <= 1:
continue
label_id = self.label_dict[label] # label id
sent_id = [] # sentence ids
for word in sent:
if word in self.word_dict:
sent_id.append(self.word_dict[word])
else:
sent_id.append(self.word_dict[DEFAULT_UNKNOWN_LABEL])
data.append([sent_id, label_id])
# save data
with open(save_path, "wb") as f:
_pickle.dump(data, f)
class LMPreprocess(BasePreprocess):
def __init__(self, data, pickle_path):
super(LMPreprocess, self).__init__(data, pickle_path)
import _pickle
import os
DEFAULT_PADDING_LABEL = '<pad>' # dict index = 0
DEFAULT_UNKNOWN_LABEL = '<unk>' # dict index = 1
DEFAULT_RESERVED_LABEL = ['<reserved-2>',
'<reserved-3>',
'<reserved-4>'] # dict index = 2~4
DEFAULT_WORD_TO_INDEX = {DEFAULT_PADDING_LABEL: 0, DEFAULT_UNKNOWN_LABEL: 1,
DEFAULT_RESERVED_LABEL[0]: 2, DEFAULT_RESERVED_LABEL[1]: 3,
DEFAULT_RESERVED_LABEL[2]: 4}
# the first vocab in dict with the index = 5
def save_pickle(obj, pickle_path, file_name):
with open(os.path.join(pickle_path, file_name), "wb") as f:
_pickle.dump(obj, f)
print("{} saved. ".format(file_name))
def load_pickle(pickle_path, file_name):
with open(os.path.join(pickle_path, file_name), "rb") as f:
obj = _pickle.load(f)
print("{} loaded. ".format(file_name))
return obj
def pickle_exist(pickle_path, pickle_name):
"""
:param pickle_path: the directory of target pickle file
:param pickle_name: the filename of target pickle file
:return: True if file exists else False
"""
if not os.path.exists(pickle_path):
os.makedirs(pickle_path)
file_name = os.path.join(pickle_path, pickle_name)
if os.path.exists(file_name):
return True
else:
return False
class BasePreprocess(object):
def __init__(self, data, pickle_path):
super(BasePreprocess, self).__init__()
# self.data = data
self.pickle_path = pickle_path
if not self.pickle_path.endswith('/'):
self.pickle_path = self.pickle_path + '/'
class POSPreprocess(BasePreprocess):
"""
This class are used to preprocess the POS Tag datasets.
"""
def __init__(self, data, pickle_path="./", train_dev_split=0):
"""
Preprocess pipeline, including building mapping from words to index, from index to words,
from labels/classes to index, from index to labels/classes.
:param data: three-level list
[
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
...
]
:param pickle_path: str, the directory to the pickle files. Default: "./"
:param train_dev_split: float in [0, 1]. The ratio of dev data split from training data. Default: 0.
"""
super(POSPreprocess, self).__init__(data, pickle_path)
self.pickle_path = pickle_path
if pickle_exist(pickle_path, "word2id.pkl") and pickle_exist(pickle_path, "class2id.pkl"):
self.word2index = load_pickle(self.pickle_path, "word2id.pkl")
self.label2index = load_pickle(self.pickle_path, "class2id.pkl")
else:
self.word2index, self.label2index = self.build_dict(data)
save_pickle(self.word2index, self.pickle_path, "word2id.pkl")
save_pickle(self.label2index, self.pickle_path, "class2id.pkl")
if not pickle_exist(pickle_path, "id2word.pkl"):
index2word = self.build_reverse_dict(self.word2index)
save_pickle(index2word, self.pickle_path, "id2word.pkl")
if not pickle_exist(pickle_path, "id2class.pkl"):
index2label = self.build_reverse_dict(self.label2index)
save_pickle(index2label, self.pickle_path, "id2class.pkl")
if not pickle_exist(pickle_path, "data_train.pkl"):
data_train = self.to_index(data)
if train_dev_split > 0 and not pickle_exist(pickle_path, "data_dev.pkl"):
data_dev = data_train[: int(len(data_train) * train_dev_split)]
save_pickle(data_dev, self.pickle_path, "data_dev.pkl")
save_pickle(data_train, self.pickle_path, "data_train.pkl")
def build_dict(self, data):
"""
Add new words with indices into self.word_dict, new labels with indices into self.label_dict.
:param data: three-level list
[
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
...
]
:return word2index: dict of {str, int}
label2index: dict of {str, int}
"""
# In seq labeling, both word seq and label seq need to be padded to the same length in a mini-batch.
label2index = DEFAULT_WORD_TO_INDEX.copy()
word2index = DEFAULT_WORD_TO_INDEX.copy()
for example in data:
for word, label in zip(example[0], example[1]):
if word not in word2index:
word2index[word] = len(word2index)
if label not in label2index:
label2index[label] = len(label2index)
return word2index, label2index
def build_reverse_dict(self, word_dict):
id2word = {word_dict[w]: w for w in word_dict}
return id2word
def to_index(self, data):
"""
Convert word strings and label strings into indices.
:param data: three-level list
[
[ [word_11, word_12, ...], [label_1, label_1, ...] ],
[ [word_21, word_22, ...], [label_2, label_1, ...] ],
...
]
:return data_index: the shape of data, but each string is replaced by its corresponding index
"""
data_index = []
for example in data:
word_list = []
label_list = []
for word, label in zip(example[0], example[1]):
word_list.append(self.word2index[word])
label_list.append(self.label2index[label])
data_index.append([word_list, label_list])
return data_index
@property
def vocab_size(self):
return len(self.word2index)
@property
def num_classes(self):
return len(self.label2index)
class ClassPreprocess(BasePreprocess):
"""
Pre-process the classification datasets.
Params:
pickle_path - directory to save result of pre-processing
Saves:
word2id.pkl
id2word.pkl
class2id.pkl
id2class.pkl
embedding.pkl
data_train.pkl
data_dev.pkl
data_test.pkl
"""
def __init__(self, pickle_path):
# super(ClassPreprocess, self).__init__(data, pickle_path)
self.word_dict = None
self.label_dict = None
self.pickle_path = pickle_path # save directory
def process(self, data, save_name):
"""
Process data.
Params:
data - nested list, data = [sample1, sample2, ...],
sample = [sentence, label], sentence = [word1, word2, ...]
save_name - name of processed data, such as data_train.pkl
Returns:
vocab_size - vocabulary size
n_classes - number of classes
"""
self.build_dict(data)
self.word2id()
vocab_size = self.id2word()
self.class2id()
num_classes = self.id2class()
self.embedding()
self.data_generate(data, save_name)
return vocab_size, num_classes
def build_dict(self, data):
"""Build vocabulary."""
# just read if word2id.pkl and class2id.pkl exists
if self.pickle_exist("word2id.pkl") and \
self.pickle_exist("class2id.pkl"):
file_name = os.path.join(self.pickle_path, "word2id.pkl")
with open(file_name, 'rb') as f:
self.word_dict = _pickle.load(f)
file_name = os.path.join(self.pickle_path, "class2id.pkl")
with open(file_name, 'rb') as f:
self.label_dict = _pickle.load(f)
return
# build vocabulary from scratch if nothing exists
self.word_dict = {
DEFAULT_PADDING_LABEL: 0,
DEFAULT_UNKNOWN_LABEL: 1,
DEFAULT_RESERVED_LABEL[0]: 2,
DEFAULT_RESERVED_LABEL[1]: 3,
DEFAULT_RESERVED_LABEL[2]: 4}
self.label_dict = {}
# collect every word and label
for sent, label in data:
if len(sent) <= 1:
continue
if label not in self.label_dict:
index = len(self.label_dict)
self.label_dict[label] = index
for word in sent:
if word not in self.word_dict:
index = len(self.word_dict)
self.word_dict[word[0]] = index
def pickle_exist(self, pickle_name):
"""
Check whether a pickle file exists.
Params
pickle_name: the filename of target pickle file
Return
True if file exists else False
"""
if not os.path.exists(self.pickle_path):
os.makedirs(self.pickle_path)
file_name = os.path.join(self.pickle_path, pickle_name)
if os.path.exists(file_name):
return True
else:
return False
def word2id(self):
"""Save vocabulary of {word:id} mapping format."""
# nothing will be done if word2id.pkl exists
if self.pickle_exist("word2id.pkl"):
return
file_name = os.path.join(self.pickle_path, "word2id.pkl")
with open(file_name, "wb") as f:
_pickle.dump(self.word_dict, f)
def id2word(self):
"""Save vocabulary of {id:word} mapping format."""
# nothing will be done if id2word.pkl exists
if self.pickle_exist("id2word.pkl"):
file_name = os.path.join(self.pickle_path, "id2word.pkl")
with open(file_name, 'rb') as f:
id2word_dict = _pickle.load(f)
return len(id2word_dict)
id2word_dict = {self.word_dict[w]: w for w in self.word_dict}
file_name = os.path.join(self.pickle_path, "id2word.pkl")
with open(file_name, "wb") as f:
_pickle.dump(id2word_dict, f)
return len(id2word_dict)
def class2id(self):
"""Save mapping of {class:id}."""
# nothing will be done if class2id.pkl exists
if self.pickle_exist("class2id.pkl"):
return
file_name = os.path.join(self.pickle_path, "class2id.pkl")
with open(file_name, "wb") as f:
_pickle.dump(self.label_dict, f)
def id2class(self):
"""Save mapping of {id:class}."""
# nothing will be done if id2class.pkl exists
if self.pickle_exist("id2class.pkl"):
file_name = os.path.join(self.pickle_path, "id2class.pkl")
with open(file_name, "rb") as f:
id2class_dict = _pickle.load(f)
return len(id2class_dict)
id2class_dict = {self.label_dict[c]: c for c in self.label_dict}
file_name = os.path.join(self.pickle_path, "id2class.pkl")
with open(file_name, "wb") as f:
_pickle.dump(id2class_dict, f)
return len(id2class_dict)
def embedding(self):
"""Save embedding lookup table corresponding to vocabulary."""
# nothing will be done if embedding.pkl exists
if self.pickle_exist("embedding.pkl"):
return
# retrieve vocabulary from pre-trained embedding (not implemented)
def data_generate(self, data_src, save_name):
"""Convert dataset from text to digit."""
# nothing will be done if file exists
save_path = os.path.join(self.pickle_path, save_name)
if os.path.exists(save_path):
return
data = []
# for every sample
for sent, label in data_src:
if len(sent) <= 1:
continue
label_id = self.label_dict[label] # label id
sent_id = [] # sentence ids
for word in sent:
if word in self.word_dict:
sent_id.append(self.word_dict[word])
else:
sent_id.append(self.word_dict[DEFAULT_UNKNOWN_LABEL])
data.append([sent_id, label_id])
# save data
with open(save_path, "wb") as f:
_pickle.dump(data, f)
class LMPreprocess(BasePreprocess):
def __init__(self, data, pickle_path):
super(LMPreprocess, self).__init__(data, pickle_path)
def infer_preprocess(pickle_path, data):
"""
Preprocess over inference data.
Transform three-level list of strings into that of index.
[
[word_11, word_12, ...],
[word_21, word_22, ...],
...
]
"""
word2index = load_pickle(pickle_path, "word2id.pkl")
data_index = []
for example in data:
data_index.append([word2index.get(w, DEFAULT_UNKNOWN_LABEL) for w in example])
return data_index

View File

@ -3,7 +3,6 @@ import torch
class BaseModel(torch.nn.Module):
"""Base PyTorch model for all models.
To do: add some useful common features
"""
def __init__(self):

View File

@ -19,8 +19,6 @@ USE_GPU = True
class CharLM(BaseModel):
"""
Controller of the Character-level Neural Language Model
To do:
- where the data goes, call data savers.
"""
def __init__(self, lstm_batch_size, lstm_seq_len):
super(CharLM, self).__init__()

View File

@ -1,9 +1,7 @@
import torch
import torch.nn as nn
from torch.nn import functional as F
from fastNLP.models.base_model import BaseModel
from fastNLP.modules.decoder.CRF import ContionalRandomField
from fastNLP.modules import decoder, encoder, utils
class SeqLabeling(BaseModel):
@ -11,87 +9,71 @@ class SeqLabeling(BaseModel):
PyTorch Network for sequence labeling
"""
def __init__(self, hidden_dim,
rnn_num_layer,
num_classes,
vocab_size,
word_emb_dim=100,
init_emb=None,
rnn_mode="gru",
bi_direction=False,
dropout=0.5,
use_crf=True):
def __init__(self, args):
super(SeqLabeling, self).__init__()
vocab_size = args["vocab_size"]
word_emb_dim = args["word_emb_dim"]
hidden_dim = args["rnn_hidden_units"]
num_classes = args["num_classes"]
self.Emb = nn.Embedding(vocab_size, word_emb_dim)
if init_emb:
self.Emb.weight = nn.Parameter(init_emb)
self.num_classes = num_classes
self.input_dim = word_emb_dim
self.layers = rnn_num_layer
self.hidden_dim = hidden_dim
self.bi_direction = bi_direction
self.dropout = dropout
self.mode = rnn_mode
if self.mode == "lstm":
self.rnn = nn.LSTM(self.input_dim, self.hidden_dim, self.layers, batch_first=True,
bidirectional=self.bi_direction, dropout=self.dropout)
elif self.mode == "gru":
self.rnn = nn.GRU(self.input_dim, self.hidden_dim, self.layers, batch_first=True,
bidirectional=self.bi_direction, dropout=self.dropout)
elif self.mode == "rnn":
self.rnn = nn.RNN(self.input_dim, self.hidden_dim, self.layers, batch_first=True,
bidirectional=self.bi_direction, dropout=self.dropout)
else:
raise Exception
if bi_direction:
self.linear = nn.Linear(self.hidden_dim * 2, self.num_classes)
else:
self.linear = nn.Linear(self.hidden_dim, self.num_classes)
self.use_crf = use_crf
if self.use_crf:
self.crf = ContionalRandomField(num_classes)
self.Embedding = encoder.embedding.Embedding(vocab_size, word_emb_dim)
self.Rnn = encoder.lstm.Lstm(word_emb_dim, hidden_dim)
self.Linear = encoder.linear.Linear(hidden_dim, num_classes)
self.Crf = decoder.CRF.ConditionalRandomField(num_classes)
def forward(self, x):
"""
:param x: LongTensor, [batch_size, mex_len]
:return y: [batch_size, tag_size, tag_size]
:return y: [batch_size, mex_len, tag_size]
"""
x = self.Emb(x)
x = self.Embedding(x)
# [batch_size, max_len, word_emb_dim]
x, hidden = self.rnn(x)
x = self.Rnn(x)
# [batch_size, max_len, hidden_size * direction]
y = self.linear(x)
x = self.Linear(x)
# [batch_size, max_len, num_classes]
return y
return x
def loss(self, x, y, mask, batch_size, max_len):
def loss(self, x, y, seq_length):
"""
Negative log likelihood loss.
:param x: FloatTensor, [batch_size, tag_size, tag_size]
:param x: FloatTensor, [batch_size, max_len, tag_size]
:param y: LongTensor, [batch_size, max_len]
:param mask: ByteTensor, [batch_size, max_len]
:param batch_size: int
:param max_len: int
:param seq_length: list of int. [batch_size]
:return loss: a scalar Tensor
prediction: list of tuple of (decode path(list), best score)
"""
x = x.float()
y = y.long()
mask = mask.byte()
# print(x.shape, y.shape, mask.shape)
if self.use_crf:
total_loss = self.crf(x, y, mask)
tag_seq = self.crf.viterbi_decode(x, mask)
else:
# error
loss_function = nn.NLLLoss(ignore_index=0, size_average=False)
x = x.view(batch_size * max_len, -1)
score = F.log_softmax(x)
total_loss = loss_function(score, y.view(batch_size * max_len))
_, tag_seq = torch.max(score)
tag_seq = tag_seq.view(batch_size, max_len)
return torch.mean(total_loss), tag_seq
batch_size = x.size(0)
max_len = x.size(1)
mask = utils.seq_mask(seq_length, max_len)
mask = mask.byte().view(batch_size, max_len)
# TODO: remove
if torch.cuda.is_available():
mask = mask.cuda()
# mask = x.new(batch_size, max_len)
total_loss = self.Crf(x, y, mask)
return torch.mean(total_loss)
def prediction(self, x, seq_length):
"""
:param x: FloatTensor, [batch_size, max_len, tag_size]
:param seq_length: int
:return prediction: list of tuple of (decode path(list), best score)
"""
x = x.float()
max_len = x.size(1)
mask = utils.seq_mask(seq_length, max_len)
# hack: make sure mask has the same device as x
mask = mask.to(x).byte()
tag_seq = self.Crf.viterbi_decode(x, mask)
return tag_seq

View File

@ -0,0 +1,11 @@
from . import aggregation
from . import decoder
from . import encoder
from . import interaction
__version__ = '0.0.0'
__all__ = ['encoder',
'decoder',
'aggregation',
'interaction']

View File

@ -18,13 +18,13 @@ def seq_len_to_byte_mask(seq_lens):
return mask
class ContionalRandomField(nn.Module):
class ConditionalRandomField(nn.Module):
def __init__(self, tag_size, include_start_end_trans=True):
"""
:param tag_size: int, num of tags
:param include_start_end_trans: bool, whether to include start/end tag
"""
super(ContionalRandomField, self).__init__()
super(ConditionalRandomField, self).__init__()
self.include_start_end_trans = include_start_end_trans
self.tag_size = tag_size
@ -47,7 +47,6 @@ class ContionalRandomField(nn.Module):
"""
Computes the (batch_size,) denominator term for the log-likelihood, which is the
sum of the likelihoods across all possible state sequences.
:param feats:FloatTensor, batch_size x max_len x tag_size
:param masks:ByteTensor, batch_size x max_len
:return:FloatTensor, batch_size
@ -128,7 +127,7 @@ class ContionalRandomField(nn.Module):
return all_path_score - gold_path_score
def viterbi_decode(self, feats, masks):
def viterbi_decode(self, feats, masks, get_score=False):
"""
Given a feats matrix, return best decode path and best score.
:param feats:
@ -147,28 +146,28 @@ class ContionalRandomField(nn.Module):
for t in range(self.tag_size):
pre_scores = self.transition_m[:, t].view(
1, self.tag_size) + alpha
max_scroe, indice = pre_scores.max(dim=1)
new_alpha[:, t] = max_scroe + feats[:, i, t]
paths[:, i - 1, t] = indice
alpha = new_alpha * \
masks[:, i:i + 1].float() + alpha * \
(1 - masks[:, i:i + 1].float())
max_score, indices = pre_scores.max(dim=1)
new_alpha[:, t] = max_score + feats[:, i, t]
paths[:, i - 1, t] = indices
alpha = new_alpha * masks[:, i:i + 1].float() + alpha * (1 - masks[:, i:i + 1].float())
if self.include_start_end_trans:
alpha += self.end_scores.view(1, -1)
max_scroes, indice = alpha.max(dim=1)
indice = indice.cpu().numpy()
max_scores, indices = alpha.max(dim=1)
indices = indices.cpu().numpy()
final_paths = []
paths = paths.cpu().numpy().astype(int)
seq_lens = masks.cumsum(dim=1, dtype=torch.long)[:, -1]
for b in range(batch_size):
path = [indice[b]]
path = [indices[b]]
for i in range(seq_lens[b] - 2, -1, -1):
index = paths[b, i, path[-1]]
path.append(index)
final_paths.append(path[::-1])
return list(zip(final_paths, max_scroes.detach().cpu().numpy()))
if get_score:
return list(zip(final_paths, max_scores.detach().cpu().numpy()))
else:
return final_paths

View File

@ -0,0 +1,3 @@
from .CRF import ConditionalRandomField
__all__ = ["ConditionalRandomField"]

View File

@ -0,0 +1,7 @@
from .embedding import Embedding
from .linear import Linear
from .lstm import Lstm
__all__ = ["Lstm",
"Embedding",
"Linear"]

View File

@ -1,25 +1,24 @@
import torch.nn as nn
class Lookuptable(nn.Module):
class Embedding(nn.Module):
"""
A simple lookup table
Args:
nums : the size of the lookup table
dims : the size of each vector. Default: 50.
dims : the size of each vector
padding_idx : pads the tensor with zeros whenever it encounters this index
sparse : If True, gradient matrix will be a sparse tensor. In this case,
only optim.SGD(cuda and cpu) and optim.Adagrad(cpu) can be used
"""
def __init__(self, nums, dims=50, padding_idx=0, sparse=False):
super(Lookuptable, self).__init__()
def __init__(self, nums, dims, padding_idx=0, sparse=False, init_emb=None, dropout=0.0):
super(Embedding, self).__init__()
self.embed = nn.Embedding(nums, dims, padding_idx, sparse=sparse)
if init_emb:
self.embed.weight = nn.Parameter(init_emb)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.embed(x)
if __name__ == "__main__":
model = Lookuptable(10, 20)
x = self.embed(x)
return self.dropout(x)

View File

@ -0,0 +1,21 @@
import torch.nn as nn
class Linear(nn.Module):
"""
Linear module
Args:
input_size : input size
hidden_size : hidden size
num_layers : number of hidden layers
dropout : dropout rate
bidirectional : If True, becomes a bidirectional RNN
"""
def __init__(self, input_size, output_size, bias=True):
super(Linear, self).__init__()
self.linear = nn.Linear(input_size, output_size, bias)
def forward(self, x):
x = self.linear(x)
return x

View File

@ -13,7 +13,7 @@ class Lstm(nn.Module):
bidirectional : If True, becomes a bidirectional RNN. Default: False.
"""
def __init__(self, input_size, hidden_size, num_layers=1, dropout=0.5, bidirectional=False):
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0, bidirectional=False):
super(Lstm, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=True, batch_first=True,
dropout=dropout, bidirectional=bidirectional)

View File

@ -18,7 +18,7 @@ MLP_HIDDEN = 2000
CLASSES_NUM = 5
from fastNLP.models.base_model import BaseModel
from fastNLP.action.trainer import BaseTrainer
from fastNLP.core.trainer import BaseTrainer
class MyNet(BaseModel):

View File

@ -0,0 +1,29 @@
[train]
epochs = 2
batch_size = 32
pickle_path = "./save/"
validate = true
save_best_dev = true
model_saved_path = "./save/"
rnn_hidden_units = 100
rnn_layers = 2
rnn_bi_direction = true
word_emb_dim = 100
dropout = 0.5
use_crf = true
use_cuda = true
[test]
save_output = true
validate_in_training = true
save_dev_input = false
save_loss = true
batch_size = 64
pickle_path = "./save/"
rnn_hidden_units = 100
rnn_layers = 1
rnn_bi_direction = true
word_emb_dim = 100
dropout = 0.5
use_crf = true
use_cuda = true

View File

@ -0,0 +1,110 @@
import sys
sys.path.append("..")
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.core.trainer import POSTrainer
from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, BaseLoader
from fastNLP.loader.preprocess import POSPreprocess, load_pickle
from fastNLP.saver.model_saver import ModelSaver
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.core.tester import POSTester
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.core.inference import Inference
data_name = "pku_training.utf8"
cws_data_path = "/home/zyfeng/data/pku_training.utf8"
pickle_path = "./save/"
data_infer_path = "data_for_tests/people_infer.txt"
def infer():
# Load infer configuration, the same as test
test_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
# fetch dictionary size and number of labels from pickle files
word2index = load_pickle(pickle_path, "word2id.pkl")
test_args["vocab_size"] = len(word2index)
index2label = load_pickle(pickle_path, "id2class.pkl")
test_args["num_classes"] = len(index2label)
# Define the same model
model = SeqLabeling(test_args)
# Dump trained parameters into the model
ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl")
print("model loaded!")
# Data Loader
raw_data_loader = BaseLoader(data_name, data_infer_path)
infer_data = raw_data_loader.load_lines()
# Inference interface
infer = Inference(pickle_path)
results = infer.predict(model, infer_data)
print(results)
print("Inference finished!")
def train():
# Config Loader
train_args = ConfigSection()
test_args = ConfigSection()
ConfigLoader("good_name", "good_path").load_config("./cws.cfg", {"train": train_args, "test": test_args})
# Data Loader
loader = TokenizeDatasetLoader(data_name, cws_data_path)
train_data = loader.load_pku()
# Preprocessor
p = POSPreprocess(train_data, pickle_path)
train_args["vocab_size"] = p.vocab_size
train_args["num_classes"] = p.num_classes
# Trainer
trainer = POSTrainer(train_args)
# Model
model = SeqLabeling(train_args)
# Start training
trainer.train(model)
print("Training finished!")
# Saver
saver = ModelSaver("./save/saved_model.pkl")
saver.save_pytorch(model)
print("Model saved!")
def test():
# Config Loader
train_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args})
# Define the same model
model = SeqLabeling(train_args)
# Dump trained parameters into the model
ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl")
print("model loaded!")
# Load test configuration
test_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
# Tester
tester = POSTester(test_args)
# Start testing
tester.test(model)
# print test results
print(tester.show_matrices())
print("model tested!")
if __name__ == "__main__":
train()

View File

@ -54,8 +54,8 @@ test = 5
new_attr = 40
[POS]
epochs = 20
batch_size = 1
epochs = 1
batch_size = 32
pickle_path = "./data_for_tests/"
validate = true
save_best_dev = true
@ -66,6 +66,7 @@ rnn_bi_direction = true
word_emb_dim = 100
dropout = 0.5
use_crf = true
use_cuda = true
[POS_test]
save_output = true
@ -74,3 +75,19 @@ save_dev_input = false
save_loss = true
batch_size = 1
pickle_path = "./data_for_tests/"
rnn_hidden_units = 100
rnn_layers = 1
rnn_bi_direction = true
word_emb_dim = 100
dropout = 0.5
use_crf = true
use_cuda = true
[POS_infer]
pickle_path = "./data_for_tests/"
rnn_hidden_units = 100
rnn_layers = 1
rnn_bi_direction = true
word_emb_dim = 100
vocab_size = 52
num_classes = 22

View File

@ -0,0 +1,56 @@
迈向 充满 希望 的 新 世纪 —— 一九九八年 新年 讲话 附 图片
中共中央 总书记 、 国家 主席 江 泽民
一九九七年 十二月 三十一日
12月 31日 中共中央 总书记 、 国家 主席 江 泽民 发表 1998年 新年 讲话 《 迈向 充满 希望 的 新 世纪 》 。 新华社 记者 兰 红光 摄
同胞 们 、 朋友 们 、 女士 们 、 先生 们
在 1998年 来临 之际 我 十分 高兴 地 通过 中央 人民 广播 电台 、 中国 国际 广播 电台 和 中央 电视台 向 全国 各族 人民 向 香港 特别 行政区 同胞 、 澳门 和 台湾 同胞 、 海外 侨胞 向 世界 各国 的 朋友 们 致以 诚挚 的 问候 和 良好 的 祝愿
1997年 是 中国 发展 历史 上 非常 重要 的 很 不 平凡 的 一 年 。 中国 人民 决心 继承 邓 小平 同志 的 遗志 继续 把 建设 有 中国 特色 社会主义 事业 推向 前进 。 中国 政府 顺利 恢复 对 香港 行使 主权 并 按照 “ 一国两制 ” 、 “ 港人治港 ” 、 高度 自治 的 方针 保持 香港 的 繁荣 稳定 。 中国 共产党 成功 地 召开 了 第十五 次 全国 代表大会 高举 邓小平理论 伟大 旗帜 总结 百年 历史 展望 新 的 世纪 制定 了 中国 跨 世纪 发展 的 行动 纲领 。
在 这 一 年 中 中国 的 改革 开放 和 现代化 建设 继续 向前 迈进 。 国民经济 保持 了 “ 高 增长 、 低 通胀 ” 的 良好 发展 态势 。 农业 生产 再次 获得 好 的 收成 企业 改革 继续 深化 人民 生活 进一步 改善 。 对外 经济 技术 合作 与 交流 不断 扩大 。 民主 法制 建设 、 精神文明 建设 和 其他 各项 事业 都 有 新 的 进展 。 我们 十分 关注 最近 一个 时期 一些 国家 和 地区 发生 的 金融 风波 我们 相信 通过 这些 国家 和 地区 的 努力 以及 有关 的 国际 合作 情况 会 逐步 得到 缓解 。 总的来说 中国 改革 和 发展 的 全局 继续 保持 了 稳定 。
在 这 一 年 中 中国 的 外交 工作 取得 了 重要 成果 。 通过 高层 互访 中国 与 美国 、 俄罗斯 、 法国 、 日本 等 大国 确定 了 双方 关系 未来 发展 的 目标 和 指导 方针 。 中国 与 周边 国家 和 广大 发展中国家 的 友好 合作 进一步 加强 。 中国 积极 参与 亚太经合 组织 的 活动 参加 了 东盟 — 中 日 韩 和 中国 — 东盟 首脑 非正式 会晤 。 这些 外交 活动 符合 和平 与 发展 的 时代 主题 顺应 世界 走向 多极化 的 趋势 对于 促进 国际 社会 的 友好 合作 和 共同 发展 作出 了 积极 的 贡献 。
1998年 中国 人民 将 满怀信心 地 开创 新 的 业绩 。 尽管 我们 在 经济社会 发展 中 还 面临 不少 困难 但 我们 有 邓小平理论 的 指引 有 改革 开放 近 年 来 取得 的 伟大 成就 和 积累 的 丰富 经验 还有 其他 的 各种 有利 条件 我们 一定 能够 克服 这些 困难 继续 稳步前进 。 只要 我们 进一步 解放思想 实事求是 抓住 机遇 开拓进取 建设 有 中国 特色 社会主义 的 道路 就 会 越 走 越 宽广 。
实现 祖国 的 完全 统一 是 海内外 全体 中国 人 的 共同 心愿 。 通过 中 葡 双方 的 合作 和 努力 按照 “ 一国两制 ” 方针 和 澳门 《 基本法 》 1999年 12月 澳门 的 回归 一定 能够 顺利 实现 。
台湾 是 中国 领土 不可分割 的 一 部分 。 完成 祖国 统一 是 大势所趋 民心所向 。 任何 企图 制造 “ 两 个 中国 ” 、 “ 一中一台 ” 、 “ 台湾 独立 ” 的 图谋 都 注定 要 更 失败 。 希望 台湾 当局 以 民族 大义 为重 拿 出 诚意 采取 实际 的 行动 推动 两岸 经济 文化 交流 和 人员 往来 促进 两岸 直接 通邮 、 通航 、 通商 的 早日 实现 并 尽早 回应 我们 发出 的 在 一个 中国 的 原则 下 两岸 进行 谈判 的 郑重 呼吁 。
环顾 全球 日益 密切 的 世界 经济 联系 日新月异 的 科技 进步 正在 为 各国 经济 的 发展 提供 历史 机遇 。 但是 世界 还 不 安宁 。 南北 之间 的 贫富 差距 继续 扩大 局部 冲突 时有发生 不 公正 不 合理 的 旧 的 国际 政治经济 秩序 还 没有 根本 改变 发展中国家 在 激烈 的 国际 经济 竞争 中 仍 处于 弱势 地位 人类 的 生存 与 发展 还 面临 种种 威胁 和 挑战 。 和平 与 发展 的 前景 是 光明 的 世纪 将 是 充满 希望 的 世纪 。 但 前进 的 道路 不 会 也 不 可能 一帆风顺 关键 是 世界 各国 人民 要 进一步 团结 起来 共同 推动 早日 建立 公正 合理 的 国际 政治经济 新 秩序 。
中国 政府 将 继续 坚持 奉行 独立自主 的 和平 外交 政策 在 和平共处 五 项 原则 的 基础 上 努力 发展 同 世界 各国 的 友好 关系 。 中国 愿意 加强 同 联合国 和 其他 国际 组织 的 协调 促进 在 扩大 经贸 科技 交流 、 保护 环境 、 消除 贫困 、 打击 国际 犯罪 等 方面 的 国际 合作 。 中国 永远 是 维护 世界 和平 与 稳定 的 重要 力量 。 中国 人民 愿 与 世界 各国 人民 一道 为 开创 持久 和平 、 共同 发展 的 新 世纪 而 不懈努力
在 这 辞旧迎新 的 美好 时刻 我 祝 大家 新年 快乐 家庭 幸福
谢谢 新华社 北京 12月 31日 电
在 十五大 精神 指引 下 胜利 前进 —— 元旦 献辞
我们 即将 以 丰收 的 喜悦 送 走 牛年 以 昂扬 的 斗志 迎来 虎年 。 我们 伟大 祖国 在 新 的 一 年 将 是 充满 生机 、 充满 希望 的 一 年 。
刚刚 过去 的 一 年 大气磅礴 波澜壮阔 。 在 这 一 年 以 江 泽民 同志 为 核心 的 党中央 继承 邓 小平 同志 的 遗志 高举 邓小平理论 的 伟大 旗帜 领导 全党 和 全国 各族 人民 坚定不移 地 沿着 建设 有 中国 特色 社会主义 道路 阔步 前进 写 下 了 改革 开放 和 社会主义 现代化 建设 的 辉煌 篇章 。 顺利 地 恢复 对 香港 行使 主权 胜利 地 召开 党 的 第十五 次 全国 代表大会 ——— 两 件 大事 办 得 圆满 成功 。 国民经济 稳中求进 国家 经济 实力 进一步 增强 人民 生活 继续 改善 对外 经济 技术 交流 日益 扩大 。 在 国际 金融 危机 的 风浪 波及 许多 国家 的 情况 下 我国 保持 了 金融 形势 和 整个 经济 形势 的 稳定 发展 。 社会主义 精神文明 建设 和 民主 法制 建设 取得 新 的 成绩 各项 社会 事业 全面 进步 。 外交 工作 取得 可喜 的 突破 我国 的 国际 地位 和 国际 威望 进一步 提高 。 实践 使 亿万 人民 对 邓小平理论 更加 信仰 对 以 江 泽民 同志 为 核心 的 党中央 更加 信赖 对 伟大 祖国 的 光辉 前景 更加 充满 信心 。
1998年 是 全面 贯彻 落实 党 的 十五大 提 出 的 任务 的 第一 年 各 条 战线 改革 和 发展 的 任务 都 十分 繁重 有 许多 深 层次 的 矛盾 和 问题 有待 克服 和 解决 特别 是 国有 企业 改革 已经 进入 攻坚 阶段 。 我们 必须 进一步 深入 学习 和 掌握 党 的 十五大 精神 统揽全局 精心 部署 狠抓 落实 团结 一致 艰苦奋斗 开拓 前进 为 夺取 今年 改革 开放 和 社会主义 现代化 建设 的 新 胜利 而 奋斗 。
今年 是 党 的 十一 届 三中全会 召开 周年 是 我们 党 和 国家 实现 伟大 的 历史 转折 、 进入 改革 开放 历史 新 时期 的 周年 。 在 新 的 一 年 里 大力 发扬 十一 届 三中全会 以来 我们 党 所 恢复 的 优良 传统 和 在 新 的 历史 条件 下 形成 的 优良 作风 对于 完成 好 今年 的 各项 任务 具有 十分 重要 的 意义 。
我们 要 更 好 地 坚持 解放思想 、 实事求是 的 思想 路线 。 解放思想 、 实事求是 是 邓小平理论 的 精髓 。 实践 证明 只有 解放思想 、 实事求是 才 能 冲破 各种 不 切合 实际 的 或者 过时 的 观念 的 束缚 真正 做到 尊重 、 认识 和 掌握 客观 规律 勇于 突破 勇于 创新 不断 开创 社会主义 现代化 建设 的 新 局面 。 党 的 十五大 是 我们 党 解放思想 、 实事求是 的 新 的 里程碑 。 进一步 认真 学习 和 掌握 十五大 精神 解放思想 、 实事求是 我们 的 各项 事业 就 能 结 出 更加 丰硕 的 成果 。
我们 要 更 好 地 坚持 以 经济 建设 为 中心 。 各项 工作 必须 以 经济 建设 为 中心 是 邓小平理论 的 基本 观点 是 党 的 基本 路线 的 核心 内容 年 来 的 实践 证明 坚持 这个 中心 是 完全 正确 的 。 今后 我们 能否 把 建设 有 中国 特色 社会主义 伟大 事业 全面 推向 世纪 关键 仍然 要 看 能否 把 经济 工作 搞 上去 。 各级 领导 干部 要 切实 把 精力 集中 到 贯彻 落实 好 中央 关于 今年 经济 工作 的 总体 要求 和 各项 重要 任务 上 来 不断 提高 领导 经济 建设 的 能力 和 水平 。
我们 要 更 好 地 坚持 “ 两手抓 、 两手 都 要 硬 ” 的 方针 。 在 坚持 以 经济 建设 为 中心 的 同时 积极 推进 社会主义 精神文明 建设 和 民主 法制 建设 是 建设 富强 、 民主 、 文明 的 社会主义 现代化 国家 的 重要 内容 。 实践 证明 经济 建设 的 顺利 进行 离 不 开 精神文明 建设 和 民主 法制 建设 的 保证 。 党 的 十五大 依据 邓小平理论 和 党 的 基本 路线 提 出 的 党 在 社会主义 初级阶段 经济 、 政治 、 文化 的 基本 纲领 为 “ 两手抓 、 两手 都 要 硬 ” 提供 了 新 的 理论 根据 提 出 了 更 高 要求 现在 的 关键 是 认真 抓好 落实 。
我们 要 更 好 地 发扬 求真务实 、 密切 联系 群众 的 作风 。 这 是 把 党 的 方针 、 政策 落到实处 使 改革 和 建设 取得 胜利 的 重要 保证 。 在 当前 改革 进一步 深化 经济 不断 发展 同时 又 出现 一些 新 情况 、 新 问题 和 新 困难 的 形势 下 更 要 发扬 这样 的 好 作风 。 要 尊重 群众 的 意愿 重视 群众 的 首创 精神 关心 群众 的 生活 疾苦 。 江 泽民 同志 最近 强调 指出 要 大力 倡导 说实话 、 办 实事 、 鼓 实劲 、 讲 实效 的 作风 坚决 制止 追求 表面文章 搞 花架子 等 形式主义 坚决 杜绝 脱离 群众 、 脱离 实际 、 浮躁 虚夸 等 官僚主义 。 这 是 非常 重要 的 。 因此 各级 领导 干部 务必 牢记 全心全意 为 人民 服务 的 宗旨 在 勤政廉政 、 艰苦奋斗 方面 以身作则 当 好 表率 。
瞩目 中华 。 新 的 机遇 和 挑战 催 人 进取 新 的 目标 和 征途 催 人 奋发 。 英雄 的 中国 人民 在 以 江 泽民 同志 为 核心 的 党中央 坚强 领导 和 党 的 十五大 精神 指引 下 更 高 地 举起 邓小平理论 的 伟大 旗帜 团结 一致 扎实 工作 奋勇前进 一定 能够 创造 出 更加 辉煌 的 业绩
北京 举行 新年 音乐会
江 泽民 李 鹏 乔 石 朱 镕基 李 瑞环 刘 华清 尉 健行 李 岚清 与 万 名 首都 各界 群众 和 劳动模范 代表 一起 辞旧迎新 附 图片
党 和 国家 领导人 江 泽民 、 李 鹏 、 乔 石 、 朱 镕基 、 李 瑞环 、 刘 华清 、 尉 健行 、 李 岚清 等 与 万 名 首都 各界 群众 和 劳动模范 代表 一起 欣赏 了 北京 新年 音乐会 的 精彩 节目 。 这 是 江 泽民 等 在 演出 结束 后 同 演出 人员 合影 。
新华社 记者 樊 如钧 摄
本报 北京 12月 31日 讯 新华社 记者 陈 雁 、 本报 记者 何 加正 报道 在 度过 了 非凡 而 辉煌 的 1997年 迈向 充满 希望 的 1998年 之际 北京 新年 音乐会 今晚 在 人民 大会堂 举行 。 党 和 国家 领导人 江 泽民 、 李 鹏 、 乔 石 、 朱 镕基 、 李 瑞环 、 刘 华清 、 尉 健行 、 李 岚清 与 万 名 首都 各界 群众 和 劳动模范 代表 一起 在 激昂 奋进 的 音乐声 中 辞旧迎新 。
今晚 的 长安街 流光溢彩 火树银花 人民 大会堂 里 灯火辉煌 充满 欢乐 祥和 的 喜庆 气氛 。 在 这 场 由 中共 北京 市委 宣传部 、 市政府 办公厅 等 单位 主办 的 题 为 “ 世纪 携手 、 共 奏 华章 ” 的 新年 音乐会 上 中国 三 个 著名 交响乐团 ——— 中国 交响乐团 、 上海 交响乐团 、 北京 交响乐团 首 次 联袂 演出 。 著名 指挥家 陈 佐湟 、 陈 燮阳 、 谭 利华 分别 指挥 演奏 了 一 批 中外 名曲 京 沪 两地 多 位 音乐家 组成 的 大型 乐队 以 饱满 的 激情 和 精湛 的 技艺 为 观众 奉献 了 一 台 高 水准 的 交响音乐会 。
音乐会 在 雄壮 的 管弦乐 《 红旗 颂 》 中 拉开 帷幕 舒展 、 优美 的 乐曲声 使 人们 仿佛 看到 五星红旗 在 天安门 城楼 上 冉冉 升起 仿佛 听到 在 红旗 的 指引 下 中国 人民 向 现代化 新 征程 迈进 的 脚步声 。 钢琴 与 管弦乐队 作品 《 东方 之 珠 》 把 广大 听众 耳熟能详 的 歌曲 改编 为 器乐曲 以 其 优美 感人 的 旋律 抒发 了 洗雪 百年 耻辱 的 香港 明天 会 更 好 的 情感 。 专程 回国 参加 音乐会 的 著名 女高音 歌唱家 迪里拜尔 演唱 的 《 春 之 声 》 把 人们 带 到 了 万象更新 的 田野 和 山谷 享誉 国际 乐坛 的 男高音 歌唱家 莫 华伦 演唱 了 著名 歌剧 《 图兰朵 》 选段 “ 今夜 无 人 入睡 ” 把 人们 带入 迷人 的 艺术 境地 。 音乐会 上 还 演奏 了 小提琴 协奏曲 《 梁 山伯 与 祝 英台 》 、 柴可夫斯基 的 《 第四 交响曲 ——— 第四 乐章 》 、 交响诗 《 罗马 的 松树 》 等 中外 著名 交响曲 。
万 人 大会堂 今晚 座无虚席 观众 被 艺术家 们 精湛 的 表演 深深 打动 不断 报 以 经久不息 的 热烈 掌声 。 艺术家 们 频频 谢幕 指挥家 依次 指挥 演出 返 场 曲目 最后 音乐会 在 《 红色 娘子军 》 选曲 、 《 白毛女 》 选曲 、 《 北京 喜讯 到 边寨 》 等 乐曲声 中 达到 高潮 。
演出 结束 后 江 泽民 等 党 和 国家 领导人 走 上 舞台 亲切 会见 了 参加 演出 的 全体 人员 祝贺 演出 成功 并 与 他们 合影 留念 。
李 铁映 、 贾 庆林 、 曾 庆红 等 领导 同志 也 出席 了 今晚 音乐会 。
李 鹏 在 北京 考察 企业
向 广大 职工 祝贺 新年 对 节日 坚守 岗位 的 同志 们 表示 慰问
新华社 北京 十二月 三十一日 电 中央 人民 广播 电台 记者 刘 振英 、 新华社 记者 张 宿堂 今天 是 一九九七年 的 最后 一 天 。 辞旧迎新 之际 国务院 总理 李 鹏 今天 上午 来到 北京 石景山 发电 总厂 考察 向 广大 企业 职工 表示 节日 的 祝贺 向 将要 在 节日 期间 坚守 工作 岗位 的 同志 们 表示 慰问 。
上午 九时 二十分 李 鹏 总理 在 北京 市委 书记 、 市长 贾 庆林 的 陪同 下 来到 位于 北京 西郊 的 北京 石景山 发电 总厂 。 始建 于 一九一九年 的 北京 石景山 发电 总厂 是 华北 电力 集团公司 骨干 发电 企业 承担 着 向 首都 供电 、 供热 任务 装机 总 容量 一百一十六点六万 千瓦 。 总厂 年发电量 四十五亿 千瓦时 供热 能力 八百 百万大卡/小时 现 供热 面积 已 达 八百 多 万 平方米 。 早 在 担任 华北 电管局 领导 时 李 鹏 就 曾 多次 到 发电 总厂 检查 指导 工作 。
在 总厂 所 属 的 石景山 热电厂 李 鹏 首先 向 华北 电管局 、 电厂 负责人 详细 询问 了 目前 电厂 生产 、 职工 生活 和 华北 电网 向 首都 供电 、 供热 的 有关 情况 。 随后 他 又 实地 察看 了 发电机组 的 运行 情况 和 电厂 一号机 、 二号机 控制室 。 在 控制室 李 鹏 与 职工 们 一一 握手 向 大家 表示 慰问 。 他 说 在 一九九八年 即将 到来之际 有 机会 再次 回到 石景山 发电 总厂 感到 十分 高兴 。 李 鹏 亲切 地 说 『 今天 我 看到 了 许多 新 的 、 年轻 的 面孔 这 说明 在 老 同志 们 作出 贡献 退 下来 后 新 一代 的 年轻人 成长 起来 了 、 成熟 起来 了 我 感到 十分 欣慰 。 』
李 鹏 说 “ 作为 首都 的 电力 工作者 你们 为 首都 的 各项 重大 活动 的 顺利 进行 为 保障 人民 群众 的 工作 、 生活 和 学习 为 促进 首都 经济 的 发展 作出 了 自己 的 贡献 。 明天 就 是 元旦 你们 还有 许多 同志 要 坚守 岗位 我 向 你们 、 向 全体 电力 工作者 表示 感谢 。 现在 我们 的 首都 已经 结束 了 拉 闸 限 电 的 历史 希望 依靠 大家 使 拉 闸 限 电 的 历史 永远 不再 重演 。 同时 也 希望 你们 安全 生产 、 经济 调度 实现 经济 增长 方式 的 转变 。 ” 李 鹏 最后 向 电业 职工 向 全 北京市 的 人民 拜年 向 大家 致以 新春 的 问候 祝愿 电力 事业 取得 新 的 成绩 祝愿 北京市 在 改革 、 发展 和 稳定 的 各项 工作 中 取得 新 的 成就 。
参观 工厂 结束 后 李 鹏 又 来到 工厂 退休 职工 郭 树范 和 闫 戌麟 家 看望 慰问 向 他们 拜年 。 曾经 是 高级 工程师 的 郭 树范 退休 前 一直 在 发电厂 从事 土建工程 建设 退休 后 与 老伴 一起 抚养 着 身体 欠佳 的 孙子 。 李 鹏 对 他们 倾心 照顾 下 一 代 表示 肯定 。 他 说 “ 人 老 了 照顾 照顾 后代 也 是 一 件 可以 带来 快乐 的 事 当然 对 孩子 们 不 能 溺爱 要 让 他们 健康 成长 。 ” 在 老工人 闫 戌麟 家 当 李 鹏 了解 到 老闫 退休 前 一直 都 是 厂里 的 先进 工作者 、 曾经 被 评为 北京市 “ 五好 职工 ” 退休 后 仍然 为 改善 职工 的 住房 而 奔波 时 十分 高兴 对 他 为 工厂 建设 作出 的 贡献 表示 感谢 。 在 郭 家 和 闫 家 李 鹏 都 具体 地 了解 了 他们 退休 后 的 生活 保障 问题 并 与 一些 老 职工 一起 回忆 起 了 当年 建设 电厂 的 情景 。 李 鹏 说 “ 当年 搞 建设 条件 比 现在 差 多 了 大家 也 很 少 计较 什么 只是 一心 想 着 把 电厂 建 好 。 现在 条件 好 了 但 艰苦奋斗 、 无私奉献 的 精神 可 不 能 丢 。 ” 李 鹏 最后 祝 他们 新春 快乐 身体 健康 家庭 幸福 。
陪同 考察 企业 并 看望 慰问 职工 的 国务院 有关 部门 和 北京市 负责人 还有 史 大桢 、 高 严 、 石 秀诗 、 阳 安江 等 。
挂 起 红灯 迎 新年 图片
元旦 来临 安徽省 合肥市 长江路 悬挂 起 盏 大 红灯笼 为 节日 营造 出 “ 千 盏 灯笼 凌空 舞 十 里 长街 别样 红 ” 的 欢乐 祥和 气氛 。 新华社 记者 戴 浩 摄
传真 照片
全总 致 全国 各族 职工 慰问信
勉励 广大 职工 发挥 工人阶级 主力军 作用 为 企业 改革 发展 建功立业
本报 北京 1月 1日 讯 中华 全国 总工会 今日 发出 《 致 全国 各族 职工 慰问信 》 向 全国 各族 职工 祝贺 新年 。
慰问信 说 实现 党 的 十五大 提 出 的 宏伟 目标 必须 依靠 工人阶级 和 全体 人民 的 长期 奋斗 。 工人阶级 是 我们 国家 的 领导 阶级 是 先进 生产力 和 生产关系 的 代表 是 两 个 文明 建设 的 主力军 是 维护 社会 安定团结 的 中坚 力量 。 党 的 十五大 再次 强调 要 坚持 全心全意 依靠 工人阶级 的 方针 具有 重大 的 意义 。 广大 职工 要 以 邓小平理论 和 党 的 基本 路线 为 指导 坚持 党 的 基本 纲领 和 各项 方针 政策 积极 投身 于 改革 和 建设 事业 。 要 坚持 站 在 改革 的 前列 转变 思想 观念 增强 市场 意识 、 竞争 意识 和 效益 意识 以 实际 行动 促进 改革 的 不断 深化 。 要 发扬 工人阶级 的 首创 精神 不断 为 企业 转机建制 、 调整 结构 、 加强 管理 、 提高 效益 献计献策 。 要 大力 开展 劳动 竞赛 、 合理化 建议 、 技术 革新 、 技术 协作 和 发明 创造 等 活动 努力 提高 产品 质量 和 经济效益 推动 企业 加快 技术 进步 实现 增长 方式 的 根本 转变 再 创 国有 企业 的 辉煌 。 要 正确 对待 企业 改革 和 发展 中 的 困难 和 问题 树立 起 战胜 困难 的 勇气 和 信心 锲而不舍 迎难而上 为 企业 的 改革 和 发展 建功立业 。
慰问信 指出 广大 职工 要 以 主人翁 的 姿态 积极 行使 当家作主 的 权利 。 要 不断 提高 自身 素质 发扬 爱国 奉献 、 爱厂如家 、 爱岗敬业 的 精神 学习 掌握 先进 科学 文化 知识 成为 本职工作 的 行家里手 迎接 新 世纪 面临 的 挑战 。
慰问信 最后 说 让 我们 在 邓小平理论 和 党 的 基本 路线 指导 下 更加 紧密 地 团结 在 以 江 泽民 同志 为 核心 的 党中央 周围 统揽全局 精心 部署 狠抓 落实 团结 一致 艰苦奋斗 开拓 前进 在 两 个 文明 建设 中 充分 发挥 工人阶级 主力军 作用 为 实现 跨 世纪 宏伟 目标 作出 新 的 更 大 的 贡献 。
忠诚 的 共产主义 战士 久经考验 的 无产阶级 革命家 刘 澜涛 同志 逝世
附 图片

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,2 @@
迈向充满希望的新世纪——一九九八年新年讲话
附图片1张

View File

@ -1,99 +0,0 @@
import sys
sys.path.append("..")
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.action.trainer import POSTrainer
from fastNLP.loader.dataset_loader import POSDatasetLoader
from fastNLP.loader.preprocess import POSPreprocess
from fastNLP.saver.model_saver import ModelSaver
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.action.tester import POSTester
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.action.inference import Inference
data_name = "people.txt"
data_path = "data_for_tests/people.txt"
pickle_path = "data_for_tests"
def test_infer():
# Define the same model
model = SeqLabeling(hidden_dim=train_args["rnn_hidden_units"], rnn_num_layer=train_args["rnn_layers"],
num_classes=train_args["num_classes"], vocab_size=train_args["vocab_size"],
word_emb_dim=train_args["word_emb_dim"], bi_direction=train_args["rnn_bi_direction"],
rnn_mode="gru", dropout=train_args["dropout"], use_crf=train_args["use_crf"])
# Dump trained parameters into the model
ModelLoader("arbitrary_name", "./saved_model.pkl").load_pytorch(model)
print("model loaded!")
# Data Loader
pos_loader = POSDatasetLoader(data_name, data_path)
infer_data = pos_loader.load_lines()
# Preprocessor
POSPreprocess(infer_data, pickle_path)
# Inference interface
infer = Inference()
results = infer.predict(model, infer_data)
if __name__ == "__main__":
# Config Loader
train_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args})
# Data Loader
pos_loader = POSDatasetLoader(data_name, data_path)
train_data = pos_loader.load_lines()
# Preprocessor
p = POSPreprocess(train_data, pickle_path)
train_args["vocab_size"] = p.vocab_size
train_args["num_classes"] = p.num_classes
# Trainer
trainer = POSTrainer(train_args)
# Model
model = SeqLabeling(hidden_dim=train_args["rnn_hidden_units"], rnn_num_layer=train_args["rnn_layers"],
num_classes=train_args["num_classes"], vocab_size=train_args["vocab_size"],
word_emb_dim=train_args["word_emb_dim"], bi_direction=train_args["rnn_bi_direction"],
rnn_mode="gru", dropout=train_args["dropout"], use_crf=train_args["use_crf"])
# Start training
trainer.train(model)
print("Training finished!")
# Saver
saver = ModelSaver("./saved_model.pkl")
saver.save_pytorch(model)
print("Model saved!")
del model, trainer, pos_loader
# Define the same model
model = SeqLabeling(hidden_dim=train_args["rnn_hidden_units"], rnn_num_layer=train_args["rnn_layers"],
num_classes=train_args["num_classes"], vocab_size=train_args["vocab_size"],
word_emb_dim=train_args["word_emb_dim"], bi_direction=train_args["rnn_bi_direction"],
rnn_mode="gru", dropout=train_args["dropout"], use_crf=train_args["use_crf"])
# Dump trained parameters into the model
ModelLoader("arbitrary_name", "./saved_model.pkl").load_pytorch(model)
print("model loaded!")
# Load test configuration
test_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
# Tester
tester = POSTester(test_args)
# Start testing
tester.test(model)
# print test results
print(tester.show_matrices())
print("model tested!")

View File

@ -1,31 +1,7 @@
from loader.base_loader import ToyLoader0
from model.char_language_model import CharLM
from fastNLP.action import Tester
from fastNLP.action.trainer import Trainer
def test_charlm():
train_config = Trainer.TrainConfig(epochs=1, validate=True, save_when_better=True,
log_per_step=10, log_validation=True, batch_size=160)
trainer = Trainer(train_config)
model = CharLM(lstm_batch_size=16, lstm_seq_len=10)
train_data = ToyLoader0("load_train", "./data_for_tests/charlm.txt").load()
valid_data = ToyLoader0("load_valid", "./data_for_tests/charlm.txt").load()
trainer.train(model, train_data, valid_data)
trainer.save_model(model)
test_config = Tester.TestConfig(save_output=True, validate_in_training=True,
save_dev_input=True, save_loss=True, batch_size=160)
tester = Tester(test_config)
test_data = ToyLoader0("load_test", "./data_for_tests/charlm.txt").load()
tester.test(model, test_data)
pass
if __name__ == "__main__":

116
test/test_cws.py Normal file
View File

@ -0,0 +1,116 @@
import sys
sys.path.append("..")
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.core.trainer import POSTrainer
from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, BaseLoader
from fastNLP.loader.preprocess import POSPreprocess, load_pickle
from fastNLP.saver.model_saver import ModelSaver
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.core.tester import POSTester
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.core.inference import Inference
data_name = "pku_training.utf8"
# cws_data_path = "/home/zyfeng/Desktop/data/pku_training.utf8"
cws_data_path = "data_for_tests/cws_pku_utf_8"
pickle_path = "data_for_tests"
data_infer_path = "data_for_tests/people_infer.txt"
def infer():
# Load infer configuration, the same as test
test_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
# fetch dictionary size and number of labels from pickle files
word2index = load_pickle(pickle_path, "word2id.pkl")
test_args["vocab_size"] = len(word2index)
index2label = load_pickle(pickle_path, "id2class.pkl")
test_args["num_classes"] = len(index2label)
# Define the same model
model = SeqLabeling(test_args)
# Dump trained parameters into the model
ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl")
print("model loaded!")
# Data Loader
raw_data_loader = BaseLoader(data_name, data_infer_path)
infer_data = raw_data_loader.load_lines()
"""
Transform strings into list of list of strings.
[
[word_11, word_12, ...],
[word_21, word_22, ...],
...
]
In this case, each line in "people_infer.txt" is already a sentence. So load_lines() just splits them.
"""
# Inference interface
infer = Inference(pickle_path)
results = infer.predict(model, infer_data)
print(results)
print("Inference finished!")
def train_test():
# Config Loader
train_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args})
# Data Loader
loader = TokenizeDatasetLoader(data_name, cws_data_path)
train_data = loader.load_pku()
# Preprocessor
p = POSPreprocess(train_data, pickle_path)
train_args["vocab_size"] = p.vocab_size
train_args["num_classes"] = p.num_classes
# Trainer
trainer = POSTrainer(train_args)
# Model
model = SeqLabeling(train_args)
# Start training
trainer.train(model)
print("Training finished!")
# Saver
saver = ModelSaver("./data_for_tests/saved_model.pkl")
saver.save_pytorch(model)
print("Model saved!")
del model, trainer, loader
# Define the same model
model = SeqLabeling(train_args)
# Dump trained parameters into the model
ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl")
print("model loaded!")
# Load test configuration
test_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
# Tester
tester = POSTester(test_args)
# Start testing
tester.test(model)
# print test results
print(tester.show_matrices())
print("model tested!")
if __name__ == "__main__":
train_test()
infer()

14
test/test_fastNLP.py Normal file
View File

@ -0,0 +1,14 @@
from fastNLP.fastnlp import FastNLP
def foo():
nlp = FastNLP("./data_for_tests/")
nlp.load("zh_pos_tag_model")
text = "这是最好的基于深度学习的中文分词系统。"
result = nlp.run(text)
print(result)
print("FastNLP finished!")
if __name__ == "__main__":
foo()

View File

@ -1,28 +0,0 @@
import aggregation
import decoder
import encoder
class Input(object):
def __init__(self):
pass
class Trainer(object):
def __init__(self, input, target, truth):
pass
def train(self):
pass
def test_keras_like():
data_train, label_train = dataLoader("./data_path")
x = Input()
x = encoder.LSTM(input=x)
x = aggregation.max_pool(input=x)
y = decoder.CRF(input=x)
trainer = Trainer(input=data_train, target=y, truth=label_train)
trainer.train()

115
test/test_seq_labeling.py Normal file
View File

@ -0,0 +1,115 @@
import sys
sys.path.append("..")
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
from fastNLP.core.trainer import POSTrainer
from fastNLP.loader.dataset_loader import POSDatasetLoader, BaseLoader
from fastNLP.loader.preprocess import POSPreprocess, load_pickle
from fastNLP.saver.model_saver import ModelSaver
from fastNLP.loader.model_loader import ModelLoader
from fastNLP.core.tester import POSTester
from fastNLP.models.sequence_modeling import SeqLabeling
from fastNLP.core.inference import Inference
data_name = "people.txt"
data_path = "data_for_tests/people.txt"
pickle_path = "data_for_tests"
data_infer_path = "data_for_tests/people_infer.txt"
def infer():
# Load infer configuration, the same as test
test_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
# fetch dictionary size and number of labels from pickle files
word2index = load_pickle(pickle_path, "word2id.pkl")
test_args["vocab_size"] = len(word2index)
index2label = load_pickle(pickle_path, "id2class.pkl")
test_args["num_classes"] = len(index2label)
# Define the same model
model = SeqLabeling(test_args)
# Dump trained parameters into the model
ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl")
print("model loaded!")
# Data Loader
raw_data_loader = BaseLoader(data_name, data_infer_path)
infer_data = raw_data_loader.load_lines()
"""
Transform strings into list of list of strings.
[
[word_11, word_12, ...],
[word_21, word_22, ...],
...
]
In this case, each line in "people_infer.txt" is already a sentence. So load_lines() just splits them.
"""
# Inference interface
infer = Inference(pickle_path)
results = infer.predict(model, infer_data)
print(results)
print("Inference finished!")
def train_test():
# Config Loader
train_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args})
# Data Loader
pos_loader = POSDatasetLoader(data_name, data_path)
train_data = pos_loader.load_lines()
# Preprocessor
p = POSPreprocess(train_data, pickle_path)
train_args["vocab_size"] = p.vocab_size
train_args["num_classes"] = p.num_classes
# Trainer
trainer = POSTrainer(train_args)
# Model
model = SeqLabeling(train_args)
# Start training
trainer.train(model)
print("Training finished!")
# Saver
saver = ModelSaver("./data_for_tests/saved_model.pkl")
saver.save_pytorch(model)
print("Model saved!")
del model, trainer, pos_loader
# Define the same model
model = SeqLabeling(train_args)
# Dump trained parameters into the model
ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl")
print("model loaded!")
# Load test configuration
test_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
# Tester
tester = POSTester(test_args)
# Start testing
tester.test(model)
# print test results
print(tester.show_matrices())
print("model tested!")
if __name__ == "__main__":
train_test()
# infer()

37
test/test_tester.py Normal file
View File

@ -0,0 +1,37 @@
from fastNLP.core.tester import POSTester
from fastNLP.loader.config_loader import ConfigSection, ConfigLoader
from fastNLP.loader.dataset_loader import TokenizeDatasetLoader
from fastNLP.loader.preprocess import POSPreprocess
from fastNLP.models.sequence_modeling import SeqLabeling
data_name = "pku_training.utf8"
cws_data_path = "/home/zyfeng/Desktop/data/pku_training.utf8"
pickle_path = "data_for_tests"
def foo():
loader = TokenizeDatasetLoader(data_name, "./data_for_tests/cws_pku_utf_8")
train_data = loader.load_pku()
train_args = ConfigSection()
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args})
# Preprocessor
p = POSPreprocess(train_data, pickle_path)
train_args["vocab_size"] = p.vocab_size
train_args["num_classes"] = p.num_classes
model = SeqLabeling(train_args)
valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True,
"save_loss": True, "batch_size": 8, "pickle_path": "./data_for_tests/",
"use_cuda": True}
validator = POSTester(valid_args)
print("start validation.")
validator.test(model)
print(validator.show_matrices())
if __name__ == "__main__":
foo()

View File

@ -1,12 +1,5 @@
def test_trainer():
Config = namedtuple("config", ["epochs", "validate", "save_when_better"])
train_config = Config(epochs=5, validate=True, save_when_better=True)
trainer = Trainer(train_config)
net = ToyModel()
data = np.random.rand(20, 6)
dev_data = np.random.rand(20, 6)
trainer.train(net, data, dev_data)
pass
if __name__ == "__main__":