merge dev branch with master

This commit is contained in:
FengZiYjun 2019-01-03 19:05:23 +08:00
commit d43d738536
22 changed files with 1178 additions and 195 deletions

24
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,24 @@
Description简要描述这次PR的内容
Main reason: 做出这次修改的原因
Checklist 检查下面各项是否完成
Please feel free to remove inapplicable items for your PR.
- [ ] The PR title starts with [$CATEGORY] (例如[bugfix]修复bug[new]添加新功能,[test]修改测试,[rm]删除旧代码)
- [ ] Changes are complete (i.e. I finished coding on this PR) 修改完成才提PR
- [ ] All changes have test coverage 修改的部分顺利通过测试。对于fastnlp/fastnlp/*的修改,测试代码**必须**提供在fastnlp/test/*。
- [ ] Code is well-documented 注释写好API文档会从注释中抽取
- [ ] To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change 修改导致例子或tutorial有变化请找核心开发人员
Changes: 逐项描述修改的内容
- 添加了新模型用于句子分类的CNN来自Yoon Kim的Convolutional Neural Networks for Sentence Classification
- 修改dataset.py中过时的和不合规则的注释 #286
- 添加对var-LSTM的测试代码
Mention: 找人review你的PR
@修改过这个文件的人
@核心开发人员

View File

@ -30,6 +30,7 @@ A deep learning NLP model is the composition of three types of modules:
<td> decode the representation into the output </td>
<td> MLP, CRF </td>
</tr>
</table>
For example:
@ -37,9 +38,11 @@ For example:
## Requirements
- Python>=3.6
- numpy>=1.14.2
- torch>=0.4.0
- tensorboardX
- tqdm>=4.28.1
## Resources

View File

@ -1,5 +1,8 @@
numpy>=1.14.2
http://download.pytorch.org/whl/cpu/torch-0.4.1-cp35-cp35m-linux_x86_64.whl
http://download.pytorch.org/whl/cpu/torch-0.4.1-cp36-cp36m-linux_x86_64.whl
torchvision>=0.1.8
sphinx-rtd-theme==0.4.1
tensorboardX>=1.4
tensorboardX>=1.4
tqdm>=4.28.1
ipython>=6.4.0
ipython-genutils>=0.2.0

View File

@ -0,0 +1,36 @@
fastNLP.api
============
fastNLP.api.api
----------------
.. automodule:: fastNLP.api.api
:members:
fastNLP.api.converter
----------------------
.. automodule:: fastNLP.api.converter
:members:
fastNLP.api.model\_zoo
-----------------------
.. automodule:: fastNLP.api.model_zoo
:members:
fastNLP.api.pipeline
---------------------
.. automodule:: fastNLP.api.pipeline
:members:
fastNLP.api.processor
----------------------
.. automodule:: fastNLP.api.processor
:members:
.. automodule:: fastNLP.api
:members:

View File

@ -13,8 +13,8 @@ fastNLP.core.dataset
.. automodule:: fastNLP.core.dataset
:members:
fastNLP.core.fieldarray
-------------------
fastNLP.core.fieldarray
------------------------
.. automodule:: fastNLP.core.fieldarray
:members:
@ -25,8 +25,8 @@ fastNLP.core.instance
.. automodule:: fastNLP.core.instance
:members:
fastNLP.core.losses
------------------
fastNLP.core.losses
--------------------
.. automodule:: fastNLP.core.losses
:members:
@ -67,6 +67,12 @@ fastNLP.core.trainer
.. automodule:: fastNLP.core.trainer
:members:
fastNLP.core.utils
-------------------
.. automodule:: fastNLP.core.utils
:members:
fastNLP.core.vocabulary
------------------------

View File

@ -0,0 +1,42 @@
fastNLP.io
===========
fastNLP.io.base\_loader
------------------------
.. automodule:: fastNLP.io.base_loader
:members:
fastNLP.io.config\_io
----------------------
.. automodule:: fastNLP.io.config_io
:members:
fastNLP.io.dataset\_loader
---------------------------
.. automodule:: fastNLP.io.dataset_loader
:members:
fastNLP.io.embed\_loader
-------------------------
.. automodule:: fastNLP.io.embed_loader
:members:
fastNLP.io.logger
------------------
.. automodule:: fastNLP.io.logger
:members:
fastNLP.io.model\_io
---------------------
.. automodule:: fastNLP.io.model_io
:members:
.. automodule:: fastNLP.io
:members:

View File

@ -1,36 +0,0 @@
fastNLP.loader
===============
fastNLP.loader.base\_loader
----------------------------
.. automodule:: fastNLP.loader.base_loader
:members:
fastNLP.loader.config\_loader
------------------------------
.. automodule:: fastNLP.loader.config_loader
:members:
fastNLP.loader.dataset\_loader
-------------------------------
.. automodule:: fastNLP.loader.dataset_loader
:members:
fastNLP.loader.embed\_loader
-----------------------------
.. automodule:: fastNLP.loader.embed_loader
:members:
fastNLP.loader.model\_loader
-----------------------------
.. automodule:: fastNLP.loader.model_loader
:members:
.. automodule:: fastNLP.loader
:members:

View File

@ -7,6 +7,12 @@ fastNLP.models.base\_model
.. automodule:: fastNLP.models.base_model
:members:
fastNLP.models.biaffine\_parser
--------------------------------
.. automodule:: fastNLP.models.biaffine_parser
:members:
fastNLP.models.char\_language\_model
-------------------------------------
@ -25,6 +31,12 @@ fastNLP.models.sequence\_modeling
.. automodule:: fastNLP.models.sequence_modeling
:members:
fastNLP.models.snli
--------------------
.. automodule:: fastNLP.models.snli
:members:
.. automodule:: fastNLP.models
:members:

View File

@ -43,6 +43,12 @@ fastNLP.modules.encoder.masked\_rnn
.. automodule:: fastNLP.modules.encoder.masked_rnn
:members:
fastNLP.modules.encoder.transformer
------------------------------------
.. automodule:: fastNLP.modules.encoder.transformer
:members:
fastNLP.modules.encoder.variational\_rnn
-----------------------------------------

View File

@ -1,5 +0,0 @@
fastNLP.modules.interactor
===========================
.. automodule:: fastNLP.modules.interactor
:members:

View File

@ -6,7 +6,12 @@ fastNLP.modules
fastNLP.modules.aggregator
fastNLP.modules.decoder
fastNLP.modules.encoder
fastNLP.modules.interactor
fastNLP.modules.dropout
------------------------
.. automodule:: fastNLP.modules.dropout
:members:
fastNLP.modules.other\_modules
-------------------------------

View File

@ -3,18 +3,11 @@ fastNLP
.. toctree::
fastNLP.api
fastNLP.core
fastNLP.loader
fastNLP.io
fastNLP.models
fastNLP.modules
fastNLP.saver
fastNLP.fastnlp
----------------
.. automodule:: fastNLP.fastnlp
:members:
.. automodule:: fastNLP
:members:

View File

@ -1,24 +0,0 @@
fastNLP.saver
==============
fastNLP.saver.config\_saver
----------------------------
.. automodule:: fastNLP.saver.config_saver
:members:
fastNLP.saver.logger
---------------------
.. automodule:: fastNLP.saver.logger
:members:
fastNLP.saver.model\_saver
---------------------------
.. automodule:: fastNLP.saver.model_saver
:members:
.. automodule:: fastNLP.saver
:members:

View File

@ -1,33 +1,35 @@
fastNLP documentation
=====================
fastNLP目前仍在孵化中。
A Modularized and Extensible Toolkit for Natural Language Processing. Currently still in incubation.
Introduction
------------
fastNLP是一个基于PyTorch的模块化自然语言处理系统用于快速开发NLP工具。
它将基于深度学习的NLP模型划分为不同的模块。
这些模块分为4类encoder编码interaction交互, aggregration聚合 and decoder解码
而每个类别包含不同的实现模块。
FastNLP is a modular Natural Language Processing system based on
PyTorch, built for fast development of NLP models.
大多数当前的NLP模型可以构建在这些模块上这极大地简化了开发NLP模型的过程。
fastNLP的架构如图所示
A deep learning NLP model is the composition of three types of modules:
.. image:: figures/procedures.PNG
+-----------------------+-----------------------+-----------------------+
| module type | functionality | example |
+=======================+=======================+=======================+
| encoder | encode the input into | embedding, RNN, CNN, |
| | some abstract | transformer |
| | representation | |
+-----------------------+-----------------------+-----------------------+
| aggregator | aggregate and reduce | self-attention, |
| | information | max-pooling |
+-----------------------+-----------------------+-----------------------+
| decoder | decode the | MLP, CRF |
| | representation into | |
| | the output | |
+-----------------------+-----------------------+-----------------------+
在constructing model部分以序列标注和文本分类为例进行说明
For example:
.. image:: figures/text_classification.png
.. image:: figures/sequence_labeling.PNG
:width: 400
* encoder module将输入编码为一些抽象表示输入的是单词序列输出向量序列。
* interaction module使表示中的信息相互交互输入的是向量序列输出的也是向量序列。
* aggregation module聚合和减少信息输入向量序列输出一个向量。
* decoder module将表示解码为输出输出一个label文本分类或者输出label序列序列标注
其中interaction module和aggregation module在模型中不一定存在例如上面的序列标注模型。

View File

@ -0,0 +1,375 @@
fastNLP上手教程
===============
fastNLP提供方便的数据预处理训练和测试模型的功能
DataSet & Instance
------------------
fastNLP用DataSet和Instance保存和处理数据。每个DataSet表示一个数据集每个Instance表示一个数据样本。一个DataSet存有多个Instance每个Instance可以自定义存哪些内容。
有一些read\_\*方法可以轻松从文件读取数据存成DataSet。
.. code:: ipython3
from fastNLP import DataSet
from fastNLP import Instance
# 从csv读取数据到DataSet
win_path = "C:\\Users\zyfeng\Desktop\FudanNLP\\fastNLP\\test\\data_for_tests\\tutorial_sample_dataset.csv"
dataset = DataSet.read_csv(win_path, headers=('raw_sentence', 'label'), sep='\t')
print(dataset[0])
.. parsed-literal::
{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story .,
'label': 1}
.. code:: ipython3
# DataSet.append(Instance)加入新数据
dataset.append(Instance(raw_sentence='fake data', label='0'))
dataset[-1]
.. parsed-literal::
{'raw_sentence': fake data,
'label': 0}
.. code:: ipython3
# DataSet.apply(func, new_field_name)对数据预处理
# 将所有数字转为小写
dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence')
# label转int
dataset.apply(lambda x: int(x['label']), new_field_name='label_seq', is_target=True)
# 使用空格分割句子
dataset.drop(lambda x: len(x['raw_sentence'].split()) == 0)
def split_sent(ins):
return ins['raw_sentence'].split()
dataset.apply(split_sent, new_field_name='words', is_input=True)
.. code:: ipython3
# DataSet.drop(func)筛除数据
# 删除低于某个长度的词语
dataset.drop(lambda x: len(x['words']) <= 3)
.. code:: ipython3
# 分出测试集、训练集
test_data, train_data = dataset.split(0.3)
print("Train size: ", len(test_data))
print("Test size: ", len(train_data))
.. parsed-literal::
Train size: 54
Test size:
Vocabulary
----------
fastNLP中的Vocabulary轻松构建词表将词转成数字
.. code:: ipython3
from fastNLP import Vocabulary
# 构建词表, Vocabulary.add(word)
vocab = Vocabulary(min_freq=2)
train_data.apply(lambda x: [vocab.add(word) for word in x['words']])
vocab.build_vocab()
# index句子, Vocabulary.to_index(word)
train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True)
test_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True)
print(test_data[0])
.. parsed-literal::
{'raw_sentence': the plot is romantic comedy boilerplate from start to finish .,
'label': 2,
'label_seq': 2,
'words': ['the', 'plot', 'is', 'romantic', 'comedy', 'boilerplate', 'from', 'start', 'to', 'finish', '.'],
'word_seq': [2, 13, 9, 24, 25, 26, 15, 27, 11, 28, 3]}
.. code:: ipython3
# 假设你们需要做强化学习或者gan之类的项目也许你们可以使用这里的dataset
from fastNLP.core.batch import Batch
from fastNLP.core.sampler import RandomSampler
batch_iterator = Batch(dataset=train_data, batch_size=2, sampler=RandomSampler())
for batch_x, batch_y in batch_iterator:
print("batch_x has: ", batch_x)
print("batch_y has: ", batch_y)
break
.. parsed-literal::
batch_x has: {'words': array([list(['this', 'kind', 'of', 'hands-on', 'storytelling', 'is', 'ultimately', 'what', 'makes', 'shanghai', 'ghetto', 'move', 'beyond', 'a', 'good', ',', 'dry', ',', 'reliable', 'textbook', 'and', 'what', 'allows', 'it', 'to', 'rank', 'with', 'its', 'worthy', 'predecessors', '.']),
list(['the', 'entire', 'movie', 'is', 'filled', 'with', 'deja', 'vu', 'moments', '.'])],
dtype=object), 'word_seq': tensor([[ 19, 184, 6, 1, 481, 9, 206, 50, 91, 1210, 1609, 1330,
495, 5, 63, 4, 1269, 4, 1, 1184, 7, 50, 1050, 10,
8, 1611, 16, 21, 1039, 1, 2],
[ 3, 711, 22, 9, 1282, 16, 2482, 2483, 200, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]])}
batch_y has: {'label_seq': tensor([3, 2])}
Model
-----
.. code:: ipython3
# 定义一个简单的Pytorch模型
from fastNLP.models import CNNText
model = CNNText(embed_num=len(vocab), embed_dim=50, num_classes=5, padding=2, dropout=0.1)
model
.. parsed-literal::
CNNText(
(embed): Embedding(
(embed): Embedding(77, 50, padding_idx=0)
(dropout): Dropout(p=0.0)
)
(conv_pool): ConvMaxpool(
(convs): ModuleList(
(0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))
(1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))
(2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))
)
)
(dropout): Dropout(p=0.1)
(fc): Linear(
(linear): Linear(in_features=12, out_features=5, bias=True)
)
)
Trainer & Tester
----------------
使用fastNLP的Trainer训练模型
.. code:: ipython3
from fastNLP import Trainer
from copy import deepcopy
from fastNLP import CrossEntropyLoss
from fastNLP import AccuracyMetric
.. code:: ipython3
# 进行overfitting测试
copy_model = deepcopy(model)
overfit_trainer = Trainer(model=copy_model,
train_data=test_data,
dev_data=test_data,
loss=CrossEntropyLoss(pred="output", target="label_seq"),
metrics=AccuracyMetric(),
n_epochs=10,
save_path=None)
overfit_trainer.train()
.. parsed-literal::
training epochs started 2018-12-07 14:07:20
.. parsed-literal::
HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…
.. parsed-literal::
Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.037037
Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.296296
Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.333333
Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.555556
Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.611111
Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.481481
Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.62963
Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.685185
Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.722222
Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.777778
.. code:: ipython3
# 实例化Trainer传入模型和数据进行训练
trainer = Trainer(model=model,
train_data=train_data,
dev_data=test_data,
loss=CrossEntropyLoss(pred="output", target="label_seq"),
metrics=AccuracyMetric(),
n_epochs=5)
trainer.train()
print('Train finished!')
.. parsed-literal::
training epochs started 2018-12-07 14:08:10
.. parsed-literal::
HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=5), HTML(value='')), layout=Layout(display='i…
.. parsed-literal::
Epoch 1/5. Step:1/5. AccuracyMetric: acc=0.037037
Epoch 2/5. Step:2/5. AccuracyMetric: acc=0.037037
Epoch 3/5. Step:3/5. AccuracyMetric: acc=0.037037
Epoch 4/5. Step:4/5. AccuracyMetric: acc=0.185185
Epoch 5/5. Step:5/5. AccuracyMetric: acc=0.240741
Train finished!
.. code:: ipython3
from fastNLP import Tester
tester = Tester(data=test_data, model=model, metrics=AccuracyMetric())
acc = tester.test()
.. parsed-literal::
[tester]
AccuracyMetric: acc=0.240741
In summary
----------
fastNLP Trainer的伪代码逻辑
---------------------------
1. 准备DataSet假设DataSet中共有如下的fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
['raw_sentence', 'word_seq1', 'word_seq2', 'raw_label','label']
通过
DataSet.set_input('word_seq1', word_seq2', flag=True)将'word_seq1', 'word_seq2'设置为input
通过
DataSet.set_target('label', flag=True)将'label'设置为target
2. 初始化模型
~~~~~~~~~~~~~
::
class Model(nn.Module):
def __init__(self):
xxx
def forward(self, word_seq1, word_seq2):
# (1) 这里使用的形参名必须和DataSet中的input field的名称对应。因为我们是通过形参名, 进行赋值的
# (2) input field的数量可以多于这里的形参数量。但是不能少于。
xxxx
# 输出必须是一个dict
3. Trainer的训练过程
~~~~~~~~~~~~~~~~~~~~
::
(1) 从DataSet中按照batch_size取出一个batch调用Model.forward
(2) 将 Model.forward的结果 与 标记为target的field 传入Losser当中。
由于每个人写的Model.forward的output的dict可能key并不一样比如有人是{'pred':xxx}, {'output': xxx};
另外每个人将target可能也会设置为不同的名称, 比如有人是label, 有人设置为target
为了解决以上的问题我们的loss提供映射机制
比如CrossEntropyLosser的需要的输入是(prediction, target)。但是forward的output是{'output': xxx}; 'label'是target
那么初始化losser的时候写为CrossEntropyLosser(prediction='output', target='label')即可
(3) 对于Metric是同理的
Metric计算也是从 forward的结果中取值 与 设置target的field中取值。 也是可以通过映射找到对应的值
一些问题.
---------
1. DataSet中为什么需要设置input和target
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
只有被设置为input或者target的数据才会在train的过程中被取出来
(1.1) 我们只会在设置为input的field中寻找传递给Model.forward的参数。
(1.2) 我们在传递值给losser或者metric的时候会使用来自:
(a)Model.forward的output
(b)被设置为target的field
2. 我们是通过forwad中的形参名将DataSet中的field赋值给对应的参数
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
(1.1) 构建模型过程中,
例如:
DataSet中xseq_lens是input那么forward就应该是
def forward(self, x, seq_lens):
pass
我们是通过形参名称进行匹配的field的
1. 加载数据到DataSet
~~~~~~~~~~~~~~~~~~~~
2. 使用apply操作对DataSet进行预处理
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
(2.1) 处理过程中将某些field设置为input某些field设置为target
3. 构建模型
~~~~~~~~~~~
::
(3.1) 构建模型过程中需要注意forward函数的形参名需要和DataSet中设置为input的field名称是一致的。
例如:
DataSet中xseq_lens是input那么forward就应该是
def forward(self, x, seq_lens):
pass
我们是通过形参名称进行匹配的field的
(3.2) 模型的forward的output需要是dict类型的。
建议将输出设置为{"pred": xx}.

View File

@ -0,0 +1,111 @@
FastNLP 1分钟上手教程
=====================
step 1
------
读取数据集
.. code:: ipython3
from fastNLP import DataSet
# linux_path = "../test/data_for_tests/tutorial_sample_dataset.csv"
win_path = "C:\\Users\zyfeng\Desktop\FudanNLP\\fastNLP\\test\\data_for_tests\\tutorial_sample_dataset.csv"
ds = DataSet.read_csv(win_path, headers=('raw_sentence', 'label'), sep='\t')
step 2
------
数据预处理 1. 类型转换 2. 切分验证集 3. 构建词典
.. code:: ipython3
# 将所有数字转为小写
ds.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence')
# label转int
ds.apply(lambda x: int(x['label']), new_field_name='label_seq', is_target=True)
def split_sent(ins):
return ins['raw_sentence'].split()
ds.apply(split_sent, new_field_name='words', is_input=True)
.. code:: ipython3
# 分割训练集/验证集
train_data, dev_data = ds.split(0.3)
print("Train size: ", len(train_data))
print("Test size: ", len(dev_data))
.. parsed-literal::
Train size: 54
Test size: 23
.. code:: ipython3
from fastNLP import Vocabulary
vocab = Vocabulary(min_freq=2)
train_data.apply(lambda x: [vocab.add(word) for word in x['words']])
# index句子, Vocabulary.to_index(word)
train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True)
dev_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True)
step 3
------
定义模型
.. code:: ipython3
from fastNLP.models import CNNText
model = CNNText(embed_num=len(vocab), embed_dim=50, num_classes=5, padding=2, dropout=0.1)
step 4
------
开始训练
.. code:: ipython3
from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric
trainer = Trainer(model=model,
train_data=train_data,
dev_data=dev_data,
loss=CrossEntropyLoss(),
metrics=AccuracyMetric()
)
trainer.train()
print('Train finished!')
.. parsed-literal::
training epochs started 2018-12-07 14:03:41
.. parsed-literal::
HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=6), HTML(value='')), layout=Layout(display='i…
.. parsed-literal::
Epoch 1/3. Step:2/6. AccuracyMetric: acc=0.26087
Epoch 2/3. Step:4/6. AccuracyMetric: acc=0.347826
Epoch 3/3. Step:6/6. AccuracyMetric: acc=0.608696
Train finished!
本教程结束。更多操作请参考进阶教程。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -6,26 +6,11 @@ Installation
:local:
Cloning From GitHub
~~~~~~~~~~~~~~~~~~~
If you just want to use fastNLP, use:
Run the following commands to install fastNLP package:
.. code:: shell
git clone https://github.com/fastnlp/fastNLP
cd fastNLP
pip install fastNLP
PyTorch Installation
~~~~~~~~~~~~~~~~~~~~
Visit the [PyTorch official website] for installation instructions based
on your system. In general, you could use:
.. code:: shell
# using conda
conda install pytorch torchvision -c pytorch
# or using pip
pip3 install torch torchvision

View File

@ -1,84 +1,9 @@
==========
Quickstart
==========
Example
-------
.. toctree::
:maxdepth: 1
Basic Usage
~~~~~~~~~~~
../tutorials/fastnlp_1_minute_tutorial
../tutorials/fastnlp_10tmin_tutorial
A typical fastNLP routine is composed of four phases: loading dataset,
pre-processing data, constructing model and training model.
.. code:: python
from fastNLP.models.base_model import BaseModel
from fastNLP.modules import encoder
from fastNLP.modules import aggregation
from fastNLP.modules import decoder
from fastNLP.loader.dataset_loader import ClassDataSetLoader
from fastNLP.loader.preprocess import ClassPreprocess
from fastNLP.core.trainer import ClassificationTrainer
from fastNLP.core.inference import ClassificationInfer
class ClassificationModel(BaseModel):
"""
Simple text classification model based on CNN.
"""
def __init__(self, num_classes, vocab_size):
super(ClassificationModel, self).__init__()
self.emb = encoder.Embedding(nums=vocab_size, dims=300)
self.enc = encoder.Conv(
in_channels=300, out_channels=100, kernel_size=3)
self.agg = aggregation.MaxPool()
self.dec = decoder.MLP([100, num_classes])
def forward(self, x):
x = self.emb(x) # [N,L] -> [N,L,C]
x = self.enc(x) # [N,L,C_in] -> [N,L,C_out]
x = self.agg(x) # [N,L,C] -> [N,C]
x = self.dec(x) # [N,C] -> [N, N_class]
return x
data_dir = 'data' # directory to save data and model
train_path = 'test/data_for_tests/text_classify.txt' # training set file
# load dataset
ds_loader = ClassDataSetLoader("train", train_path)
data = ds_loader.load()
# pre-process dataset
pre = ClassPreprocess(data_dir)
vocab_size, n_classes = pre.process(data, "data_train.pkl")
# construct model
model_args = {
'num_classes': n_classes,
'vocab_size': vocab_size
}
model = ClassificationModel(num_classes=n_classes, vocab_size=vocab_size)
# train model
train_args = {
"epochs": 20,
"batch_size": 50,
"pickle_path": data_dir,
"validate": False,
"save_best_dev": False,
"model_saved_path": None,
"use_cuda": True,
"learn_rate": 1e-3,
"momentum": 0.9}
trainer = ClassificationTrainer(train_args)
trainer.train(model)
# predict using model
seqs = [x[0] for x in data]
infer = ClassificationInfer(data_dir)
labels_pred = infer.predict(model, seqs)

View File

@ -417,6 +417,55 @@ class PeopleDailyCorpusLoader(DataSetLoader):
data_set.set_input("seq_len")
return data_set
class Conll2003Loader(DataSetLoader):
"""Self-defined loader of conll2003 dataset
More information about the given dataset cound be found on
https://sites.google.com/site/ermasoftware/getting-started/ne-tagging-conll2003-data
"""
def __init__(self):
super(Conll2003Loader, self).__init__()
def load(self, dataset_path):
with open(dataset_path, "r", encoding="utf-8") as f:
lines = f.readlines()
##Parse the dataset line by line
parsed_data = []
sentence = []
tokens = []
for line in lines:
if '-DOCSTART- -X- -X- O' in line or line == '\n':
if sentence != []:
parsed_data.append((sentence, tokens))
sentence = []
tokens = []
continue
temp = line.strip().split(" ")
sentence.append(temp[0])
tokens.append(temp[1:4])
return self.convert(parsed_data)
def convert(self, parsed_data):
dataset = DataSet()
for sample in parsed_data:
label0_list = list(map(
lambda labels: labels[0], sample[1]))
label1_list = list(map(
lambda labels: labels[1], sample[1]))
label2_list = list(map(
lambda labels: labels[2], sample[1]))
dataset.append(Instance(token_list=sample[0],
label0_list=label0_list,
label1_list=label1_list,
label2_list=label2_list))
return dataset
class SNLIDataSetLoader(DataSetLoader):
"""A data set loader for SNLI data set.

6
readthedocs.yml Normal file
View File

@ -0,0 +1,6 @@
build:
image: latest
python:
version: 3.6
setup_py_install: true

View File

@ -0,0 +1,442 @@
-DOCSTART- -X- -X- O
SOCCER NN B-NP O
- : O O
JAPAN NNP B-NP B-LOC
GET VB B-VP O
LUCKY NNP B-NP O
WIN NNP I-NP O
, , O O
CHINA NNP B-NP B-PER
IN IN B-PP O
SURPRISE DT B-NP O
DEFEAT NN I-NP O
. . O O
Nadim NNP B-NP B-PER
Ladki NNP I-NP I-PER
AL-AIN NNP B-NP B-LOC
, , O O
United NNP B-NP B-LOC
Arab NNP I-NP I-LOC
Emirates NNPS I-NP I-LOC
1996-12-06 CD I-NP O
Japan NNP B-NP B-LOC
began VBD B-VP O
the DT B-NP O
defence NN I-NP O
of IN B-PP O
their PRP$ B-NP O
Asian JJ I-NP B-MISC
Cup NNP I-NP I-MISC
title NN I-NP O
with IN B-PP O
a DT B-NP O
lucky JJ I-NP O
2-1 CD I-NP O
win VBP B-VP O
against IN B-PP O
Syria NNP B-NP B-LOC
in IN B-PP O
a DT B-NP O
Group NNP I-NP O
C NNP I-NP O
championship NN I-NP O
match NN I-NP O
on IN B-PP O
Friday NNP B-NP O
. . O O
But CC O O
China NNP B-NP B-LOC
saw VBD B-VP O
their PRP$ B-NP O
luck NN I-NP O
desert VB B-VP O
them PRP B-NP O
in IN B-PP O
the DT B-NP O
second NN I-NP O
match NN I-NP O
of IN B-PP O
the DT B-NP O
group NN I-NP O
, , O O
crashing VBG B-VP O
to TO B-PP O
a DT B-NP O
surprise NN I-NP O
2-0 CD I-NP O
defeat NN I-NP O
to TO B-PP O
newcomers NNS B-NP O
Uzbekistan NNP I-NP B-LOC
. . O O
China NNP B-NP B-LOC
controlled VBD B-VP O
most JJS B-NP O
of IN B-PP O
the DT B-NP O
match NN I-NP O
and CC O O
saw VBD B-VP O
several JJ B-NP O
chances NNS I-NP O
missed VBD B-VP O
until IN B-SBAR O
the DT B-NP O
78th JJ I-NP O
minute NN I-NP O
when WRB B-ADVP O
Uzbek NNP B-NP B-MISC
striker NN I-NP O
Igor JJ B-NP B-PER
Shkvyrin NNP I-NP I-PER
took VBD B-VP O
advantage NN B-NP O
of IN B-PP O
a DT B-NP O
misdirected JJ I-NP O
defensive JJ I-NP O
header NN I-NP O
to TO B-VP O
lob VB I-VP O
the DT B-NP O
ball NN I-NP O
over IN B-PP O
the DT B-NP O
advancing VBG I-NP O
Chinese JJ I-NP B-MISC
keeper NN I-NP O
and CC O O
into IN B-PP O
an DT B-NP O
empty JJ I-NP O
net NN I-NP O
. . O O
Oleg NNP B-NP B-PER
Shatskiku NNP I-NP I-PER
made VBD B-VP O
sure JJ B-ADJP O
of IN B-PP O
the DT B-NP O
win VBP B-VP O
in IN B-PP O
injury NN B-NP O
time NN I-NP O
, , O O
hitting VBG B-VP O
an DT B-NP O
unstoppable JJ I-NP O
left VBD B-VP O
foot NN B-NP O
shot NN I-NP O
from IN B-PP O
just RB B-NP O
outside IN B-PP O
the DT B-NP O
area NN I-NP O
. . O O
The DT B-NP O
former JJ I-NP O
Soviet JJ I-NP B-MISC
republic NN I-NP O
was VBD B-VP O
playing VBG I-VP O
in IN B-PP O
an DT B-NP O
Asian NNP I-NP B-MISC
Cup NNP I-NP I-MISC
finals NNS I-NP O
tie NN I-NP O
for IN B-PP O
the DT B-NP O
first JJ I-NP O
time NN I-NP O
. . O O
Despite IN B-PP O
winning VBG B-VP O
the DT B-NP O
Asian JJ I-NP B-MISC
Games NNPS I-NP I-MISC
title NN I-NP O
two CD B-NP O
years NNS I-NP O
ago RB B-ADVP O
, , O O
Uzbekistan NNP B-NP B-LOC
are VBP B-VP O
in IN B-PP O
the DT B-NP O
finals NNS I-NP O
as IN B-SBAR O
outsiders NNS B-NP O
. . O O
Two CD B-NP O
goals NNS I-NP O
from IN B-PP O
defensive JJ B-NP O
errors NNS I-NP O
in IN B-PP O
the DT B-NP O
last JJ I-NP O
six CD I-NP O
minutes NNS I-NP O
allowed VBD B-VP O
Japan NNP B-NP B-LOC
to TO B-VP O
come VB I-VP O
from IN B-PP O
behind NN B-NP O
and CC O O
collect VB B-VP O
all DT B-NP O
three CD I-NP O
points NNS I-NP O
from IN B-PP O
their PRP$ B-NP O
opening NN I-NP O
meeting NN I-NP O
against IN B-PP O
Syria NNP B-NP B-LOC
. . O O
Takuya NNP B-NP B-PER
Takagi NNP I-NP I-PER
scored VBD B-VP O
the DT B-NP O
winner NN I-NP O
in IN B-PP O
the DT B-NP O
88th JJ I-NP O
minute NN I-NP O
, , O O
rising VBG B-VP O
to TO I-VP O
head VB I-VP O
a DT B-NP O
Hiroshige NNP I-NP B-PER
Yanagimoto NNP I-NP I-PER
cross VB B-VP O
towards IN B-PP O
the DT B-NP O
Syrian JJ I-NP B-MISC
goal NN I-NP O
which WDT B-NP O
goalkeeper VBD B-VP O
Salem NNP B-NP B-PER
Bitar NNP I-NP I-PER
appeared VBD B-VP O
to TO I-VP O
have VB I-VP O
covered VBN I-VP O
but CC O O
then RB B-VP O
allowed VBN I-VP O
to TO I-VP O
slip VB I-VP O
into IN B-PP O
the DT B-NP O
net NN I-NP O
. . O O
It PRP B-NP O
was VBD B-VP O
the DT B-NP O
second JJ I-NP O
costly JJ I-NP O
blunder NN I-NP O
by IN B-PP O
Syria NNP B-NP B-LOC
in IN B-PP O
four CD B-NP O
minutes NNS I-NP O
. . O O
Defender NNP B-NP O
Hassan NNP I-NP B-PER
Abbas NNP I-NP I-PER
rose VBD B-VP O
to TO I-VP O
intercept VB I-VP O
a DT B-NP O
long JJ I-NP O
ball NN I-NP O
into IN B-PP O
the DT B-NP O
area NN I-NP O
in IN B-PP O
the DT B-NP O
84th JJ I-NP O
minute NN I-NP O
but CC O O
only RB B-ADVP O
managed VBD B-VP O
to TO I-VP O
divert VB I-VP O
it PRP B-NP O
into IN B-PP O
the DT B-NP O
top JJ I-NP O
corner NN I-NP O
of IN B-PP O
Bitar NN B-NP B-PER
's POS B-NP O
goal NN I-NP O
. . O O
Nader NNP B-NP B-PER
Jokhadar NNP I-NP I-PER
had VBD B-VP O
given VBN I-VP O
Syria NNP B-NP B-LOC
the DT B-NP O
lead NN I-NP O
with IN B-PP O
a DT B-NP O
well-struck NN I-NP O
header NN I-NP O
in IN B-PP O
the DT B-NP O
seventh JJ I-NP O
minute NN I-NP O
. . O O
Japan NNP B-NP B-LOC
then RB B-ADVP O
laid VBD B-VP O
siege NN B-NP O
to TO B-PP O
the DT B-NP O
Syrian JJ I-NP B-MISC
penalty NN I-NP O
area NN I-NP O
for IN B-PP O
most JJS B-NP O
of IN B-PP O
the DT B-NP O
game NN I-NP O
but CC O O
rarely RB B-VP O
breached VBD I-VP O
the DT B-NP O
Syrian JJ I-NP B-MISC
defence NN I-NP O
. . O O
Bitar NN B-NP B-PER
pulled VBD B-VP O
off RP B-PRT O
fine JJ B-NP O
saves VBZ B-VP O
whenever WRB B-ADVP O
they PRP B-NP O
did VBD B-VP O
. . O O
Japan NNP B-NP B-LOC
coach NN I-NP O
Shu NNP I-NP B-PER
Kamo NNP I-NP I-PER
said VBD B-VP O
: : O O
' '' O O
' POS B-NP O
The DT I-NP O
Syrian JJ I-NP B-MISC
own JJ I-NP O
goal NN I-NP O
proved VBD B-VP O
lucky JJ B-ADJP O
for IN B-PP O
us PRP B-NP O
. . O O
The DT B-NP O
Syrians NNPS I-NP B-MISC
scored VBD B-VP O
early JJ B-NP O
and CC O O
then RB B-VP O
played VBN I-VP O
defensively RB B-ADVP O
and CC O O
adopted VBD B-VP O
long RB I-VP O
balls VBZ I-VP O
which WDT B-NP O
made VBD B-VP O
it PRP B-NP O
hard JJ B-ADJP O
for IN B-PP O
us PRP B-NP O
. . O O
' '' O O
' '' O O
Japan NNP B-NP B-LOC
, , O O
co-hosts VBZ B-VP O
of IN B-PP O
the DT B-NP O
World NNP I-NP B-MISC
Cup NNP I-NP I-MISC
in IN B-PP O
2002 CD B-NP O
and CC O O
ranked VBD B-VP O
20th JJ B-NP O
in IN B-PP O
the DT B-NP O
world NN I-NP O
by IN B-PP O
FIFA NNP B-NP B-ORG
, , O O
are VBP B-VP O
favourites JJ B-ADJP O
to TO B-VP O
regain VB I-VP O
their PRP$ B-NP O
title NN I-NP O
here RB B-ADVP O
. . O O
Hosts NNPS B-NP O
UAE NNP I-NP B-LOC
play NN I-NP O
Kuwait NNP I-NP B-LOC
and CC O O
South NNP B-NP B-LOC
Korea NNP I-NP I-LOC
take VBP B-VP O
on IN B-PP O
Indonesia NNP B-NP B-LOC
on IN B-PP O
Saturday NNP B-NP O
in IN B-PP O
Group NNP B-NP O
A NNP I-NP O
matches VBZ B-VP O
. . O O
All DT B-NP O
four CD I-NP O
teams NNS I-NP O
are VBP B-VP O
level NN B-NP O
with IN B-PP O
one CD B-NP O
point NN I-NP O
each DT B-NP O
from IN B-PP O
one CD B-NP O
game NN I-NP O
. . O O

View File

@ -0,0 +1,23 @@
import os
import unittest
from fastNLP.io.dataset_loader import Conll2003Loader
class TestDatasetLoader(unittest.TestCase):
def test_case_1(self):
'''
Test the the loader of Conll2003 dataset
'''
dataset_path = "test/data_for_tests/conll_2003_example.txt"
loader = Conll2003Loader()
dataset_2003 = loader.load(dataset_path)
for item in dataset_2003:
len0 = len(item["label0_list"])
len1 = len(item["label1_list"])
len2 = len(item["label2_list"])
lentoken = len(item["token_list"])
self.assertNotEqual(len0, 0)
self.assertEqual(len0, len1)
self.assertEqual(len1, len2)