mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-02 20:27:35 +08:00
commit
d6326de8d2
16
.gitignore
vendored
Normal file
16
.gitignore
vendored
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
.gitignore
|
||||||
|
|
||||||
|
.DS_Store
|
||||||
|
.ipynb_checkpoints
|
||||||
|
*.pyc
|
||||||
|
__pycache__
|
||||||
|
*.swp
|
||||||
|
.vscode/
|
||||||
|
.idea/**
|
||||||
|
|
||||||
|
caches
|
||||||
|
|
||||||
|
# fitlog
|
||||||
|
.fitlog
|
||||||
|
logs/
|
||||||
|
.fitconfig
|
@ -8,7 +8,7 @@ install:
|
|||||||
- pip install pytest-cov
|
- pip install pytest-cov
|
||||||
# command to run tests
|
# command to run tests
|
||||||
script:
|
script:
|
||||||
- pytest --cov=./
|
- pytest --cov=./ test/
|
||||||
|
|
||||||
after_success:
|
after_success:
|
||||||
- bash <(curl -s https://codecov.io/bash)
|
- bash <(curl -s https://codecov.io/bash)
|
||||||
|
77
README.md
77
README.md
@ -6,48 +6,69 @@
|
|||||||
![Hex.pm](https://img.shields.io/hexpm/l/plug.svg)
|
![Hex.pm](https://img.shields.io/hexpm/l/plug.svg)
|
||||||
[![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest)
|
[![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest)
|
||||||
|
|
||||||
fastNLP 是一款轻量级的 NLP 处理套件。你既可以使用它快速地完成一个命名实体识别(NER)、中文分词或文本分类任务; 也可以使用他构建许多复杂的网络模型,进行科研。它具有如下的特性:
|
fastNLP 是一款轻量级的 NLP 处理套件。你既可以使用它快速地完成一个序列标注([NER](reproduction/seqence_labelling/ner)、POS-Tagging等)、中文分词、[文本分类](reproduction/text_classification)、[Matching](reproduction/matching)、[指代消解](reproduction/coreference_resolution)、[摘要](reproduction/Summarization)等任务; 也可以使用它构建许多复杂的网络模型,进行科研。它具有如下的特性:
|
||||||
|
|
||||||
- 统一的Tabular式数据容器,让数据预处理过程简洁明了。内置多种数据集的DataSet Loader,省去预处理代码。
|
- 统一的Tabular式数据容器,让数据预处理过程简洁明了。内置多种数据集的DataSet Loader,省去预处理代码;
|
||||||
- 各种方便的NLP工具,例如预处理embedding加载; 中间数据cache等;
|
- 多种训练、测试组件,例如训练器Trainer;测试器Tester;以及各种评测metrics等等;
|
||||||
- 详尽的中文文档以供查阅;
|
- 各种方便的NLP工具,例如预处理embedding加载(包括ELMo和BERT); 中间数据cache等;
|
||||||
|
- 详尽的中文[文档](https://fastnlp.readthedocs.io/)、[教程](https://fastnlp.readthedocs.io/zh/latest/user/tutorials.html)以供查阅;
|
||||||
- 提供诸多高级模块,例如Variational LSTM, Transformer, CRF等;
|
- 提供诸多高级模块,例如Variational LSTM, Transformer, CRF等;
|
||||||
- 封装CNNText,Biaffine等模型可供直接使用;
|
- 在序列标注、中文分词、文本分类、Matching、指代消解、摘要等任务上封装了各种模型可供直接使用,详细内容见 [reproduction](reproduction) 部分;
|
||||||
- 便捷且具有扩展性的训练器; 提供多种内置callback函数,方便实验记录、异常捕获等。
|
- 便捷且具有扩展性的训练器; 提供多种内置callback函数,方便实验记录、异常捕获等。
|
||||||
|
|
||||||
|
|
||||||
## 安装指南
|
## 安装指南
|
||||||
|
|
||||||
fastNLP 依赖如下包:
|
fastNLP 依赖以下包:
|
||||||
|
|
||||||
+ numpy
|
+ numpy>=1.14.2
|
||||||
+ torch>=0.4.0
|
+ torch>=1.0.0
|
||||||
+ tqdm
|
+ tqdm>=4.28.1
|
||||||
+ nltk
|
+ nltk>=3.4.1
|
||||||
|
+ requests
|
||||||
|
+ spacy
|
||||||
|
|
||||||
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 PyTorch 官网 。
|
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 [PyTorch 官网](https://pytorch.org/) 。
|
||||||
在依赖包安装完成的情况,您可以在命令行执行如下指令完成安装
|
在依赖包安装完成后,您可以在命令行执行如下指令完成安装
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
pip install fastNLP
|
pip install fastNLP
|
||||||
|
python -m spacy download en
|
||||||
```
|
```
|
||||||
|
|
||||||
|
目前使用pip安装fastNLP的版本是0.4.1,有较多功能仍未更新,最新内容以master分支为准。
|
||||||
|
fastNLP0.5.0版本将在近期推出,请密切关注。
|
||||||
|
|
||||||
## 参考资源
|
|
||||||
|
|
||||||
- [文档](https://fastnlp.readthedocs.io/zh/latest/)
|
## fastNLP教程
|
||||||
- [源码](https://github.com/fastnlp/fastNLP)
|
|
||||||
|
- [0. 快速入门](https://fastnlp.readthedocs.io/zh/latest/user/quickstart.html)
|
||||||
|
- [1. 使用DataSet预处理文本](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_1_data_preprocess.html)
|
||||||
|
- [2. 使用DataSetLoader加载数据集](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_2_load_dataset.html)
|
||||||
|
- [3. 使用Embedding模块将文本转成向量](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_3_embedding.html)
|
||||||
|
- [4. 动手实现一个文本分类器I-使用Trainer和Tester快速训练和测试](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_4_loss_optimizer.html)
|
||||||
|
- [5. 动手实现一个文本分类器II-使用DataSetIter实现自定义训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_5_datasetiter.html)
|
||||||
|
- [6. 快速实现序列标注模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_6_seq_labeling.html)
|
||||||
|
- [7. 使用Modules和Models快速搭建自定义模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_7_modules_models.html)
|
||||||
|
- [8. 使用Metric快速评测你的模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_8_metrics.html)
|
||||||
|
- [9. 使用Callback自定义你的训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_9_callback.html)
|
||||||
|
- [10. 使用fitlog 辅助 fastNLP 进行科研](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_10_fitlog.html)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## 内置组件
|
## 内置组件
|
||||||
|
|
||||||
大部分用于的 NLP 任务神经网络都可以看做由编码(encoder)、聚合(aggregator)、解码(decoder)三种模块组成。
|
大部分用于的 NLP 任务神经网络都可以看做由词嵌入(embeddings)和两种模块:编码器(encoder)、解码器(decoder)组成。
|
||||||
|
|
||||||
|
以文本分类任务为例,下图展示了一个BiLSTM+Attention实现文本分类器的模型流程图:
|
||||||
|
|
||||||
|
|
||||||
![](./docs/source/figures/text_classification.png)
|
![](./docs/source/figures/text_classification.png)
|
||||||
|
|
||||||
fastNLP 在 modules 模块中内置了三种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 三种模块的功能和常见组件如下:
|
fastNLP 在 embeddings 模块中内置了几种不同的embedding:静态embedding(GloVe、word2vec)、上下文相关embedding
|
||||||
|
(ELMo、BERT)、字符embedding(基于CNN或者LSTM的CharEmbedding)
|
||||||
|
|
||||||
|
与此同时,fastNLP 在 modules 模块中内置了两种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 两种模块的功能和常见组件如下:
|
||||||
|
|
||||||
<table>
|
<table>
|
||||||
<tr>
|
<tr>
|
||||||
@ -57,29 +78,17 @@ fastNLP 在 modules 模块中内置了三种模块的诸多组件,可以帮助
|
|||||||
</tr>
|
</tr>
|
||||||
<tr>
|
<tr>
|
||||||
<td> encoder </td>
|
<td> encoder </td>
|
||||||
<td> 将输入编码为具有具 有表示能力的向量 </td>
|
<td> 将输入编码为具有具有表示能力的向量 </td>
|
||||||
<td> embedding, RNN, CNN, transformer
|
<td> embedding, RNN, CNN, transformer
|
||||||
</tr>
|
</tr>
|
||||||
<tr>
|
|
||||||
<td> aggregator </td>
|
|
||||||
<td> 从多个向量中聚合信息 </td>
|
|
||||||
<td> self-attention, max-pooling </td>
|
|
||||||
</tr>
|
|
||||||
<tr>
|
<tr>
|
||||||
<td> decoder </td>
|
<td> decoder </td>
|
||||||
<td> 将具有某种表示意义的 向量解码为需要的输出 形式 </td>
|
<td> 将具有某种表示意义的向量解码为需要的输出形式 </td>
|
||||||
<td> MLP, CRF </td>
|
<td> MLP, CRF </td>
|
||||||
</tr>
|
</tr>
|
||||||
</table>
|
</table>
|
||||||
|
|
||||||
|
|
||||||
## 完整模型
|
|
||||||
fastNLP 为不同的 NLP 任务实现了许多完整的模型,它们都经过了训练和测试。
|
|
||||||
|
|
||||||
你可以在以下两个地方查看相关信息
|
|
||||||
- [介绍](reproduction/)
|
|
||||||
- [源码](fastNLP/models/)
|
|
||||||
|
|
||||||
## 项目结构
|
## 项目结构
|
||||||
|
|
||||||
![](./docs/source/figures/workflow.png)
|
![](./docs/source/figures/workflow.png)
|
||||||
@ -93,7 +102,7 @@ fastNLP的大致工作流程如上图所示,而项目结构如下:
|
|||||||
</tr>
|
</tr>
|
||||||
<tr>
|
<tr>
|
||||||
<td><b> fastNLP.core </b></td>
|
<td><b> fastNLP.core </b></td>
|
||||||
<td> 实现了核心功能,包括数据处理组件、训练器、测速器等 </td>
|
<td> 实现了核心功能,包括数据处理组件、训练器、测试器等 </td>
|
||||||
</tr>
|
</tr>
|
||||||
<tr>
|
<tr>
|
||||||
<td><b> fastNLP.models </b></td>
|
<td><b> fastNLP.models </b></td>
|
||||||
@ -103,6 +112,10 @@ fastNLP的大致工作流程如上图所示,而项目结构如下:
|
|||||||
<td><b> fastNLP.modules </b></td>
|
<td><b> fastNLP.modules </b></td>
|
||||||
<td> 实现了用于搭建神经网络模型的诸多组件 </td>
|
<td> 实现了用于搭建神经网络模型的诸多组件 </td>
|
||||||
</tr>
|
</tr>
|
||||||
|
<tr>
|
||||||
|
<td><b> fastNLP.embeddings </b></td>
|
||||||
|
<td> 实现了将序列index转为向量序列的功能,包括读取预训练embedding等 </td>
|
||||||
|
</tr>
|
||||||
<tr>
|
<tr>
|
||||||
<td><b> fastNLP.io </b></td>
|
<td><b> fastNLP.io </b></td>
|
||||||
<td> 实现了读写功能,包括数据读入,模型读写等 </td>
|
<td> 实现了读写功能,包括数据读入,模型读写等 </td>
|
||||||
|
@ -19,6 +19,9 @@ apidoc:
|
|||||||
server:
|
server:
|
||||||
cd build/html && python -m http.server
|
cd build/html && python -m http.server
|
||||||
|
|
||||||
|
dev:
|
||||||
|
rm -rf build/html && make html && make server
|
||||||
|
|
||||||
.PHONY: help Makefile
|
.PHONY: help Makefile
|
||||||
|
|
||||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||||
|
41
docs/README.md
Normal file
41
docs/README.md
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
# 快速入门 fastNLP 文档编写
|
||||||
|
|
||||||
|
本教程为 fastNLP 文档编写者创建,文档编写者包括合作开发人员和文档维护人员。您在一般情况下属于前者,
|
||||||
|
只需要了解整个框架的部分内容即可。
|
||||||
|
|
||||||
|
## 合作开发人员
|
||||||
|
|
||||||
|
FastNLP的文档使用基于[reStructuredText标记语言](http://docutils.sourceforge.net/rst.html)的
|
||||||
|
[Sphinx](http://sphinx.pocoo.org/)工具生成,由[Read the Docs](https://readthedocs.org/)网站自动维护生成。
|
||||||
|
一般开发者只要编写符合reStructuredText语法规范的文档并通过[PR](https://help.github.com/en/articles/about-pull-requests),
|
||||||
|
就可以为fastNLP的文档贡献一份力量。
|
||||||
|
|
||||||
|
如果你想在本地编译文档并进行大段文档的编写,您需要安装Sphinx工具以及sphinx-rtd-theme主题:
|
||||||
|
```bash
|
||||||
|
fastNLP/docs> pip install sphinx
|
||||||
|
fastNLP/docs> pip install sphinx-rtd-theme
|
||||||
|
```
|
||||||
|
然后在本目录下执行 `make dev` 命令。该命令只支持Linux和MacOS系统,期望看到如下输出:
|
||||||
|
```bash
|
||||||
|
fastNLP/docs> make dev
|
||||||
|
rm -rf build/html && make html && make server
|
||||||
|
Running Sphinx v1.5.6
|
||||||
|
making output directory...
|
||||||
|
......
|
||||||
|
Build finished. The HTML pages are in build/html.
|
||||||
|
cd build/html && python -m http.server
|
||||||
|
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
|
||||||
|
```
|
||||||
|
现在您浏览器访问 http://localhost:8000/ 查看文档。如果你在远程服务器尚进行工作,则访问地址为 http://{服务器的ip地址}:8000/ 。
|
||||||
|
但您必须保证服务器的8000端口是开放的。如果您的电脑或远程服务器的8000端口被占用,程序会顺延使用8001、8002……等端口。
|
||||||
|
当你结束访问时,您可以使用Control(Ctrl) + C 来结束进程。
|
||||||
|
|
||||||
|
我们在[这里](./source/user/example.rst)列举了fastNLP文档经常用到的reStructuredText语法(网页查看请结合Raw模式),
|
||||||
|
您可以通过阅读它进行快速上手。FastNLP大部分的文档都是写在代码中通过Sphinx工具进行抽取生成的,
|
||||||
|
您还可以参考这篇[未完成的文章](./source/user/docs_in_code.rst)了解代码内文档编写的规范。
|
||||||
|
|
||||||
|
## 文档维护人员
|
||||||
|
|
||||||
|
文档维护人员需要了解 Makefile 中全部命令的含义,并了解到目前的文档结构
|
||||||
|
是在 sphinx-apidoc 自动抽取的基础上进行手动修改得到的。
|
||||||
|
文档维护人员应进一步提升整个框架的自动化程度,并监督合作开发人员不要破坏文档项目的整体结构。
|
@ -1,36 +0,0 @@
|
|||||||
@ECHO OFF
|
|
||||||
|
|
||||||
pushd %~dp0
|
|
||||||
|
|
||||||
REM Command file for Sphinx documentation
|
|
||||||
|
|
||||||
if "%SPHINXBUILD%" == "" (
|
|
||||||
set SPHINXBUILD=sphinx-build
|
|
||||||
)
|
|
||||||
set SOURCEDIR=source
|
|
||||||
set BUILDDIR=build
|
|
||||||
set SPHINXPROJ=fastNLP
|
|
||||||
|
|
||||||
if "%1" == "" goto help
|
|
||||||
|
|
||||||
%SPHINXBUILD% >NUL 2>NUL
|
|
||||||
if errorlevel 9009 (
|
|
||||||
echo.
|
|
||||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
|
||||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
|
||||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
|
||||||
echo.may add the Sphinx directory to PATH.
|
|
||||||
echo.
|
|
||||||
echo.If you don't have Sphinx installed, grab it from
|
|
||||||
echo.http://sphinx-doc.org/
|
|
||||||
exit /b 1
|
|
||||||
)
|
|
||||||
|
|
||||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
|
|
||||||
goto end
|
|
||||||
|
|
||||||
:help
|
|
||||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
|
|
||||||
|
|
||||||
:end
|
|
||||||
popd
|
|
@ -1,2 +0,0 @@
|
|||||||
# FastNLP Quick Tutorial
|
|
||||||
|
|
@ -24,9 +24,9 @@ copyright = '2018, xpqiu'
|
|||||||
author = 'xpqiu'
|
author = 'xpqiu'
|
||||||
|
|
||||||
# The short X.Y version
|
# The short X.Y version
|
||||||
version = '0.4'
|
version = '0.4.5'
|
||||||
# The full version, including alpha/beta/rc tags
|
# The full version, including alpha/beta/rc tags
|
||||||
release = '0.4'
|
release = '0.4.5'
|
||||||
|
|
||||||
# -- General configuration ---------------------------------------------------
|
# -- General configuration ---------------------------------------------------
|
||||||
|
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.batch
|
|||||||
==================
|
==================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.batch
|
.. automodule:: fastNLP.core.batch
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.callback
|
|||||||
=====================
|
=====================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.callback
|
.. automodule:: fastNLP.core.callback
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.const
|
|||||||
==================
|
==================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.const
|
.. automodule:: fastNLP.core.const
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.dataset
|
|||||||
====================
|
====================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.dataset
|
.. automodule:: fastNLP.core.dataset
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.field
|
|||||||
==================
|
==================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.field
|
.. automodule:: fastNLP.core.field
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.instance
|
|||||||
=====================
|
=====================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.instance
|
.. automodule:: fastNLP.core.instance
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.losses
|
|||||||
===================
|
===================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.losses
|
.. automodule:: fastNLP.core.losses
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.metrics
|
|||||||
====================
|
====================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.metrics
|
.. automodule:: fastNLP.core.metrics
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.optimizer
|
|||||||
======================
|
======================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.optimizer
|
.. automodule:: fastNLP.core.optimizer
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,15 +2,15 @@ fastNLP.core
|
|||||||
============
|
============
|
||||||
|
|
||||||
.. automodule:: fastNLP.core
|
.. automodule:: fastNLP.core
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
子模块
|
子模块
|
||||||
----------
|
----------
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:titlesonly:
|
:maxdepth: 1
|
||||||
|
|
||||||
fastNLP.core.batch
|
fastNLP.core.batch
|
||||||
fastNLP.core.callback
|
fastNLP.core.callback
|
||||||
@ -26,4 +26,3 @@ fastNLP.core
|
|||||||
fastNLP.core.trainer
|
fastNLP.core.trainer
|
||||||
fastNLP.core.utils
|
fastNLP.core.utils
|
||||||
fastNLP.core.vocabulary
|
fastNLP.core.vocabulary
|
||||||
|
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.sampler
|
|||||||
====================
|
====================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.sampler
|
.. automodule:: fastNLP.core.sampler
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.tester
|
|||||||
===================
|
===================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.tester
|
.. automodule:: fastNLP.core.tester
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.trainer
|
|||||||
====================
|
====================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.trainer
|
.. automodule:: fastNLP.core.trainer
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.utils
|
|||||||
==================
|
==================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.utils
|
.. automodule:: fastNLP.core.utils
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.core.vocabulary
|
|||||||
=======================
|
=======================
|
||||||
|
|
||||||
.. automodule:: fastNLP.core.vocabulary
|
.. automodule:: fastNLP.core.vocabulary
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
7
docs/source/fastNLP.embeddings.bert_embedding.rst
Normal file
7
docs/source/fastNLP.embeddings.bert_embedding.rst
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
fastNLP.embeddings.bert\_embedding
|
||||||
|
==================================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.embeddings.bert_embedding
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
7
docs/source/fastNLP.embeddings.char_embedding.rst
Normal file
7
docs/source/fastNLP.embeddings.char_embedding.rst
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
fastNLP.embeddings.char\_embedding
|
||||||
|
==================================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.embeddings.char_embedding
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
7
docs/source/fastNLP.embeddings.elmo_embedding.rst
Normal file
7
docs/source/fastNLP.embeddings.elmo_embedding.rst
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
fastNLP.embeddings.elmo\_embedding
|
||||||
|
==================================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.embeddings.elmo_embedding
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
7
docs/source/fastNLP.embeddings.embedding.rst
Normal file
7
docs/source/fastNLP.embeddings.embedding.rst
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
fastNLP.embeddings.embedding
|
||||||
|
============================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.embeddings.embedding
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
21
docs/source/fastNLP.embeddings.rst
Normal file
21
docs/source/fastNLP.embeddings.rst
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
fastNLP.embeddings
|
||||||
|
==================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.embeddings
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
||||||
|
|
||||||
|
子模块
|
||||||
|
----------
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 1
|
||||||
|
|
||||||
|
fastNLP.embeddings.bert_embedding
|
||||||
|
fastNLP.embeddings.char_embedding
|
||||||
|
fastNLP.embeddings.elmo_embedding
|
||||||
|
fastNLP.embeddings.embedding
|
||||||
|
fastNLP.embeddings.stack_embedding
|
||||||
|
fastNLP.embeddings.static_embedding
|
||||||
|
fastNLP.embeddings.utils
|
7
docs/source/fastNLP.embeddings.stack_embedding.rst
Normal file
7
docs/source/fastNLP.embeddings.stack_embedding.rst
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
fastNLP.embeddings.stack\_embedding
|
||||||
|
===================================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.embeddings.stack_embedding
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
7
docs/source/fastNLP.embeddings.static_embedding.rst
Normal file
7
docs/source/fastNLP.embeddings.static_embedding.rst
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
fastNLP.embeddings.static\_embedding
|
||||||
|
====================================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.embeddings.static_embedding
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
7
docs/source/fastNLP.embeddings.utils.rst
Normal file
7
docs/source/fastNLP.embeddings.utils.rst
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
fastNLP.embeddings.utils
|
||||||
|
========================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.embeddings.utils
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
@ -2,6 +2,6 @@ fastNLP.io.base\_loader
|
|||||||
=======================
|
=======================
|
||||||
|
|
||||||
.. automodule:: fastNLP.io.base_loader
|
.. automodule:: fastNLP.io.base_loader
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
7
docs/source/fastNLP.io.data_loader.rst
Normal file
7
docs/source/fastNLP.io.data_loader.rst
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
fastNLP.io.data\_loader
|
||||||
|
==========================
|
||||||
|
|
||||||
|
.. automodule:: fastNLP.io.data_loader
|
||||||
|
:members:
|
||||||
|
:undoc-members:
|
||||||
|
:show-inheritance:
|
@ -2,6 +2,6 @@ fastNLP.io.dataset\_loader
|
|||||||
==========================
|
==========================
|
||||||
|
|
||||||
.. automodule:: fastNLP.io.dataset_loader
|
.. automodule:: fastNLP.io.dataset_loader
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.io.embed\_loader
|
|||||||
========================
|
========================
|
||||||
|
|
||||||
.. automodule:: fastNLP.io.embed_loader
|
.. automodule:: fastNLP.io.embed_loader
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.io.model\_io
|
|||||||
====================
|
====================
|
||||||
|
|
||||||
.. automodule:: fastNLP.io.model_io
|
.. automodule:: fastNLP.io.model_io
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,18 +2,18 @@ fastNLP.io
|
|||||||
==========
|
==========
|
||||||
|
|
||||||
.. automodule:: fastNLP.io
|
.. automodule:: fastNLP.io
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
子模块
|
子模块
|
||||||
----------
|
----------
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:titlesonly:
|
:maxdepth: 1
|
||||||
|
|
||||||
fastNLP.io.base_loader
|
fastNLP.io.base_loader
|
||||||
fastNLP.io.dataset_loader
|
|
||||||
fastNLP.io.embed_loader
|
fastNLP.io.embed_loader
|
||||||
|
fastNLP.io.dataset_loader
|
||||||
|
fastNLP.io.data_loader
|
||||||
fastNLP.io.model_io
|
fastNLP.io.model_io
|
||||||
|
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.models.biaffine\_parser
|
|||||||
===============================
|
===============================
|
||||||
|
|
||||||
.. automodule:: fastNLP.models.biaffine_parser
|
.. automodule:: fastNLP.models.biaffine_parser
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.models.cnn\_text\_classification
|
|||||||
========================================
|
========================================
|
||||||
|
|
||||||
.. automodule:: fastNLP.models.cnn_text_classification
|
.. automodule:: fastNLP.models.cnn_text_classification
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,19 +2,18 @@ fastNLP.models
|
|||||||
==============
|
==============
|
||||||
|
|
||||||
.. automodule:: fastNLP.models
|
.. automodule:: fastNLP.models
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
子模块
|
子模块
|
||||||
----------
|
----------
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:titlesonly:
|
:maxdepth: 1
|
||||||
|
|
||||||
fastNLP.models.biaffine_parser
|
fastNLP.models.biaffine_parser
|
||||||
fastNLP.models.cnn_text_classification
|
fastNLP.models.cnn_text_classification
|
||||||
fastNLP.models.sequence_labeling
|
fastNLP.models.sequence_labeling
|
||||||
fastNLP.models.snli
|
fastNLP.models.snli
|
||||||
fastNLP.models.star_transformer
|
fastNLP.models.star_transformer
|
||||||
|
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.models.sequence\_labeling
|
|||||||
=================================
|
=================================
|
||||||
|
|
||||||
.. automodule:: fastNLP.models.sequence_labeling
|
.. automodule:: fastNLP.models.sequence_labeling
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.models.snli
|
|||||||
===================
|
===================
|
||||||
|
|
||||||
.. automodule:: fastNLP.models.snli
|
.. automodule:: fastNLP.models.snli
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -2,6 +2,6 @@ fastNLP.models.star\_transformer
|
|||||||
================================
|
================================
|
||||||
|
|
||||||
.. automodule:: fastNLP.models.star_transformer
|
.. automodule:: fastNLP.models.star_transformer
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.aggregator.attention
|
|
||||||
====================================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.aggregator.attention
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.aggregator.pooling
|
|
||||||
==================================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.aggregator.pooling
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,17 +0,0 @@
|
|||||||
fastNLP.modules.aggregator
|
|
||||||
==========================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.aggregator
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
||||||
|
|
||||||
子模块
|
|
||||||
----------
|
|
||||||
|
|
||||||
.. toctree::
|
|
||||||
:titlesonly:
|
|
||||||
|
|
||||||
fastNLP.modules.aggregator.attention
|
|
||||||
fastNLP.modules.aggregator.pooling
|
|
||||||
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.decoder.CRF
|
|
||||||
===========================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.decoder.crf
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.decoder.MLP
|
|
||||||
===========================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.decoder.mlp
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -2,17 +2,7 @@ fastNLP.modules.decoder
|
|||||||
=======================
|
=======================
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.decoder
|
.. automodule:: fastNLP.modules.decoder
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
子模块
|
|
||||||
----------
|
|
||||||
|
|
||||||
.. toctree::
|
|
||||||
:titlesonly:
|
|
||||||
|
|
||||||
fastNLP.modules.decoder.crf
|
|
||||||
fastNLP.modules.decoder.mlp
|
|
||||||
fastNLP.modules.decoder.utils
|
|
||||||
|
|
||||||
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.decoder.utils
|
|
||||||
=============================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.decoder.utils
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.encoder.bert
|
|
||||||
============================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder.bert
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.encoder.char\_encoder
|
|
||||||
=====================================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder.char_encoder
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.encoder.conv\_maxpool
|
|
||||||
=====================================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder.conv_maxpool
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.encoder.embedding
|
|
||||||
=================================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder.embedding
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.encoder.lstm
|
|
||||||
============================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder.lstm
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -2,22 +2,6 @@ fastNLP.modules.encoder
|
|||||||
=======================
|
=======================
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder
|
.. automodule:: fastNLP.modules.encoder
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
子模块
|
|
||||||
----------
|
|
||||||
|
|
||||||
.. toctree::
|
|
||||||
:titlesonly:
|
|
||||||
|
|
||||||
fastNLP.modules.encoder.bert
|
|
||||||
fastNLP.modules.encoder.char_encoder
|
|
||||||
fastNLP.modules.encoder.conv_maxpool
|
|
||||||
fastNLP.modules.encoder.embedding
|
|
||||||
fastNLP.modules.encoder.lstm
|
|
||||||
fastNLP.modules.encoder.star_transformer
|
|
||||||
fastNLP.modules.encoder.transformer
|
|
||||||
fastNLP.modules.encoder.variational_rnn
|
|
||||||
|
|
||||||
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.encoder.star\_transformer
|
|
||||||
=========================================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder.star_transformer
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.encoder.transformer
|
|
||||||
===================================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder.transformer
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -1,7 +0,0 @@
|
|||||||
fastNLP.modules.encoder.variational\_rnn
|
|
||||||
========================================
|
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules.encoder.variational_rnn
|
|
||||||
:members:
|
|
||||||
:undoc-members:
|
|
||||||
:show-inheritance:
|
|
@ -2,16 +2,16 @@ fastNLP.modules
|
|||||||
===============
|
===============
|
||||||
|
|
||||||
.. automodule:: fastNLP.modules
|
.. automodule:: fastNLP.modules
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
子模块
|
子模块
|
||||||
-----------
|
-----------
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:titlesonly:
|
:titlesonly:
|
||||||
|
:maxdepth: 1
|
||||||
|
|
||||||
fastNLP.modules.aggregator
|
fastNLP.modules.decoder
|
||||||
fastNLP.modules.decoder
|
fastNLP.modules.encoder
|
||||||
fastNLP.modules.encoder
|
|
@ -2,19 +2,18 @@ API 文档
|
|||||||
===============
|
===============
|
||||||
|
|
||||||
.. automodule:: fastNLP
|
.. automodule:: fastNLP
|
||||||
:members:
|
:members:
|
||||||
:undoc-members:
|
:undoc-members:
|
||||||
:show-inheritance:
|
:show-inheritance:
|
||||||
|
|
||||||
内部模块
|
内部模块
|
||||||
-----------
|
-----------
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:titlesonly:
|
:maxdepth: 1
|
||||||
:maxdepth: 3
|
|
||||||
|
|
||||||
fastNLP.core
|
|
||||||
fastNLP.io
|
|
||||||
fastNLP.modules
|
|
||||||
fastNLP.models
|
|
||||||
|
|
||||||
|
fastNLP.core
|
||||||
|
fastNLP.embeddings
|
||||||
|
fastNLP.io
|
||||||
|
fastNLP.models
|
||||||
|
fastNLP.modules
|
||||||
|
Binary file not shown.
Before Width: | Height: | Size: 72 KiB After Width: | Height: | Size: 315 KiB |
Binary file not shown.
Before Width: | Height: | Size: 328 KiB After Width: | Height: | Size: 244 KiB |
@ -1,61 +1,28 @@
|
|||||||
fastNLP 中文文档
|
fastNLP 中文文档
|
||||||
=====================
|
=====================
|
||||||
|
|
||||||
fastNLP 是一款轻量级的 NLP 处理套件。你既可以使用它快速地完成一个命名实体识别(NER)、中文分词或文本分类任务;
|
`fastNLP <https://github.com/fastnlp/fastNLP/>`_ 是一款轻量级的 NLP 处理套件。你既可以使用它快速地完成一个序列标注
|
||||||
也可以使用他构建许多复杂的网络模型,进行科研。它具有如下的特性:
|
(NER、POS-Tagging等)、中文分词、文本分类、Matching、指代消解、摘要等任务
|
||||||
|
(详见 `reproduction <https://github.com/fastnlp/fastNLP/tree/master/reproduction>`_ );
|
||||||
|
也可以使用它构建许多复杂的网络模型,进行科研。它具有如下的特性:
|
||||||
|
|
||||||
- 统一的Tabular式数据容器,让数据预处理过程简洁明了。内置多种数据集的DataSet Loader,省去预处理代码。
|
- 统一的Tabular式数据容器,让数据预处理过程简洁明了。内置多种数据集的 :mod:`~fastNLP.io.data_loader` ,省去预处理代码;
|
||||||
- 各种方便的NLP工具,例如预处理embedding加载; 中间数据cache等;
|
- 多种训练、测试组件,例如训练器 :class:`~fastNLP.Trainer` ;测试器 :class:`~fastNLP.Tester` ;以及各种评测 :mod:`~fastNLP.core.metrics` 等等;
|
||||||
- 详尽的中文文档以供查阅;
|
- 各种方便的NLP工具,例如预处理 :mod:`embedding<fastNLP.embeddings>` 加载(包括ELMo和BERT); 中间数据存储 :func:`cache <fastNLP.cache_results>` 等;
|
||||||
- 提供诸多高级模块,例如Variational LSTM, Transformer, CRF等;
|
- 提供诸多高级模块 :mod:`~fastNLP.modules`,例如 :class:`~fastNLP.modules.VarLSTM` , :class:`Transformer<fastNLP.modules.TransformerEncoder>` , :class:`CRF<fastNLP.modules.ConditionalRandomField>` 等;
|
||||||
- 封装CNNText,Biaffine等模型可供直接使用;
|
- 在序列标注、中文分词、文本分类、Matching、指代消解、摘要等任务上封装了各种 :mod:`~fastNLP.models` 可供直接使用;
|
||||||
- 便捷且具有扩展性的训练器; 提供多种内置callback函数,方便实验记录、异常捕获等。
|
- 训练器便捷且具有扩展性,提供多种内置 :mod:`~fastNLP.core.callback` 函数,方便实验记录、异常捕获等。
|
||||||
|
|
||||||
|
|
||||||
内置组件
|
|
||||||
------------
|
|
||||||
|
|
||||||
大部分用于的 NLP 任务神经网络都可以看做由编码(encoder)、聚合(aggregator)、解码(decoder)三种模块组成。
|
|
||||||
|
|
||||||
.. image:: figures/text_classification.png
|
|
||||||
|
|
||||||
fastNLP 在 :mod:`~fastNLP.modules` 模块中内置了三种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。
|
|
||||||
三种模块的功能和常见组件如下:
|
|
||||||
|
|
||||||
+-----------------------+-----------------------+-----------------------+
|
|
||||||
| module type | functionality | example |
|
|
||||||
+=======================+=======================+=======================+
|
|
||||||
| encoder | 将输入编码为具有具 | embedding, RNN, CNN, |
|
|
||||||
| | 有表示能力的向量 | transformer |
|
|
||||||
+-----------------------+-----------------------+-----------------------+
|
|
||||||
| aggregator | 从多个向量中聚合信息 | self-attention, |
|
|
||||||
| | | max-pooling |
|
|
||||||
+-----------------------+-----------------------+-----------------------+
|
|
||||||
| decoder | 将具有某种表示意义的 | MLP, CRF |
|
|
||||||
| | 向量解码为需要的输出 | |
|
|
||||||
| | 形式 | |
|
|
||||||
+-----------------------+-----------------------+-----------------------+
|
|
||||||
|
|
||||||
|
|
||||||
内置模型
|
|
||||||
----------------
|
|
||||||
|
|
||||||
fastNLP 在 :mod:`~fastNLP.models` 模块中内置了如 :class:`~fastNLP.models.CNNText` 、
|
|
||||||
:class:`~fastNLP.models.SeqLabeling` 等完整的模型,以供用户直接使用。
|
|
||||||
|
|
||||||
.. todo::
|
|
||||||
这些模型的介绍如下表所示:(模型名称 + 介绍 + 任务上的结果)
|
|
||||||
|
|
||||||
用户手册
|
用户手册
|
||||||
----------------
|
----------------
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:maxdepth: 1
|
:maxdepth: 2
|
||||||
|
|
||||||
安装指南 <user/installation>
|
安装指南 </user/installation>
|
||||||
快速入门 <user/quickstart>
|
快速入门 </user/quickstart>
|
||||||
详细指南 <user/tutorial_one>
|
详细教程 </user/tutorials>
|
||||||
科研指南 <user/with_fitlog>
|
|
||||||
|
|
||||||
API 文档
|
API 文档
|
||||||
-------------
|
-------------
|
||||||
@ -68,11 +35,11 @@ API 文档
|
|||||||
|
|
||||||
fastNLP
|
fastNLP
|
||||||
|
|
||||||
fitlog
|
fitlog文档
|
||||||
------
|
----------
|
||||||
|
|
||||||
用户可以 `点此 <https://fitlog.readthedocs.io/zh/latest/>`_ 查看fitlog的文档。
|
您可以 `点此 <https://fitlog.readthedocs.io/zh/latest/>`_ 查看fitlog的文档。
|
||||||
fitlog 是由我们团队开发,用于帮助用户记录日志并管理代码的工具
|
fitlog 是由我们团队开发的日志记录+代码管理的工具。
|
||||||
|
|
||||||
索引与搜索
|
索引与搜索
|
||||||
==================
|
==================
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
=================
|
============================================
|
||||||
科研向导
|
使用fitlog 辅助 fastNLP 进行科研
|
||||||
=================
|
============================================
|
||||||
|
|
||||||
本文介绍结合使用 fastNLP 和 fitlog 进行科研的方法。
|
本文介绍结合使用 fastNLP 和 fitlog 进行科研的方法。
|
||||||
|
|
156
docs/source/tutorials/tutorial_1_data_preprocess.rst
Normal file
156
docs/source/tutorials/tutorial_1_data_preprocess.rst
Normal file
@ -0,0 +1,156 @@
|
|||||||
|
==============================
|
||||||
|
使用DataSet预处理文本
|
||||||
|
==============================
|
||||||
|
|
||||||
|
:class:`~fastNLP.DataSet` 是fastNLP中用于承载数据的容器。可以将DataSet看做是一个表格,
|
||||||
|
每一行是一个sample (在fastNLP中被称为 :mod:`~fastNLP.core.instance` ),
|
||||||
|
每一列是一个feature (在fastNLP中称为 :mod:`~fastNLP.core.field` )。
|
||||||
|
|
||||||
|
.. csv-table::
|
||||||
|
:header: "sentence", "words", "seq_len"
|
||||||
|
|
||||||
|
"This is the first instance .", "[This, is, the, first, instance, .]", 6
|
||||||
|
"Second instance .", "[Second, instance, .]", 3
|
||||||
|
"Third instance .", "[Third, instance, .]", 3
|
||||||
|
"...", "[...]", "..."
|
||||||
|
|
||||||
|
上面是一个样例数据中 DataSet 的存储结构。其中它的每一行是一个 :class:`~fastNLP.Instance` 对象; 每一列是一个 :class:`~fastNLP.FieldArray` 对象。
|
||||||
|
|
||||||
|
|
||||||
|
-----------------------------
|
||||||
|
数据集构建和删除
|
||||||
|
-----------------------------
|
||||||
|
|
||||||
|
我们使用传入字典的方式构建一个数据集,这是 :class:`~fastNLP.DataSet` 初始化的最基础的方式
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import DataSet
|
||||||
|
data = {'sentence':["This is the first instance .", "Second instance .", "Third instance ."],
|
||||||
|
'words': [['this', 'is', 'the', 'first', 'instance', '.'], ['Second', 'instance', '.'], ['Third', 'instance', '.']],
|
||||||
|
'seq_len': [6, 3, 3]}
|
||||||
|
dataset = DataSet(data)
|
||||||
|
# 传入的dict的每个key的value应该为具有相同长度的list
|
||||||
|
|
||||||
|
我们还可以使用 :func:`~fastNLP.DataSet.append` 方法向数据集内增加数据
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import DataSet
|
||||||
|
from fastNLP import Instance
|
||||||
|
dataset = DataSet()
|
||||||
|
instance = Instance(sentence="This is the first instance",
|
||||||
|
words=['this', 'is', 'the', 'first', 'instance', '.'],
|
||||||
|
seq_len=6)
|
||||||
|
dataset.append(instance)
|
||||||
|
# 可以继续append更多内容,但是append的instance应该和前面的instance拥有完全相同的field
|
||||||
|
|
||||||
|
另外,我们还可以用 :class:`~fastNLP.Instance` 数组的方式构建数据集
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import DataSet
|
||||||
|
from fastNLP import Instance
|
||||||
|
dataset = DataSet([
|
||||||
|
Instance(sentence="This is the first instance",
|
||||||
|
words=['this', 'is', 'the', 'first', 'instance', '.'],
|
||||||
|
seq_len=6),
|
||||||
|
Instance(sentence="Second instance .",
|
||||||
|
words=['Second', 'instance', '.'],
|
||||||
|
seq_len=3)
|
||||||
|
])
|
||||||
|
|
||||||
|
在初步构建完数据集之后,我们可以通过 `for` 循环遍历 :class:`~fastNLP.DataSet` 中的内容。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
for instance in dataset:
|
||||||
|
# do something
|
||||||
|
|
||||||
|
FastNLP 同样提供了多种删除数据的方法 :func:`~fastNLP.DataSet.drop` 、 :func:`~fastNLP.DataSet.delete_instance` 和 :func:`~fastNLP.DataSet.delete_field`
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import DataSet
|
||||||
|
dataset = DataSet({'a': list(range(-5, 5))})
|
||||||
|
# 返回满足条件的instance,并放入DataSet中
|
||||||
|
dropped_dataset = dataset.drop(lambda ins:ins['a']<0, inplace=False)
|
||||||
|
# 在dataset中删除满足条件的instance
|
||||||
|
dataset.drop(lambda ins:ins['a']<0) # dataset的instance数量减少
|
||||||
|
# 删除第3个instance
|
||||||
|
dataset.delete_instance(2)
|
||||||
|
# 删除名为'a'的field
|
||||||
|
dataset.delete_field('a')
|
||||||
|
|
||||||
|
-----------------------------
|
||||||
|
简单的数据预处理
|
||||||
|
-----------------------------
|
||||||
|
|
||||||
|
因为 fastNLP 中的数据是按列存储的,所以大部分的数据预处理操作是以列( :mod:`~fastNLP.core.field` )为操作对象的。
|
||||||
|
首先,我们可以检查特定名称的 :mod:`~fastNLP.core.field` 是否存在,并对其进行改名。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
# 检查是否存在名为'a'的field
|
||||||
|
dataset.has_field('a') # 或 ('a' in dataset)
|
||||||
|
# 将名为'a'的field改名为'b'
|
||||||
|
dataset.rename_field('a', 'b')
|
||||||
|
# DataSet的长度
|
||||||
|
len(dataset)
|
||||||
|
|
||||||
|
其次,我们可以使用 :func:`~fastNLP.DataSet.apply` 或 :func:`~fastNLP.DataSet.apply_field` 进行数据预处理操作操作。
|
||||||
|
这两个方法通过传入一个对单一 :mod:`~fastNLP.core.instance` 操作的函数,
|
||||||
|
自动地帮助你对一个 :mod:`~fastNLP.core.field` 中的每个 :mod:`~fastNLP.core.instance` 调用这个函数,完成整体的操作。
|
||||||
|
这个传入的函数可以是 lambda 匿名函数,也可以是完整定义的函数。同时,你还可以用 ``new_field_name`` 参数指定数据处理后存储的 :mod:`~fastNLP.core.field` 的名称。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import DataSet
|
||||||
|
data = {'sentence':["This is the first instance .", "Second instance .", "Third instance ."]}
|
||||||
|
dataset = DataSet(data)
|
||||||
|
|
||||||
|
# 将句子分成单词形式, 详见DataSet.apply()方法
|
||||||
|
dataset.apply(lambda ins: ins['sentence'].split(), new_field_name='words')
|
||||||
|
|
||||||
|
# 或使用DataSet.apply_field()
|
||||||
|
dataset.apply_field(lambda sent:sent.split(), field_name='sentence', new_field_name='words')
|
||||||
|
|
||||||
|
# 除了匿名函数,也可以定义函数传递进去
|
||||||
|
def get_words(instance):
|
||||||
|
sentence = instance['sentence']
|
||||||
|
words = sentence.split()
|
||||||
|
return words
|
||||||
|
dataset.apply(get_words, new_field_name='words')
|
||||||
|
|
||||||
|
除了手动处理数据集之外,你还可以使用 fastNLP 提供的各种 :class:`~fastNLP.io.base_loader.DataSetLoader` 来进行数据处理。
|
||||||
|
详细请参考这篇教程 :doc:`使用DataSetLoader加载数据集 </tutorials/tutorial_2_load_dataset>` 。
|
||||||
|
|
||||||
|
-----------------------------
|
||||||
|
DataSet与pad
|
||||||
|
-----------------------------
|
||||||
|
|
||||||
|
在fastNLP里,pad是与一个 :mod:`~fastNLP.core.field` 绑定的。即不同的 :mod:`~fastNLP.core.field` 可以使用不同的pad方式,比如在英文任务中word需要的pad和
|
||||||
|
character的pad方式往往是不同的。fastNLP是通过一个叫做 :class:`~fastNLP.Padder` 的子类来完成的。
|
||||||
|
默认情况下,所有field使用 :class:`~fastNLP.AutoPadder`
|
||||||
|
。可以通过使用以下方式设置Padder(如果将padder设置为None,则该field不会进行pad操作)。
|
||||||
|
大多数情况下直接使用 :class:`~fastNLP.AutoPadder` 就可以了。
|
||||||
|
如果 :class:`~fastNLP.AutoPadder` 或 :class:`~fastNLP.EngChar2DPadder` 无法满足需求,
|
||||||
|
也可以自己写一个 :class:`~fastNLP.Padder` 。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import DataSet
|
||||||
|
from fastNLP import EngChar2DPadder
|
||||||
|
import random
|
||||||
|
dataset = DataSet()
|
||||||
|
max_chars, max_words, sent_num = 5, 10, 20
|
||||||
|
contents = [[
|
||||||
|
[random.randint(1, 27) for _ in range(random.randint(1, max_chars))]
|
||||||
|
for _ in range(random.randint(1, max_words))
|
||||||
|
] for _ in range(sent_num)]
|
||||||
|
# 初始化时传入
|
||||||
|
dataset.add_field('chars', contents, padder=EngChar2DPadder())
|
||||||
|
# 直接设置
|
||||||
|
dataset.set_padder('chars', EngChar2DPadder())
|
||||||
|
# 也可以设置pad的value
|
||||||
|
dataset.set_pad_val('chars', -1)
|
224
docs/source/tutorials/tutorial_2_load_dataset.rst
Normal file
224
docs/source/tutorials/tutorial_2_load_dataset.rst
Normal file
@ -0,0 +1,224 @@
|
|||||||
|
=================================
|
||||||
|
使用DataSetLoader加载数据集
|
||||||
|
=================================
|
||||||
|
|
||||||
|
这一部分是一个关于如何加载数据集的教程
|
||||||
|
|
||||||
|
教程目录:
|
||||||
|
|
||||||
|
- `Part I: 数据集容器`_
|
||||||
|
- `Part II: 数据集的使用方式`_
|
||||||
|
- `Part III: 不同数据类型的DataSetLoader`_
|
||||||
|
- `Part IV: DataSetLoader举例`_
|
||||||
|
- `Part V: fastNLP封装好的数据集加载器`_
|
||||||
|
|
||||||
|
|
||||||
|
----------------------------
|
||||||
|
Part I: 数据集容器
|
||||||
|
----------------------------
|
||||||
|
|
||||||
|
在fastNLP中,我们使用 :class:`~fastNLP.io.base_loader.DataBundle` 来存储数据集信息。
|
||||||
|
:class:`~fastNLP.io.base_loader.DataBundle` 类包含了两个重要内容: `datasets` 和 `vocabs` 。
|
||||||
|
|
||||||
|
`datasets` 是一个 `key` 为数据集名称(如 `train` , `dev` ,和 `test` 等), `value` 为 :class:`~fastNLP.DataSet` 的字典。
|
||||||
|
|
||||||
|
`vocabs` 是一个 `key` 为词表名称(如 :attr:`fastNLP.Const.INPUT` 表示输入文本的词表名称, :attr:`fastNLP.Const.TARGET` 表示目标
|
||||||
|
的真实标签词表的名称,等等), `value` 为词表内容( :class:`~fastNLP.Vocabulary` )的字典。
|
||||||
|
|
||||||
|
----------------------------
|
||||||
|
Part II: 数据集的使用方式
|
||||||
|
----------------------------
|
||||||
|
|
||||||
|
在fastNLP中,我们采用 :class:`~fastNLP.io.base_loader.DataSetLoader` 来作为加载数据集的基类。
|
||||||
|
:class:`~fastNLP.io.base_loader.DataSetLoader` 定义了各种DataSetLoader所需的API接口,开发者应该继承它实现各种的DataSetLoader。
|
||||||
|
在各种数据集的DataSetLoader当中,至少应该编写如下内容:
|
||||||
|
|
||||||
|
- _load 函数:从一个数据文件中读取数据到一个 :class:`~fastNLP.DataSet`
|
||||||
|
- load 函数(可以使用基类的方法):从一个或多个数据文件中读取数据到一个或多个 :class:`~fastNLP.DataSet`
|
||||||
|
- process 函数:一个或多个从数据文件中读取数据,并处理成可以训练的 :class:`~fastNLP.io.DataBundle`
|
||||||
|
|
||||||
|
**\*process函数中可以调用load函数或_load函数**
|
||||||
|
|
||||||
|
DataSetLoader的_load或者load函数返回的 :class:`~fastNLP.DataSet` 当中,内容为数据集的文本信息,process函数返回的
|
||||||
|
:class:`~fastNLP.io.DataBundle` 当中, `datasets` 的内容为已经index好的、可以直接被 :class:`~fastNLP.Trainer`
|
||||||
|
接受的内容。
|
||||||
|
|
||||||
|
--------------------------------------------------------
|
||||||
|
Part III: 不同数据类型的DataSetLoader
|
||||||
|
--------------------------------------------------------
|
||||||
|
|
||||||
|
:class:`~fastNLP.io.dataset_loader.CSVLoader`
|
||||||
|
读取CSV类型的数据集文件。例子如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
data_set_loader = CSVLoader(
|
||||||
|
headers=('words', 'target'), sep='\t'
|
||||||
|
)
|
||||||
|
# 表示将CSV文件中每一行的第一项填入'words' field,第二项填入'target' field。
|
||||||
|
# 其中每两项之间由'\t'分割开来
|
||||||
|
|
||||||
|
data_set = data_set_loader._load('path/to/your/file')
|
||||||
|
|
||||||
|
数据集内容样例如下 ::
|
||||||
|
|
||||||
|
But it does not leave you with much . 1
|
||||||
|
You could hate it for the same reason . 1
|
||||||
|
The performances are an absolute joy . 4
|
||||||
|
|
||||||
|
|
||||||
|
:class:`~fastNLP.io.dataset_loader.JsonLoader`
|
||||||
|
读取Json类型的数据集文件,数据必须按行存储,每行是一个包含各类属性的Json对象。例子如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
data_set_loader = JsonLoader(
|
||||||
|
fields={'sentence1': 'words1', 'sentence2': 'words2', 'gold_label': 'target'}
|
||||||
|
)
|
||||||
|
# 表示将Json对象中'sentence1'、'sentence2'和'gold_label'对应的值赋给'words1'、'words2'、'target'这三个fields
|
||||||
|
|
||||||
|
data_set = data_set_loader._load('path/to/your/file')
|
||||||
|
|
||||||
|
数据集内容样例如下 ::
|
||||||
|
|
||||||
|
{"annotator_labels": ["neutral"], "captionID": "3416050480.jpg#4", "gold_label": "neutral", "pairID": "3416050480.jpg#4r1n", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is training his horse for a competition.", "sentence2_binary_parse": "( ( A person ) ( ( is ( ( training ( his horse ) ) ( for ( a competition ) ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (VP (VBG training) (NP (PRP$ his) (NN horse)) (PP (IN for) (NP (DT a) (NN competition))))) (. .)))"}
|
||||||
|
{"annotator_labels": ["contradiction"], "captionID": "3416050480.jpg#4", "gold_label": "contradiction", "pairID": "3416050480.jpg#4r1c", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is at a diner, ordering an omelette.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is ( at ( a diner ) ) ) , ) ( ordering ( an omelette ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (PP (IN at) (NP (DT a) (NN diner))) (, ,) (S (VP (VBG ordering) (NP (DT an) (NN omelette))))) (. .)))"}
|
||||||
|
{"annotator_labels": ["entailment"], "captionID": "3416050480.jpg#4", "gold_label": "entailment", "pairID": "3416050480.jpg#4r1e", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is outdoors, on a horse.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is outdoors ) , ) ( on ( a horse ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (ADVP (RB outdoors)) (, ,) (PP (IN on) (NP (DT a) (NN horse)))) (. .)))"}
|
||||||
|
|
||||||
|
------------------------------------------
|
||||||
|
Part IV: DataSetLoader举例
|
||||||
|
------------------------------------------
|
||||||
|
|
||||||
|
以Matching任务为例子:
|
||||||
|
|
||||||
|
:class:`~fastNLP.io.data_loader.MatchingLoader`
|
||||||
|
我们在fastNLP当中封装了一个Matching任务数据集的数据加载类: :class:`~fastNLP.io.data_loader.MatchingLoader` .
|
||||||
|
|
||||||
|
在MatchingLoader类当中我们封装了一个对数据集中的文本内容进行进一步的预处理的函数:
|
||||||
|
:meth:`~fastNLP.io.data_loader.MatchingLoader.process`
|
||||||
|
这个函数具有各种预处理option,如:
|
||||||
|
- 是否将文本转成全小写
|
||||||
|
- 是否需要序列长度信息,需要什么类型的序列长度信息
|
||||||
|
- 是否需要用BertTokenizer来获取序列的WordPiece信息
|
||||||
|
- 等等
|
||||||
|
|
||||||
|
具体内容参见 :meth:`fastNLP.io.MatchingLoader.process` 。
|
||||||
|
|
||||||
|
:class:`~fastNLP.io.data_loader.SNLILoader`
|
||||||
|
一个关于SNLI数据集的DataSetLoader。SNLI数据集来自
|
||||||
|
`SNLI Data Set <https://nlp.stanford.edu/projects/snli/snli_1.0.zip>`_ .
|
||||||
|
|
||||||
|
在 :class:`~fastNLP.io.data_loader.SNLILoader` 的 :meth:`~fastNLP.io.data_loader.SNLILoader._load`
|
||||||
|
函数中,我们用以下代码将数据集内容从文本文件读入内存:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
data = SNLILoader().process(
|
||||||
|
paths='path/to/snli/data', to_lower=False, seq_len_type='seq_len',
|
||||||
|
get_index=True, concat=False,
|
||||||
|
)
|
||||||
|
print(data)
|
||||||
|
|
||||||
|
输出的内容是::
|
||||||
|
|
||||||
|
In total 3 datasets:
|
||||||
|
train has 549367 instances.
|
||||||
|
dev has 9842 instances.
|
||||||
|
test has 9824 instances.
|
||||||
|
In total 2 vocabs:
|
||||||
|
words has 43154 entries.
|
||||||
|
target has 3 entries.
|
||||||
|
|
||||||
|
|
||||||
|
这里的data是一个 :class:`~fastNLP.io.base_loader.DataBundle` ,取 ``datasets`` 字典里的内容即可直接传入
|
||||||
|
:class:`~fastNLP.Trainer` 或者 :class:`~fastNLP.Tester` 进行训练或者测试。
|
||||||
|
|
||||||
|
:class:`~fastNLP.io.data_loader.IMDBLoader`
|
||||||
|
以IMDB数据集为例,在 :class:`~fastNLP.io.data_loader.IMDBLoader` 的 :meth:`~fastNLP.io.data_loader.IMDBLoader._load`
|
||||||
|
函数中,我们用以下代码将数据集内容从文本文件读入内存:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
data = IMDBLoader().process(
|
||||||
|
paths={'train': 'path/to/train/file', 'test': 'path/to/test/file'}
|
||||||
|
)
|
||||||
|
print(data)
|
||||||
|
|
||||||
|
输出的内容是::
|
||||||
|
|
||||||
|
In total 3 datasets:
|
||||||
|
train has 22500 instances.
|
||||||
|
test has 25000 instances.
|
||||||
|
dev has 2500 instances.
|
||||||
|
In total 2 vocabs:
|
||||||
|
words has 82846 entries.
|
||||||
|
target has 2 entries.
|
||||||
|
|
||||||
|
|
||||||
|
这里的将原来的train集按9:1的比例分成了训练集和验证集。
|
||||||
|
|
||||||
|
|
||||||
|
------------------------------------------
|
||||||
|
Part V: fastNLP封装好的数据集加载器
|
||||||
|
------------------------------------------
|
||||||
|
|
||||||
|
fastNLP封装好的数据集加载器可以适用于多种类型的任务:
|
||||||
|
|
||||||
|
- `文本分类任务`_
|
||||||
|
- `序列标注任务`_
|
||||||
|
- `Matching任务`_
|
||||||
|
|
||||||
|
|
||||||
|
文本分类任务
|
||||||
|
-------------------
|
||||||
|
|
||||||
|
========================== ==================================================================
|
||||||
|
数据集名称 数据集加载器
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
IMDb :class:`~fastNLP.io.data_loader.IMDBLoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
SST :class:`~fastNLP.io.data_loader.SSTLoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
SST-2 :class:`~fastNLP.io.data_loader.SST2Loader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
Yelp Polarity :class:`~fastNLP.io.data_loader.YelpLoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
Yelp Full :class:`~fastNLP.io.data_loader.YelpLoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
MTL16 :class:`~fastNLP.io.data_loader.MTL16Loader`
|
||||||
|
========================== ==================================================================
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
序列标注任务
|
||||||
|
-------------------
|
||||||
|
|
||||||
|
========================== ==================================================================
|
||||||
|
数据集名称 数据集加载器
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
Conll :class:`~fastNLP.io.data_loader.ConllLoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
Conll2003 :class:`~fastNLP.io.data_loader.Conll2003Loader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
人民日报数据集 :class:`~fastNLP.io.data_loader.PeopleDailyCorpusLoader`
|
||||||
|
========================== ==================================================================
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Matching任务
|
||||||
|
-------------------
|
||||||
|
|
||||||
|
========================== ==================================================================
|
||||||
|
数据集名称 数据集加载器
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
SNLI :class:`~fastNLP.io.data_loader.SNLILoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
MultiNLI :class:`~fastNLP.io.data_loader.MNLILoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
QNLI :class:`~fastNLP.io.data_loader.QNLILoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
RTE :class:`~fastNLP.io.data_loader.RTELoader`
|
||||||
|
-------------------------- ------------------------------------------------------------------
|
||||||
|
Quora Pair Dataset :class:`~fastNLP.io.data_loader.QuoraLoader`
|
||||||
|
========================== ==================================================================
|
||||||
|
|
214
docs/source/tutorials/tutorial_3_embedding.rst
Normal file
214
docs/source/tutorials/tutorial_3_embedding.rst
Normal file
@ -0,0 +1,214 @@
|
|||||||
|
=========================================
|
||||||
|
使用Embedding模块将文本转成向量
|
||||||
|
=========================================
|
||||||
|
|
||||||
|
这一部分是一个关于在fastNLP当中使用embedding的教程。
|
||||||
|
|
||||||
|
教程目录:
|
||||||
|
|
||||||
|
- `Part I: embedding介绍`_
|
||||||
|
- `Part II: 使用随机初始化的embedding`_
|
||||||
|
- `Part III: 使用预训练的静态embedding`_
|
||||||
|
- `Part IV: 使用预训练的Contextual Embedding(ELMo & BERT)`_
|
||||||
|
- `Part V: 使用character-level的embedding`_
|
||||||
|
- `Part VI: 叠加使用多个embedding`_
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
---------------------------------------
|
||||||
|
Part I: embedding介绍
|
||||||
|
---------------------------------------
|
||||||
|
|
||||||
|
与torch.nn.Embedding类似,fastNLP的embedding接受的输入是一个被index好的序列,输出的内容是这个序列的embedding结果。
|
||||||
|
|
||||||
|
fastNLP的embedding包括了预训练embedding和随机初始化embedding。
|
||||||
|
|
||||||
|
|
||||||
|
---------------------------------------
|
||||||
|
Part II: 使用随机初始化的embedding
|
||||||
|
---------------------------------------
|
||||||
|
|
||||||
|
使用随机初始化的embedding参见 :class:`~fastNLP.modules.encoder.embedding.Embedding` 。
|
||||||
|
|
||||||
|
可以传入词表大小和embedding维度:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
embed = Embedding(10000, 50)
|
||||||
|
|
||||||
|
也可以传入一个初始化的参数矩阵:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
embed = Embedding(init_embed)
|
||||||
|
|
||||||
|
其中的init_embed可以是torch.FloatTensor、torch.nn.Embedding或者numpy.ndarray。
|
||||||
|
|
||||||
|
|
||||||
|
---------------------------------------
|
||||||
|
Part III: 使用预训练的静态embedding
|
||||||
|
---------------------------------------
|
||||||
|
|
||||||
|
在使用预训练的embedding之前,需要根据数据集的内容构建一个词表 :class:`~fastNLP.core.vocabulary.Vocabulary` ,在
|
||||||
|
预训练embedding类初始化的时候需要将这个词表作为参数传入。
|
||||||
|
|
||||||
|
在fastNLP中,我们提供了 :class:`~fastNLP.modules.encoder.embedding.StaticEmbedding` 这一个类。
|
||||||
|
通过 :class:`~fastNLP.modules.encoder.embedding.StaticEmbedding` 可以加载预训练好的静态
|
||||||
|
Embedding,例子如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-6b-50', requires_grad=True)
|
||||||
|
|
||||||
|
vocab为根据数据集构建的词表,model_dir_or_name可以是一个路径,也可以是embedding模型的名称:
|
||||||
|
|
||||||
|
1 如果传入的是路径,那么fastNLP将会根据该路径来读取预训练的权重文件并将embedding加载进来(glove
|
||||||
|
和word2vec类型的权重文件都支持)
|
||||||
|
|
||||||
|
2 如果传入的是模型名称,那么fastNLP将会根据名称查找embedding模型,如果在cache目录下找到模型则会
|
||||||
|
自动加载;如果找不到则会自动下载。可以通过环境变量 ``FASTNLP_CACHE_DIR`` 来自定义cache目录,如::
|
||||||
|
|
||||||
|
$ FASTNLP_CACHE_DIR=~/fastnlp_cache_dir python your_python_file.py
|
||||||
|
|
||||||
|
这个命令表示fastNLP将会在 `~/fastnlp_cache_dir` 这个目录下寻找模型,找不到则会自动将模型下载到这个目录
|
||||||
|
|
||||||
|
目前支持的静态embedding模型有:
|
||||||
|
|
||||||
|
========================== ================================
|
||||||
|
模型名称 模型
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
en glove.840B.300d
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
en-glove-840d-300 glove.840B.300d
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
en-glove-6b-50 glove.6B.50d
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
en-word2vec-300 谷歌word2vec 300维
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
en-fasttext 英文fasttext 300维
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
cn 腾讯中文词向量 200维
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
cn-fasttext 中文fasttext 300维
|
||||||
|
========================== ================================
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-----------------------------------------------------------
|
||||||
|
Part IV: 使用预训练的Contextual Embedding(ELMo & BERT)
|
||||||
|
-----------------------------------------------------------
|
||||||
|
|
||||||
|
在fastNLP中,我们提供了ELMo和BERT的embedding: :class:`~fastNLP.modules.encoder.embedding.ElmoEmbedding`
|
||||||
|
和 :class:`~fastNLP.modules.encoder.embedding.BertEmbedding` 。
|
||||||
|
|
||||||
|
与静态embedding类似,ELMo的使用方法如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
embed = ElmoEmbedding(vocab, model_dir_or_name='small', requires_grad=False)
|
||||||
|
|
||||||
|
目前支持的ElmoEmbedding模型有:
|
||||||
|
|
||||||
|
========================== ================================
|
||||||
|
模型名称 模型
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
small allennlp ELMo的small
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
medium allennlp ELMo的medium
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
original allennlp ELMo的original
|
||||||
|
-------------------------- --------------------------------
|
||||||
|
5.5b-original allennlp ELMo的5.5B original
|
||||||
|
========================== ================================
|
||||||
|
|
||||||
|
BERT-embedding的使用方法如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
embed = BertEmbedding(
|
||||||
|
vocab, model_dir_or_name='en-base-cased', requires_grad=False, layers='4,-2,-1'
|
||||||
|
)
|
||||||
|
|
||||||
|
其中layers变量表示需要取哪几层的encode结果。
|
||||||
|
|
||||||
|
目前支持的BertEmbedding模型有:
|
||||||
|
|
||||||
|
========================== ====================================
|
||||||
|
模型名称 模型
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
en bert-base-cased
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
en-base-uncased bert-base-uncased
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
en-base-cased bert-base-cased
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
en-large-uncased bert-large-uncased
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
en-large-cased bert-large-cased
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
en-large-cased-wwm bert-large-cased-whole-word-mask
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
en-large-uncased-wwm bert-large-uncased-whole-word-mask
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
en-base-cased-mrpc bert-base-cased-finetuned-mrpc
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
multilingual bert-base-multilingual-cased
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
multilingual-base-uncased bert-base-multilingual-uncased
|
||||||
|
-------------------------- ------------------------------------
|
||||||
|
multilingual-base-cased bert-base-multilingual-cased
|
||||||
|
========================== ====================================
|
||||||
|
|
||||||
|
-----------------------------------------------------
|
||||||
|
Part V: 使用character-level的embedding
|
||||||
|
-----------------------------------------------------
|
||||||
|
|
||||||
|
除了预训练的embedding以外,fastNLP还提供了CharEmbedding: :class:`~fastNLP.modules.encoder.embedding.CNNCharEmbedding` 和
|
||||||
|
:class:`~fastNLP.modules.encoder.embedding.LSTMCharEmbedding` 。
|
||||||
|
|
||||||
|
CNNCharEmbedding的使用例子如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
embed = CNNCharEmbedding(vocab, embed_size=100, char_emb_size=50)
|
||||||
|
|
||||||
|
这表示这个CNNCharEmbedding当中character的embedding维度大小为50,返回的embedding结果维度大小为100。
|
||||||
|
|
||||||
|
与CNNCharEmbedding类似,LSTMCharEmbedding的使用例子如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
embed = LSTMCharEmbedding(vocab, embed_size=100, char_emb_size=50)
|
||||||
|
|
||||||
|
这表示这个LSTMCharEmbedding当中character的embedding维度大小为50,返回的embedding结果维度大小为100。
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-----------------------------------------------------
|
||||||
|
Part VI: 叠加使用多个embedding
|
||||||
|
-----------------------------------------------------
|
||||||
|
|
||||||
|
在fastNLP中,我们使用 :class:`~fastNLP.modules.encoder.embedding.StackEmbedding` 来叠加多个embedding
|
||||||
|
|
||||||
|
例子如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
embed_1 = StaticEmbedding(vocab, model_dir_or_name='en-glove-6b-50', requires_grad=True)
|
||||||
|
embed_2 = StaticEmbedding(vocab, model_dir_or_name='en-word2vec-300', requires_grad=True)
|
||||||
|
|
||||||
|
stack_embed = StackEmbedding([embed_1, embed_2])
|
||||||
|
|
||||||
|
StackEmbedding会把多个embedding的结果拼接起来,如上面例子的stack_embed返回的embedding维度为350维。
|
||||||
|
|
||||||
|
除此以外,还可以把静态embedding跟上下文相关的embedding拼接起来:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
elmo_embedding = ElmoEmbedding(vocab, model_dir_or_name='medium', layers='0,1,2', requires_grad=False)
|
||||||
|
glove_embedding = StaticEmbedding(vocab, model_dir_or_name='en-glove-6b-50', requires_grad=True)
|
||||||
|
|
||||||
|
stack_embed = StackEmbedding([elmo_embedding, glove_embedding])
|
267
docs/source/tutorials/tutorial_4_loss_optimizer.rst
Normal file
267
docs/source/tutorials/tutorial_4_loss_optimizer.rst
Normal file
@ -0,0 +1,267 @@
|
|||||||
|
==============================================================================
|
||||||
|
动手实现一个文本分类器I-使用Trainer和Tester快速训练和测试
|
||||||
|
==============================================================================
|
||||||
|
|
||||||
|
我们使用和 :doc:`/user/quickstart` 中一样的任务来进行详细的介绍。给出一段评价性文字,预测其情感倾向是积极(label=1)、
|
||||||
|
消极(label=0)还是中性(label=2),使用 :class:`~fastNLP.Trainer` 和 :class:`~fastNLP.Tester` 来进行快速训练和测试。
|
||||||
|
|
||||||
|
--------------
|
||||||
|
数据处理
|
||||||
|
--------------
|
||||||
|
|
||||||
|
数据读入
|
||||||
|
我们可以使用 fastNLP :mod:`fastNLP.io` 模块中的 :class:`~fastNLP.io.SSTLoader` 类,轻松地读取SST数据集(数据来源:https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip)。
|
||||||
|
这里的 dataset 是 fastNLP 中 :class:`~fastNLP.DataSet` 类的对象。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP.io import SSTLoader
|
||||||
|
|
||||||
|
loader = SSTLoader()
|
||||||
|
#这里的all.txt是下载好数据后train.txt、dev.txt、test.txt的组合
|
||||||
|
dataset = loader.load("./trainDevTestTrees_PTB/trees/all.txt")
|
||||||
|
print(dataset[0])
|
||||||
|
|
||||||
|
输出数据如下::
|
||||||
|
|
||||||
|
{'words': ['It', "'s", 'a', 'lovely', 'film', 'with', 'lovely', 'performances', 'by', 'Buy', 'and', 'Accorsi', '.'] type=list,
|
||||||
|
'target': positive type=str}
|
||||||
|
|
||||||
|
除了读取数据外,fastNLP 还提供了读取其它文件类型的 Loader 类、读取 Embedding的 Loader 等。详见 :doc:`/fastNLP.io` 。
|
||||||
|
|
||||||
|
|
||||||
|
数据处理
|
||||||
|
我们使用 :class:`~fastNLP.DataSet` 类的 :meth:`~fastNLP.DataSet.apply` 方法将 ``target`` :mod:`~fastNLP.core.field` 转化为整数。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
def label_to_int(x):
|
||||||
|
if x['target']=="positive":
|
||||||
|
return 1
|
||||||
|
elif x['target']=="negative":
|
||||||
|
return 0
|
||||||
|
else:
|
||||||
|
return 2
|
||||||
|
|
||||||
|
# 将label转为整数
|
||||||
|
dataset.apply(lambda x: label_to_int(x), new_field_name='target')
|
||||||
|
|
||||||
|
``words`` 和 ``target`` 已经足够用于 :class:`~fastNLP.models.CNNText` 的训练了,但我们从其文档
|
||||||
|
:class:`~fastNLP.models.CNNText` 中看到,在 :meth:`~fastNLP.models.CNNText.forward` 的时候,还可以传入可选参数 ``seq_len`` 。
|
||||||
|
所以,我们再使用 :meth:`~fastNLP.DataSet.apply_field` 方法增加一个名为 ``seq_len`` 的 :mod:`~fastNLP.core.field` 。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
# 增加长度信息
|
||||||
|
dataset.apply_field(lambda x: len(x), field_name='words', new_field_name='seq_len')
|
||||||
|
|
||||||
|
观察可知: :meth:`~fastNLP.DataSet.apply_field` 与 :meth:`~fastNLP.DataSet.apply` 类似,
|
||||||
|
但所传入的 `lambda` 函数是针对一个 :class:`~fastNLP.Instance` 中的一个 :mod:`~fastNLP.core.field` 的;
|
||||||
|
而 :meth:`~fastNLP.DataSet.apply` 所传入的 `lambda` 函数是针对整个 :class:`~fastNLP.Instance` 的。
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
`lambda` 函数即匿名函数,是 Python 的重要特性。 ``lambda x: len(x)`` 和下面的这个函数的作用相同::
|
||||||
|
|
||||||
|
def func_lambda(x):
|
||||||
|
return len(x)
|
||||||
|
|
||||||
|
你也可以编写复杂的函数做为 :meth:`~fastNLP.DataSet.apply_field` 与 :meth:`~fastNLP.DataSet.apply` 的参数
|
||||||
|
|
||||||
|
Vocabulary 的使用
|
||||||
|
我们再用 :class:`~fastNLP.Vocabulary` 类来统计数据中出现的单词,并使用 :meth:`~fastNLP.Vocabulary.index_dataset`
|
||||||
|
将单词序列转化为训练可用的数字序列。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import Vocabulary
|
||||||
|
|
||||||
|
# 使用Vocabulary类统计单词,并将单词序列转化为数字序列
|
||||||
|
vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')
|
||||||
|
vocab.index_dataset(dataset, field_name='words',new_field_name='words')
|
||||||
|
print(dataset[0])
|
||||||
|
|
||||||
|
输出数据如下::
|
||||||
|
|
||||||
|
{'words': [27, 9, 6, 913, 16, 18, 913, 124, 31, 5715, 5, 1, 2] type=list,
|
||||||
|
'target': 1 type=int,
|
||||||
|
'seq_len': 13 type=int}
|
||||||
|
|
||||||
|
|
||||||
|
---------------------
|
||||||
|
使用内置模型训练
|
||||||
|
---------------------
|
||||||
|
|
||||||
|
内置模型的输入输出命名
|
||||||
|
fastNLP内置了一些完整的神经网络模型,详见 :doc:`/fastNLP.models` , 我们使用其中的 :class:`~fastNLP.models.CNNText` 模型进行训练。
|
||||||
|
为了使用内置的 :class:`~fastNLP.models.CNNText`,我们必须修改 :class:`~fastNLP.DataSet` 中 :mod:`~fastNLP.core.field` 的名称。
|
||||||
|
在这个例子中模型输入 (forward方法的参数) 为 ``words`` 和 ``seq_len`` ; 预测输出为 ``pred`` ;标准答案为 ``target`` 。
|
||||||
|
具体的命名规范可以参考 :doc:`/fastNLP.core.const` 。
|
||||||
|
|
||||||
|
如果不想查看文档,您也可以使用 :class:`~fastNLP.Const` 类进行命名。下面的代码展示了给 :class:`~fastNLP.DataSet` 中
|
||||||
|
:mod:`~fastNLP.core.field` 改名的 :meth:`~fastNLP.DataSet.rename_field` 方法,以及 :class:`~fastNLP.Const` 类的使用方法。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import Const
|
||||||
|
|
||||||
|
dataset.rename_field('words', Const.INPUT)
|
||||||
|
dataset.rename_field('seq_len', Const.INPUT_LEN)
|
||||||
|
dataset.rename_field('target', Const.TARGET)
|
||||||
|
|
||||||
|
print(Const.INPUT)
|
||||||
|
print(Const.INPUT_LEN)
|
||||||
|
print(Const.TARGET)
|
||||||
|
print(Const.OUTPUT)
|
||||||
|
|
||||||
|
输出结果为::
|
||||||
|
|
||||||
|
words
|
||||||
|
seq_len
|
||||||
|
target
|
||||||
|
pred
|
||||||
|
|
||||||
|
在给 :class:`~fastNLP.DataSet` 中 :mod:`~fastNLP.core.field` 改名后,我们还需要设置训练所需的输入和目标,这里使用的是
|
||||||
|
:meth:`~fastNLP.DataSet.set_input` 和 :meth:`~fastNLP.DataSet.set_target` 两个函数。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
#使用dataset的 set_input 和 set_target函数,告诉模型dataset中那些数据是输入,那些数据是标签(目标输出)
|
||||||
|
dataset.set_input(Const.INPUT, Const.INPUT_LEN)
|
||||||
|
dataset.set_target(Const.TARGET)
|
||||||
|
|
||||||
|
数据集分割
|
||||||
|
除了修改 :mod:`~fastNLP.core.field` 之外,我们还可以对 :class:`~fastNLP.DataSet` 进行分割,以供训练、开发和测试使用。
|
||||||
|
下面这段代码展示了 :meth:`~fastNLP.DataSet.split` 的使用方法
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
train_dev_data, test_data = dataset.split(0.1)
|
||||||
|
train_data, dev_data = train_dev_data.split(0.1)
|
||||||
|
print(len(train_data), len(dev_data), len(test_data))
|
||||||
|
|
||||||
|
输出结果为::
|
||||||
|
|
||||||
|
9603 1067 1185
|
||||||
|
|
||||||
|
评价指标
|
||||||
|
训练模型需要提供一个评价指标。这里使用准确率做为评价指标。参数的 `命名规则` 跟上面类似。
|
||||||
|
``pred`` 参数对应的是模型的 forward 方法返回的 dict 中的一个 key 的名字。
|
||||||
|
``target`` 参数对应的是 :class:`~fastNLP.DataSet` 中作为标签的 :mod:`~fastNLP.core.field` 的名字。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import AccuracyMetric
|
||||||
|
|
||||||
|
# metrics=AccuracyMetric() 在本例中与下面这行代码等价
|
||||||
|
metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)
|
||||||
|
|
||||||
|
损失函数
|
||||||
|
训练模型需要提供一个损失函数
|
||||||
|
,fastNLP中提供了直接可以导入使用的四种loss,分别为:
|
||||||
|
* :class:`~fastNLP.CrossEntropyLoss`:包装了torch.nn.functional.cross_entropy()函数,返回交叉熵损失(可以运用于多分类场景)
|
||||||
|
* :class:`~fastNLP.BCELoss`:包装了torch.nn.functional.binary_cross_entropy()函数,返回二分类的交叉熵
|
||||||
|
* :class:`~fastNLP.L1Loss`:包装了torch.nn.functional.l1_loss()函数,返回L1 损失
|
||||||
|
* :class:`~fastNLP.NLLLoss`:包装了torch.nn.functional.nll_loss()函数,返回负对数似然损失
|
||||||
|
|
||||||
|
下面提供了一个在分类问题中常用的交叉熵损失。注意它的 **初始化参数** 。
|
||||||
|
``pred`` 参数对应的是模型的 forward 方法返回的 dict 中的一个 key 的名字。
|
||||||
|
``target`` 参数对应的是 :class:`~fastNLP.DataSet` 中作为标签的 :mod:`~fastNLP.core.field` 的名字。
|
||||||
|
这里我们用 :class:`~fastNLP.Const` 来辅助命名,如果你自己编写模型中 forward 方法的返回值或
|
||||||
|
数据集中 :mod:`~fastNLP.core.field` 的名字与本例不同, 你可以把 ``pred`` 参数和 ``target`` 参数设定符合自己代码的值。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import CrossEntropyLoss
|
||||||
|
|
||||||
|
# loss = CrossEntropyLoss() 在本例中与下面这行代码等价
|
||||||
|
loss = CrossEntropyLoss(pred=Const.OUTPUT, target=Const.TARGET)
|
||||||
|
|
||||||
|
优化器
|
||||||
|
定义模型运行的时候使用的优化器,可以使用fastNLP包装好的优化器:
|
||||||
|
|
||||||
|
* :class:`~fastNLP.SGD` :包装了torch.optim.SGD优化器
|
||||||
|
* :class:`~fastNLP.Adam` :包装了torch.optim.Adam优化器
|
||||||
|
|
||||||
|
也可以直接使用torch.optim.Optimizer中的优化器,并在实例化 :class:`~fastNLP.Trainer` 类的时候传入优化器实参
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import torch.optim as optim
|
||||||
|
from fastNLP import Adam
|
||||||
|
|
||||||
|
#使用 torch.optim 定义优化器
|
||||||
|
optimizer_1=optim.RMSprop(model_cnn.parameters(), lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False)
|
||||||
|
#使用fastNLP中包装的 Adam 定义优化器
|
||||||
|
optimizer_2=Adam(lr=4e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, model_params=model_cnn.parameters())
|
||||||
|
|
||||||
|
快速训练
|
||||||
|
现在我们可以导入 fastNLP 内置的文本分类模型 :class:`~fastNLP.models.CNNText` ,并使用 :class:`~fastNLP.Trainer` 进行训练,
|
||||||
|
除了使用 :class:`~fastNLP.Trainer`进行训练,我们也可以通过使用 :class:`~fastNLP.DataSetIter` 来编写自己的训练过程,具体见 :doc:`/tutorials/tutorial_5_datasetiter`
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP.models import CNNText
|
||||||
|
|
||||||
|
#词嵌入的维度、训练的轮数和batch size
|
||||||
|
EMBED_DIM = 100
|
||||||
|
N_EPOCHS = 10
|
||||||
|
BATCH_SIZE = 16
|
||||||
|
|
||||||
|
#使用CNNText的时候第一个参数输入一个tuple,作为模型定义embedding的参数
|
||||||
|
#还可以传入 kernel_nums, kernel_sizes, padding, dropout的自定义值
|
||||||
|
model_cnn = CNNText((len(vocab),EMBED_DIM), num_classes=3, padding=2, dropout=0.1)
|
||||||
|
|
||||||
|
#如果在定义trainer的时候没有传入optimizer参数,模型默认的优化器为torch.optim.Adam且learning rate为lr=4e-3
|
||||||
|
#这里只使用了optimizer_1作为优化器输入,感兴趣可以尝试optimizer_2或者其他优化器作为输入
|
||||||
|
#这里只使用了loss作为损失函数输入,感兴趣可以尝试其他损失函数输入
|
||||||
|
trainer = Trainer(model=model_cnn, train_data=train_data, dev_data=dev_data, loss=loss, metrics=metrics,
|
||||||
|
optimizer=optimizer_1,n_epochs=N_EPOCHS, batch_size=BATCH_SIZE)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
训练过程的输出如下::
|
||||||
|
|
||||||
|
input fields after batch(if batch size is 2):
|
||||||
|
words: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 40])
|
||||||
|
seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
||||||
|
target fields after batch(if batch size is 2):
|
||||||
|
target: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
||||||
|
|
||||||
|
training epochs started 2019-07-08-15-44-48
|
||||||
|
Evaluation at Epoch 1/10. Step:601/6010. AccuracyMetric: acc=0.59044
|
||||||
|
|
||||||
|
Evaluation at Epoch 2/10. Step:1202/6010. AccuracyMetric: acc=0.599813
|
||||||
|
|
||||||
|
Evaluation at Epoch 3/10. Step:1803/6010. AccuracyMetric: acc=0.508903
|
||||||
|
|
||||||
|
Evaluation at Epoch 4/10. Step:2404/6010. AccuracyMetric: acc=0.596064
|
||||||
|
|
||||||
|
Evaluation at Epoch 5/10. Step:3005/6010. AccuracyMetric: acc=0.47985
|
||||||
|
|
||||||
|
Evaluation at Epoch 6/10. Step:3606/6010. AccuracyMetric: acc=0.589503
|
||||||
|
|
||||||
|
Evaluation at Epoch 7/10. Step:4207/6010. AccuracyMetric: acc=0.311153
|
||||||
|
|
||||||
|
Evaluation at Epoch 8/10. Step:4808/6010. AccuracyMetric: acc=0.549203
|
||||||
|
|
||||||
|
Evaluation at Epoch 9/10. Step:5409/6010. AccuracyMetric: acc=0.581068
|
||||||
|
|
||||||
|
Evaluation at Epoch 10/10. Step:6010/6010. AccuracyMetric: acc=0.523899
|
||||||
|
|
||||||
|
|
||||||
|
In Epoch:2/Step:1202, got best dev performance:AccuracyMetric: acc=0.599813
|
||||||
|
Reloaded the best model.
|
||||||
|
|
||||||
|
快速测试
|
||||||
|
与 :class:`~fastNLP.Trainer` 对应,fastNLP 也提供了 :class:`~fastNLP.Tester` 用于快速测试,用法如下
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import Tester
|
||||||
|
|
||||||
|
tester = Tester(test_data, model_cnn, metrics=AccuracyMetric())
|
||||||
|
tester.test()
|
||||||
|
|
||||||
|
训练过程输出如下::
|
||||||
|
|
||||||
|
[tester]
|
||||||
|
AccuracyMetric: acc=0.565401
|
250
docs/source/tutorials/tutorial_5_datasetiter.rst
Normal file
250
docs/source/tutorials/tutorial_5_datasetiter.rst
Normal file
@ -0,0 +1,250 @@
|
|||||||
|
==============================================================================
|
||||||
|
动手实现一个文本分类器II-使用DataSetIter实现自定义训练过程
|
||||||
|
==============================================================================
|
||||||
|
|
||||||
|
我们使用和 :doc:`/user/quickstart` 中一样的任务来进行详细的介绍。给出一段评价性文字,预测其情感倾向是积极(label=1)、
|
||||||
|
消极(label=0)还是中性(label=2),使用 :class:`~fastNLP.DataSetIter` 类来编写自己的训练过程。
|
||||||
|
自己编写训练过程之前的内容与 :doc:`/tutorials/tutorial_4_loss_optimizer` 中的完全一样,如已经阅读过可以跳过。
|
||||||
|
|
||||||
|
--------------
|
||||||
|
数据处理
|
||||||
|
--------------
|
||||||
|
|
||||||
|
数据读入
|
||||||
|
我们可以使用 fastNLP :mod:`fastNLP.io` 模块中的 :class:`~fastNLP.io.SSTLoader` 类,轻松地读取SST数据集(数据来源:https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip)。
|
||||||
|
这里的 dataset 是 fastNLP 中 :class:`~fastNLP.DataSet` 类的对象。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP.io import SSTLoader
|
||||||
|
|
||||||
|
loader = SSTLoader()
|
||||||
|
#这里的all.txt是下载好数据后train.txt、dev.txt、test.txt的组合
|
||||||
|
dataset = loader.load("./trainDevTestTrees_PTB/trees/all.txt")
|
||||||
|
print(dataset[0])
|
||||||
|
|
||||||
|
输出数据如下::
|
||||||
|
|
||||||
|
{'words': ['It', "'s", 'a', 'lovely', 'film', 'with', 'lovely', 'performances', 'by', 'Buy', 'and', 'Accorsi', '.'] type=list,
|
||||||
|
'target': positive type=str}
|
||||||
|
|
||||||
|
除了读取数据外,fastNLP 还提供了读取其它文件类型的 Loader 类、读取 Embedding的 Loader 等。详见 :doc:`/fastNLP.io` 。
|
||||||
|
|
||||||
|
|
||||||
|
数据处理
|
||||||
|
我们使用 :class:`~fastNLP.DataSet` 类的 :meth:`~fastNLP.DataSet.apply` 方法将 ``target`` :mod:`~fastNLP.core.field` 转化为整数。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
def label_to_int(x):
|
||||||
|
if x['target']=="positive":
|
||||||
|
return 1
|
||||||
|
elif x['target']=="negative":
|
||||||
|
return 0
|
||||||
|
else:
|
||||||
|
return 2
|
||||||
|
|
||||||
|
# 将label转为整数
|
||||||
|
dataset.apply(lambda x: label_to_int(x), new_field_name='target')
|
||||||
|
|
||||||
|
``words`` 和 ``target`` 已经足够用于 :class:`~fastNLP.models.CNNText` 的训练了,但我们从其文档
|
||||||
|
:class:`~fastNLP.models.CNNText` 中看到,在 :meth:`~fastNLP.models.CNNText.forward` 的时候,还可以传入可选参数 ``seq_len`` 。
|
||||||
|
所以,我们再使用 :meth:`~fastNLP.DataSet.apply_field` 方法增加一个名为 ``seq_len`` 的 :mod:`~fastNLP.core.field` 。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
# 增加长度信息
|
||||||
|
dataset.apply_field(lambda x: len(x), field_name='words', new_field_name='seq_len')
|
||||||
|
|
||||||
|
观察可知: :meth:`~fastNLP.DataSet.apply_field` 与 :meth:`~fastNLP.DataSet.apply` 类似,
|
||||||
|
但所传入的 `lambda` 函数是针对一个 :class:`~fastNLP.Instance` 中的一个 :mod:`~fastNLP.core.field` 的;
|
||||||
|
而 :meth:`~fastNLP.DataSet.apply` 所传入的 `lambda` 函数是针对整个 :class:`~fastNLP.Instance` 的。
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
`lambda` 函数即匿名函数,是 Python 的重要特性。 ``lambda x: len(x)`` 和下面的这个函数的作用相同::
|
||||||
|
|
||||||
|
def func_lambda(x):
|
||||||
|
return len(x)
|
||||||
|
|
||||||
|
你也可以编写复杂的函数做为 :meth:`~fastNLP.DataSet.apply_field` 与 :meth:`~fastNLP.DataSet.apply` 的参数
|
||||||
|
|
||||||
|
Vocabulary 的使用
|
||||||
|
我们再用 :class:`~fastNLP.Vocabulary` 类来统计数据中出现的单词,并使用 :meth:`~fastNLP.Vocabulary.index_dataset`
|
||||||
|
将单词序列转化为训练可用的数字序列。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import Vocabulary
|
||||||
|
|
||||||
|
# 使用Vocabulary类统计单词,并将单词序列转化为数字序列
|
||||||
|
vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')
|
||||||
|
vocab.index_dataset(dataset, field_name='words',new_field_name='words')
|
||||||
|
print(dataset[0])
|
||||||
|
|
||||||
|
输出数据如下::
|
||||||
|
|
||||||
|
{'words': [27, 9, 6, 913, 16, 18, 913, 124, 31, 5715, 5, 1, 2] type=list,
|
||||||
|
'target': 1 type=int,
|
||||||
|
'seq_len': 13 type=int}
|
||||||
|
|
||||||
|
|
||||||
|
---------------------
|
||||||
|
使用内置模型训练
|
||||||
|
---------------------
|
||||||
|
|
||||||
|
内置模型的输入输出命名
|
||||||
|
fastNLP内置了一些完整的神经网络模型,详见 :doc:`/fastNLP.models` , 我们使用其中的 :class:`~fastNLP.models.CNNText` 模型进行训练。
|
||||||
|
为了使用内置的 :class:`~fastNLP.models.CNNText`,我们必须修改 :class:`~fastNLP.DataSet` 中 :mod:`~fastNLP.core.field` 的名称。
|
||||||
|
在这个例子中模型输入 (forward方法的参数) 为 ``words`` 和 ``seq_len`` ; 预测输出为 ``pred`` ;标准答案为 ``target`` 。
|
||||||
|
具体的命名规范可以参考 :doc:`/fastNLP.core.const` 。
|
||||||
|
|
||||||
|
如果不想查看文档,您也可以使用 :class:`~fastNLP.Const` 类进行命名。下面的代码展示了给 :class:`~fastNLP.DataSet` 中
|
||||||
|
:mod:`~fastNLP.core.field` 改名的 :meth:`~fastNLP.DataSet.rename_field` 方法,以及 :class:`~fastNLP.Const` 类的使用方法。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import Const
|
||||||
|
|
||||||
|
dataset.rename_field('words', Const.INPUT)
|
||||||
|
dataset.rename_field('seq_len', Const.INPUT_LEN)
|
||||||
|
dataset.rename_field('target', Const.TARGET)
|
||||||
|
|
||||||
|
print(Const.INPUT)
|
||||||
|
print(Const.INPUT_LEN)
|
||||||
|
print(Const.TARGET)
|
||||||
|
print(Const.OUTPUT)
|
||||||
|
|
||||||
|
输出结果为::
|
||||||
|
|
||||||
|
words
|
||||||
|
seq_len
|
||||||
|
target
|
||||||
|
pred
|
||||||
|
|
||||||
|
在给 :class:`~fastNLP.DataSet` 中 :mod:`~fastNLP.core.field` 改名后,我们还需要设置训练所需的输入和目标,这里使用的是
|
||||||
|
:meth:`~fastNLP.DataSet.set_input` 和 :meth:`~fastNLP.DataSet.set_target` 两个函数。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
#使用dataset的 set_input 和 set_target函数,告诉模型dataset中那些数据是输入,那些数据是标签(目标输出)
|
||||||
|
dataset.set_input(Const.INPUT, Const.INPUT_LEN)
|
||||||
|
dataset.set_target(Const.TARGET)
|
||||||
|
|
||||||
|
数据集分割
|
||||||
|
除了修改 :mod:`~fastNLP.core.field` 之外,我们还可以对 :class:`~fastNLP.DataSet` 进行分割,以供训练、开发和测试使用。
|
||||||
|
下面这段代码展示了 :meth:`~fastNLP.DataSet.split` 的使用方法
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
train_dev_data, test_data = dataset.split(0.1)
|
||||||
|
train_data, dev_data = train_dev_data.split(0.1)
|
||||||
|
print(len(train_data), len(dev_data), len(test_data))
|
||||||
|
|
||||||
|
输出结果为::
|
||||||
|
|
||||||
|
9603 1067 1185
|
||||||
|
|
||||||
|
评价指标
|
||||||
|
训练模型需要提供一个评价指标。这里使用准确率做为评价指标。参数的 `命名规则` 跟上面类似。
|
||||||
|
``pred`` 参数对应的是模型的 forward 方法返回的 dict 中的一个 key 的名字。
|
||||||
|
``target`` 参数对应的是 :class:`~fastNLP.DataSet` 中作为标签的 :mod:`~fastNLP.core.field` 的名字。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import AccuracyMetric
|
||||||
|
|
||||||
|
# metrics=AccuracyMetric() 在本例中与下面这行代码等价
|
||||||
|
metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)
|
||||||
|
|
||||||
|
|
||||||
|
--------------------------
|
||||||
|
自己编写训练过程
|
||||||
|
--------------------------
|
||||||
|
如果你想用类似 PyTorch 的使用方法,自己编写训练过程,你可以参考下面这段代码。
|
||||||
|
其中使用了 fastNLP 提供的 :class:`~fastNLP.DataSetIter` 来获得小批量训练的小批量数据,
|
||||||
|
使用 :class:`~fastNLP.BucketSampler` 做为 :class:`~fastNLP.DataSetIter` 的参数来选择采样的方式。
|
||||||
|
|
||||||
|
DataSetIter
|
||||||
|
fastNLP定义的 :class:`~fastNLP.DataSetIter` 类,用于定义一个batch,并实现batch的多种功能,在初始化时传入的参数有:
|
||||||
|
|
||||||
|
* dataset: :class:`~fastNLP.DataSet` 对象, 数据集
|
||||||
|
* batch_size: 取出的batch大小
|
||||||
|
* sampler: 规定使用的 :class:`~fastNLP.Sampler` 若为 None, 使用 :class:`~fastNLP.RandomSampler` (Default: None)
|
||||||
|
* as_numpy: 若为 True, 输出batch为 `numpy.array`. 否则为 `torch.Tensor` (Default: False)
|
||||||
|
* prefetch: 若为 True使用多进程预先取出下一batch. (Default: False)
|
||||||
|
|
||||||
|
sampler
|
||||||
|
fastNLP 实现的采样器有:
|
||||||
|
|
||||||
|
* :class:`~fastNLP.BucketSampler` 可以随机地取出长度相似的元素 【初始化参数: num_buckets:bucket的数量; batch_size:batch大小; seq_len_field_name:dataset中对应序列长度的 :mod:`~fastNLP.core.field` 的名字】
|
||||||
|
* SequentialSampler: 顺序取出元素的采样器【无初始化参数】
|
||||||
|
* RandomSampler:随机化取元素的采样器【无初始化参数】
|
||||||
|
|
||||||
|
以下代码使用BucketSampler作为 :class:`~fastNLP.DataSetIter` 初始化的输入,运用 :class:`~fastNLP.DataSetIter` 自己写训练程序
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import BucketSampler
|
||||||
|
from fastNLP import DataSetIter
|
||||||
|
from fastNLP.models import CNNText
|
||||||
|
from fastNLP import Tester
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
|
||||||
|
embed_dim = 100
|
||||||
|
model = CNNText((len(vocab),embed_dim), num_classes=3, padding=2, dropout=0.1)
|
||||||
|
|
||||||
|
def train(epoch, data, devdata):
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
||||||
|
lossfunc = torch.nn.CrossEntropyLoss()
|
||||||
|
batch_size = 32
|
||||||
|
|
||||||
|
# 定义一个Batch,传入DataSet,规定batch_size和去batch的规则。
|
||||||
|
# 顺序(Sequential),随机(Random),相似长度组成一个batch(Bucket)
|
||||||
|
train_sampler = BucketSampler(batch_size=batch_size, seq_len_field_name='seq_len')
|
||||||
|
train_batch = DataSetIter(batch_size=batch_size, dataset=data, sampler=train_sampler)
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
print("-"*5+"start training"+"-"*5)
|
||||||
|
for i in range(epoch):
|
||||||
|
loss_list = []
|
||||||
|
for batch_x, batch_y in train_batch:
|
||||||
|
optimizer.zero_grad()
|
||||||
|
output = model(batch_x['words'])
|
||||||
|
loss = lossfunc(output['pred'], batch_y['target'])
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
loss_list.append(loss.item())
|
||||||
|
|
||||||
|
#这里verbose如果为0,在调用Tester对象的test()函数时不输出任何信息,返回评估信息; 如果为1,打印出验证结果,返回评估信息
|
||||||
|
#在调用过Tester对象的test()函数后,调用其_format_eval_results(res)函数,结构化输出验证结果
|
||||||
|
tester_tmp = Tester(devdata, model, metrics=AccuracyMetric(), verbose=0)
|
||||||
|
res=tester_tmp.test()
|
||||||
|
|
||||||
|
print('Epoch {:d} Avg Loss: {:.2f}'.format(i, sum(loss_list) / len(loss_list)),end=" ")
|
||||||
|
print(tester._format_eval_results(res),end=" ")
|
||||||
|
print('{:d}ms'.format(round((time.time()-start_time)*1000)))
|
||||||
|
loss_list.clear()
|
||||||
|
|
||||||
|
train(10, train_data, dev_data)
|
||||||
|
#使用tester进行快速测试
|
||||||
|
tester = Tester(test_data, model, metrics=AccuracyMetric())
|
||||||
|
tester.test()
|
||||||
|
|
||||||
|
这段代码的输出如下::
|
||||||
|
|
||||||
|
-----start training-----
|
||||||
|
Epoch 0 Avg Loss: 1.09 AccuracyMetric: acc=0.480787 58989ms
|
||||||
|
Epoch 1 Avg Loss: 1.00 AccuracyMetric: acc=0.500469 118348ms
|
||||||
|
Epoch 2 Avg Loss: 0.93 AccuracyMetric: acc=0.536082 176220ms
|
||||||
|
Epoch 3 Avg Loss: 0.87 AccuracyMetric: acc=0.556701 236032ms
|
||||||
|
Epoch 4 Avg Loss: 0.78 AccuracyMetric: acc=0.562324 294351ms
|
||||||
|
Epoch 5 Avg Loss: 0.69 AccuracyMetric: acc=0.58388 353673ms
|
||||||
|
Epoch 6 Avg Loss: 0.60 AccuracyMetric: acc=0.574508 412106ms
|
||||||
|
Epoch 7 Avg Loss: 0.51 AccuracyMetric: acc=0.589503 471097ms
|
||||||
|
Epoch 8 Avg Loss: 0.44 AccuracyMetric: acc=0.581068 529174ms
|
||||||
|
Epoch 9 Avg Loss: 0.39 AccuracyMetric: acc=0.572634 586216ms
|
||||||
|
[tester]
|
||||||
|
AccuracyMetric: acc=0.527426
|
||||||
|
|
||||||
|
|
114
docs/source/tutorials/tutorial_6_seq_labeling.rst
Normal file
114
docs/source/tutorials/tutorial_6_seq_labeling.rst
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
=====================
|
||||||
|
快速实现序列标注模型
|
||||||
|
=====================
|
||||||
|
|
||||||
|
这一部分的内容主要展示如何使用fastNLP 实现序列标注任务。你可以使用fastNLP的各个组件快捷,方便地完成序列标注任务,达到出色的效果。
|
||||||
|
在阅读这篇Tutorial前,希望你已经熟悉了fastNLP的基础使用,包括基本数据结构以及数据预处理,embedding的嵌入等,希望你对之前的教程有更进一步的掌握。
|
||||||
|
我们将对CoNLL-03的英文数据集进行处理,展示如何完成命名实体标注任务整个训练的过程。
|
||||||
|
|
||||||
|
载入数据
|
||||||
|
===================================
|
||||||
|
fastNLP可以方便地载入各种类型的数据。同时,针对常见的数据集,我们已经预先实现了载入方法,其中包含CoNLL-03数据集。
|
||||||
|
在设计dataloader时,以DataSetLoader为基类,可以改写并应用于其他数据集的载入。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
class Conll2003DataLoader(DataSetLoader):
|
||||||
|
def __init__(self, task:str='ner', encoding_type:str='bioes'):
|
||||||
|
assert task in ('ner', 'pos', 'chunk')
|
||||||
|
index = {'ner':3, 'pos':1, 'chunk':2}[task]
|
||||||
|
#ConllLoader是fastNLP内置的类
|
||||||
|
self._loader = ConllLoader(headers=['raw_words', 'target'], indexes=[0, index])
|
||||||
|
self._tag_converters = None
|
||||||
|
if task in ('ner', 'chunk'):
|
||||||
|
#iob和iob2bioes会对tag进行统一,标准化
|
||||||
|
self._tag_converters = [iob2]
|
||||||
|
if encoding_type == 'bioes':
|
||||||
|
self._tag_converters.append(iob2bioes)
|
||||||
|
|
||||||
|
def load(self, path: str):
|
||||||
|
dataset = self._loader.load(path)
|
||||||
|
def convert_tag_schema(tags):
|
||||||
|
for converter in self._tag_converters:
|
||||||
|
tags = converter(tags)
|
||||||
|
return tags
|
||||||
|
if self._tag_converters:
|
||||||
|
#使用apply实现convert_tag_schema函数,实际上也支持匿名函数
|
||||||
|
dataset.apply_field(convert_tag_schema, field_name=Const.TARGET, new_field_name=Const.TARGET)
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
输出数据格式如:
|
||||||
|
|
||||||
|
{'raw_words': ['on', 'Friday', ':'] type=list,
|
||||||
|
'target': ['O', 'O', 'O'] type=list},
|
||||||
|
|
||||||
|
|
||||||
|
数据处理
|
||||||
|
----------------------------
|
||||||
|
我们进一步处理数据。将数据和词表封装在 :class:`~fastNLP.DataBundle` 类中。data是DataBundle的实例。
|
||||||
|
我们输入模型的数据包括char embedding,以及word embedding。在数据处理部分,我们尝试完成词表的构建。
|
||||||
|
使用fastNLP中的Vocabulary类来构建词表。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
word_vocab = Vocabulary(min_freq=2)
|
||||||
|
word_vocab.from_dataset(data.datasets['train'], field_name=Const.INPUT)
|
||||||
|
word_vocab.index_dataset(*data.datasets.values(),field_name=Const.INPUT, new_field_name=Const.INPUT)
|
||||||
|
|
||||||
|
处理后的data对象内部为:
|
||||||
|
|
||||||
|
dataset
|
||||||
|
vocabs
|
||||||
|
dataset保存了train和test中的数据,并保存为dataset类型
|
||||||
|
vocab保存了words,raw-words以及target的词表。
|
||||||
|
|
||||||
|
模型构建
|
||||||
|
--------------------------------
|
||||||
|
我们使用CNN-BILSTM-CRF模型完成这一任务。在网络构建方面,fastNLP的网络定义继承pytorch的 :class:`nn.Module` 类。
|
||||||
|
自己可以按照pytorch的方式定义网络。需要注意的是命名。fastNLP的标准命名位于 :class:`~fastNLP.Const` 类。
|
||||||
|
|
||||||
|
模型的训练
|
||||||
|
首先实例化模型,导入所需的char embedding以及word embedding。Embedding的载入可以参考教程。
|
||||||
|
也可以查看 :mod:`~fastNLP.modules.encoder.embedding` 使用所需的embedding 载入方法。
|
||||||
|
fastNLP将模型的训练过程封装在了 :class:`~fastnlp.trainer` 类中。
|
||||||
|
根据不同的任务调整trainer中的参数即可。通常,一个trainer实例需要有:指定的训练数据集,模型,优化器,loss函数,评测指标,以及指定训练的epoch数,batch size等参数。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
#实例化模型
|
||||||
|
model = CNNBiLSTMCRF(word_embed, char_embed, hidden_size=200, num_layers=1, tag_vocab=data.vocabs[Const.TARGET], encoding_type=encoding_type)
|
||||||
|
#定义优化器
|
||||||
|
optimizer = Adam(model.parameters(), lr=0.005)
|
||||||
|
#定义评估指标
|
||||||
|
Metrics=SpanFPreRecMetric(tag_vocab=data.vocabs[Const.TARGET], encoding_type=encoding_type)
|
||||||
|
#实例化trainer
|
||||||
|
trainer = Trainer(train_data=data.datasets['train'], model=model, optimizer=optimizer, dev_data=data.datasets['test'], batch_size=10, metrics=Metrics,callbacks=callbacks, n_epochs=100)
|
||||||
|
#开始训练
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
训练中会保存最优的参数配置。
|
||||||
|
训练的结果如下:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
Evaluation on DataSet test:
|
||||||
|
SpanFPreRecMetric: f=0.727661, pre=0.732293, rec=0.723088
|
||||||
|
Evaluation at Epoch 1/100. Step:1405/140500. SpanFPreRecMetric: f=0.727661, pre=0.732293, rec=0.723088
|
||||||
|
|
||||||
|
Evaluation on DataSet test:
|
||||||
|
SpanFPreRecMetric: f=0.784307, pre=0.779371, rec=0.789306
|
||||||
|
Evaluation at Epoch 2/100. Step:2810/140500. SpanFPreRecMetric: f=0.784307, pre=0.779371, rec=0.789306
|
||||||
|
|
||||||
|
Evaluation on DataSet test:
|
||||||
|
SpanFPreRecMetric: f=0.810068, pre=0.811003, rec=0.809136
|
||||||
|
Evaluation at Epoch 3/100. Step:4215/140500. SpanFPreRecMetric: f=0.810068, pre=0.811003, rec=0.809136
|
||||||
|
|
||||||
|
Evaluation on DataSet test:
|
||||||
|
SpanFPreRecMetric: f=0.829592, pre=0.84153, rec=0.817989
|
||||||
|
Evaluation at Epoch 4/100. Step:5620/140500. SpanFPreRecMetric: f=0.829592, pre=0.84153, rec=0.817989
|
||||||
|
|
||||||
|
Evaluation on DataSet test:
|
||||||
|
SpanFPreRecMetric: f=0.828789, pre=0.837096, rec=0.820644
|
||||||
|
Evaluation at Epoch 5/100. Step:7025/140500. SpanFPreRecMetric: f=0.828789, pre=0.837096, rec=0.820644
|
||||||
|
|
||||||
|
|
207
docs/source/tutorials/tutorial_7_modules_models.rst
Normal file
207
docs/source/tutorials/tutorial_7_modules_models.rst
Normal file
@ -0,0 +1,207 @@
|
|||||||
|
======================================
|
||||||
|
使用Modules和Models快速搭建自定义模型
|
||||||
|
======================================
|
||||||
|
|
||||||
|
:mod:`~fastNLP.modules` 和 :mod:`~fastNLP.models` 用于构建 fastNLP 所需的神经网络模型,它可以和 torch.nn 中的模型一起使用。
|
||||||
|
下面我们会分三节介绍编写构建模型的具体方法。
|
||||||
|
|
||||||
|
|
||||||
|
----------------------
|
||||||
|
使用 models 中的模型
|
||||||
|
----------------------
|
||||||
|
|
||||||
|
fastNLP 在 :mod:`~fastNLP.models` 模块中内置了如 :class:`~fastNLP.models.CNNText` 、
|
||||||
|
:class:`~fastNLP.models.SeqLabeling` 等完整的模型,以供用户直接使用。
|
||||||
|
以 :class:`~fastNLP.models.CNNText` 为例,我们看一个简单的文本分类的任务的实现过程。
|
||||||
|
|
||||||
|
首先是数据读入和处理部分,这里的代码和 :doc:`快速入门 </user/quickstart>` 中一致。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP.io import CSVLoader
|
||||||
|
from fastNLP import Vocabulary, CrossEntropyLoss, AccuracyMetric
|
||||||
|
|
||||||
|
loader = CSVLoader(headers=('raw_sentence', 'label'), sep='\t')
|
||||||
|
dataset = loader.load("./sample_data/tutorial_sample_dataset.csv")
|
||||||
|
|
||||||
|
dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='sentence')
|
||||||
|
dataset.apply_field(lambda x: x.split(), field_name='sentence', new_field_name='words', is_input=True)
|
||||||
|
dataset.apply(lambda x: int(x['label']), new_field_name='target', is_target=True)
|
||||||
|
|
||||||
|
train_dev_data, test_data = dataset.split(0.1)
|
||||||
|
train_data, dev_data = train_dev_data.split(0.1)
|
||||||
|
|
||||||
|
vocab = Vocabulary(min_freq=2).from_dataset(train_data, field_name='words')
|
||||||
|
vocab.index_dataset(train_data, dev_data, test_data, field_name='words', new_field_name='words')
|
||||||
|
|
||||||
|
然后我们从 :mod:`~fastNLP.models` 中导入 ``CNNText`` 模型,用它进行训练
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP.models import CNNText
|
||||||
|
from fastNLP import Trainer
|
||||||
|
|
||||||
|
model_cnn = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)
|
||||||
|
|
||||||
|
trainer = Trainer(model=model_cnn, train_data=train_data, dev_data=dev_data,
|
||||||
|
loss=CrossEntropyLoss(), metrics=AccuracyMetric())
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
在 iPython 环境输入 `model_cnn` ,我们可以看到 ``model_cnn`` 的网络结构
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
CNNText(
|
||||||
|
(embed): Embedding(
|
||||||
|
169, 50
|
||||||
|
(dropout): Dropout(p=0.0)
|
||||||
|
)
|
||||||
|
(conv_pool): ConvMaxpool(
|
||||||
|
(convs): ModuleList(
|
||||||
|
(0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))
|
||||||
|
(1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))
|
||||||
|
(2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))
|
||||||
|
)
|
||||||
|
)
|
||||||
|
(dropout): Dropout(p=0.1)
|
||||||
|
(fc): Linear(in_features=12, out_features=5, bias=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
FastNLP 中内置的 models 如下表所示,您可以点击具体的名称查看详细的 API:
|
||||||
|
|
||||||
|
.. csv-table::
|
||||||
|
:header: 名称, 介绍
|
||||||
|
|
||||||
|
:class:`~fastNLP.models.CNNText` , 使用 CNN 进行文本分类的模型
|
||||||
|
:class:`~fastNLP.models.SeqLabeling` , 简单的序列标注模型
|
||||||
|
:class:`~fastNLP.models.AdvSeqLabel` , 更大网络结构的序列标注模型
|
||||||
|
:class:`~fastNLP.models.ESIM` , ESIM 模型的实现
|
||||||
|
:class:`~fastNLP.models.StarTransEnc` , 带 word-embedding的Star-Transformer模 型
|
||||||
|
:class:`~fastNLP.models.STSeqLabel` , 用于序列标注的 Star-Transformer 模型
|
||||||
|
:class:`~fastNLP.models.STNLICls` ,用于自然语言推断 (NLI) 的 Star-Transformer 模型
|
||||||
|
:class:`~fastNLP.models.STSeqCls` , 用于分类任务的 Star-Transformer 模型
|
||||||
|
:class:`~fastNLP.models.BiaffineParser` , Biaffine 依存句法分析网络的实现
|
||||||
|
|
||||||
|
----------------------------
|
||||||
|
使用 nn.torch 编写模型
|
||||||
|
----------------------------
|
||||||
|
|
||||||
|
FastNLP 完全支持使用 pyTorch 编写的模型,但与 pyTorch 中编写模型的常见方法不同,
|
||||||
|
用于 fastNLP 的模型中 forward 函数需要返回一个字典,字典中至少需要包含 ``pred`` 这个字段。
|
||||||
|
|
||||||
|
下面是使用 pyTorch 中的 torch.nn 模块编写的文本分类,注意观察代码中标注的向量维度。
|
||||||
|
由于 pyTorch 使用了约定俗成的维度设置,使得 forward 中需要多次处理维度顺序
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
class LSTMText(nn.Module):
|
||||||
|
def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.embedding = nn.Embedding(vocab_size, embedding_dim)
|
||||||
|
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True, dropout=dropout)
|
||||||
|
self.fc = nn.Linear(hidden_dim * 2, output_dim)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
def forward(self, words):
|
||||||
|
# (input) words : (batch_size, seq_len)
|
||||||
|
words = words.permute(1,0)
|
||||||
|
# words : (seq_len, batch_size)
|
||||||
|
|
||||||
|
embedded = self.dropout(self.embedding(words))
|
||||||
|
# embedded : (seq_len, batch_size, embedding_dim)
|
||||||
|
output, (hidden, cell) = self.lstm(embedded)
|
||||||
|
# output: (seq_len, batch_size, hidden_dim * 2)
|
||||||
|
# hidden: (num_layers * 2, batch_size, hidden_dim)
|
||||||
|
# cell: (num_layers * 2, batch_size, hidden_dim)
|
||||||
|
|
||||||
|
hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)
|
||||||
|
hidden = self.dropout(hidden)
|
||||||
|
# hidden: (batch_size, hidden_dim * 2)
|
||||||
|
|
||||||
|
pred = self.fc(hidden.squeeze(0))
|
||||||
|
# result: (batch_size, output_dim)
|
||||||
|
return {"pred":pred}
|
||||||
|
|
||||||
|
我们同样可以在 iPython 环境中查看这个模型的网络结构
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
LSTMText(
|
||||||
|
(embedding): Embedding(169, 50)
|
||||||
|
(lstm): LSTM(50, 64, num_layers=2, dropout=0.5, bidirectional=True)
|
||||||
|
(fc): Linear(in_features=128, out_features=5, bias=True)
|
||||||
|
(dropout): Dropout(p=0.5)
|
||||||
|
)
|
||||||
|
|
||||||
|
----------------------------
|
||||||
|
使用 modules 编写模型
|
||||||
|
----------------------------
|
||||||
|
|
||||||
|
下面我们使用 :mod:`fastNLP.modules` 中的组件来构建同样的网络。由于 fastNLP 统一把 ``batch_size`` 放在第一维,
|
||||||
|
在编写代码的过程中会有一定的便利。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP.modules import Embedding, LSTM, MLP
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.embedding = Embedding((vocab_size, embedding_dim))
|
||||||
|
self.lstm = LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True)
|
||||||
|
self.mlp = MLP([hidden_dim*2,output_dim], dropout=dropout)
|
||||||
|
|
||||||
|
def forward(self, words):
|
||||||
|
embedded = self.embedding(words)
|
||||||
|
_,(hidden,_) = self.lstm(embedded)
|
||||||
|
pred = self.mlp(torch.cat((hidden[-1],hidden[-2]),dim=1))
|
||||||
|
return {"pred":pred}
|
||||||
|
|
||||||
|
我们自己编写模型的网络结构如下
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
Model(
|
||||||
|
(embedding): Embedding(
|
||||||
|
169, 50
|
||||||
|
(dropout): Dropout(p=0.0)
|
||||||
|
)
|
||||||
|
(lstm): LSTM(
|
||||||
|
(lstm): LSTM(50, 64, num_layers=2, batch_first=True, bidirectional=True)
|
||||||
|
)
|
||||||
|
(mlp): MLP(
|
||||||
|
(hiddens): ModuleList()
|
||||||
|
(output): Linear(in_features=128, out_features=5, bias=True)
|
||||||
|
(dropout): Dropout(p=0.5)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
FastNLP 中包含的各种模块如下表,您可以点击具体的名称查看详细的 API,也可以通过 :doc:`/fastNLP.modules` 进行了解。
|
||||||
|
|
||||||
|
.. csv-table::
|
||||||
|
:header: 名称, 介绍
|
||||||
|
|
||||||
|
:class:`~fastNLP.modules.ConvolutionCharEncoder` , char级别的卷积 encoder
|
||||||
|
:class:`~fastNLP.modules.LSTMCharEncoder` , char级别基于LSTM的 encoder
|
||||||
|
:class:`~fastNLP.modules.ConvMaxpool` , 结合了Convolution和Max-Pooling于一体的模块
|
||||||
|
:class:`~fastNLP.modules.LSTM` , LSTM模块, 轻量封装了PyTorch的LSTM
|
||||||
|
:class:`~fastNLP.modules.StarTransformer` , Star-Transformer 的encoder部分
|
||||||
|
:class:`~fastNLP.modules.TransformerEncoder` , Transformer的encoder模块,不包含embedding层
|
||||||
|
:class:`~fastNLP.modules.VarRNN` , Variational Dropout RNN 模块
|
||||||
|
:class:`~fastNLP.modules.VarLSTM` , Variational Dropout LSTM 模块
|
||||||
|
:class:`~fastNLP.modules.VarGRU` , Variational Dropout GRU 模块
|
||||||
|
:class:`~fastNLP.modules.MaxPool` , Max-pooling模块
|
||||||
|
:class:`~fastNLP.modules.MaxPoolWithMask` , 带mask矩阵的max pooling。在做 max-pooling的时候不会考虑mask值为0的位置。
|
||||||
|
:class:`~fastNLP.modules.AvgPool` , Average-pooling模块
|
||||||
|
:class:`~fastNLP.modules.AvgPoolWithMask` , 带mask矩阵的average pooling。在做 average-pooling的时候不会考虑mask值为0的位置。
|
||||||
|
:class:`~fastNLP.modules.MultiHeadAttention` , MultiHead Attention 模块
|
||||||
|
:class:`~fastNLP.modules.MLP` , 简单的多层感知器模块
|
||||||
|
:class:`~fastNLP.modules.ConditionalRandomField` , 条件随机场模块
|
||||||
|
:class:`~fastNLP.modules.viterbi_decode` , 给定一个特征矩阵以及转移分数矩阵,计算出最佳的路径以及对应的分数 (与 :class:`~fastNLP.modules.ConditionalRandomField` 配合使用)
|
||||||
|
:class:`~fastNLP.modules.allowed_transitions` , 给定一个id到label的映射表,返回所有可以跳转的列表(与 :class:`~fastNLP.modules.ConditionalRandomField` 配合使用)
|
||||||
|
:class:`~fastNLP.modules.TimestepDropout` , 简单包装过的Dropout 组件
|
121
docs/source/tutorials/tutorial_8_metrics.rst
Normal file
121
docs/source/tutorials/tutorial_8_metrics.rst
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
===============================
|
||||||
|
使用Metric快速评测你的模型
|
||||||
|
===============================
|
||||||
|
|
||||||
|
在进行训练时,fastNLP提供了各种各样的 :mod:`~fastNLP.core.metrics` 。
|
||||||
|
如 :doc:`/user/quickstart` 中所介绍的,:class:`~fastNLP.AccuracyMetric` 类的对象被直接传到 :class:`~fastNLP.Trainer` 中用于训练
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric
|
||||||
|
|
||||||
|
trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data,
|
||||||
|
loss=CrossEntropyLoss(), metrics=AccuracyMetric())
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
除了 :class:`~fastNLP.AccuracyMetric` 之外,:class:`~fastNLP.SpanFPreRecMetric` 也是一种非常见的评价指标,
|
||||||
|
例如在序列标注问题中,常以span的方式计算 F-measure, precision, recall。
|
||||||
|
|
||||||
|
另外,fastNLP 还实现了用于抽取式QA(如SQuAD)的metric :class:`~fastNLP.ExtractiveQAMetric`。
|
||||||
|
用户可以参考下面这个表格,点击第一列查看各个 :mod:`~fastNLP.core.metrics` 的详细文档。
|
||||||
|
|
||||||
|
.. csv-table::
|
||||||
|
:header: 名称, 介绍
|
||||||
|
|
||||||
|
:class:`~fastNLP.core.metrics.MetricBase` , 自定义metrics需继承的基类
|
||||||
|
:class:`~fastNLP.core.metrics.AccuracyMetric` , 简单的正确率metric
|
||||||
|
:class:`~fastNLP.core.metrics.SpanFPreRecMetric` , "同时计算 F-measure, precision, recall 值的 metric"
|
||||||
|
:class:`~fastNLP.core.metrics.ExtractiveQAMetric` , 用于抽取式QA任务 的metric
|
||||||
|
|
||||||
|
更多的 :mod:`~fastNLP.core.metrics` 正在被添加到 fastNLP 当中,敬请期待。
|
||||||
|
|
||||||
|
------------------------------
|
||||||
|
定义自己的metrics
|
||||||
|
------------------------------
|
||||||
|
|
||||||
|
在定义自己的metrics类时需继承 fastNLP 的 :class:`~fastNLP.core.metrics.MetricBase`,
|
||||||
|
并覆盖写入 ``evaluate`` 和 ``get_metric`` 方法。
|
||||||
|
|
||||||
|
evaluate(xxx) 中传入一个批次的数据,将针对一个批次的预测结果做评价指标的累计
|
||||||
|
|
||||||
|
get_metric(xxx) 当所有数据处理完毕时调用该方法,它将根据 evaluate函数累计的评价指标统计量来计算最终的评价结果
|
||||||
|
|
||||||
|
以分类问题中,Accuracy计算为例,假设model的forward返回dict中包含 `pred` 这个key, 并且该key需要用于Accuracy::
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(xxx):
|
||||||
|
# do something
|
||||||
|
def forward(self, xxx):
|
||||||
|
# do something
|
||||||
|
return {'pred': pred, 'other_keys':xxx} # pred's shape: batch_size x num_classes
|
||||||
|
|
||||||
|
假设dataset中 `label` 这个field是需要预测的值,并且该field被设置为了target
|
||||||
|
对应的AccMetric可以按如下的定义, version1, 只使用这一次::
|
||||||
|
|
||||||
|
class AccMetric(MetricBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# 根据你的情况自定义指标
|
||||||
|
self.corr_num = 0
|
||||||
|
self.total = 0
|
||||||
|
|
||||||
|
def evaluate(self, label, pred): # 这里的名称需要和dataset中target field与model返回的key是一样的,不然找不到对应的value
|
||||||
|
# dev或test时,每个batch结束会调用一次该方法,需要实现如何根据每个batch累加metric
|
||||||
|
self.total += label.size(0)
|
||||||
|
self.corr_num += label.eq(pred).sum().item()
|
||||||
|
|
||||||
|
def get_metric(self, reset=True): # 在这里定义如何计算metric
|
||||||
|
acc = self.corr_num/self.total
|
||||||
|
if reset: # 是否清零以便重新计算
|
||||||
|
self.corr_num = 0
|
||||||
|
self.total = 0
|
||||||
|
return {'acc': acc} # 需要返回一个dict,key为该metric的名称,该名称会显示到Trainer的progress bar中
|
||||||
|
|
||||||
|
|
||||||
|
version2,如果需要复用Metric,比如下一次使用AccMetric时,dataset中目标field不叫label而叫y,或者model的输出不是pred::
|
||||||
|
|
||||||
|
class AccMetric(MetricBase):
|
||||||
|
def __init__(self, label=None, pred=None):
|
||||||
|
# 假设在另一场景使用时,目标field叫y,model给出的key为pred_y。则只需要在初始化AccMetric时,
|
||||||
|
# acc_metric = AccMetric(label='y', pred='pred_y')即可。
|
||||||
|
# 当初始化为acc_metric = AccMetric(),即label=None, pred=None, fastNLP会直接使用'label', 'pred'作为key去索取对
|
||||||
|
# 应的的值
|
||||||
|
super().__init__()
|
||||||
|
self._init_param_map(label=label, pred=pred) # 该方法会注册label和pred. 仅需要注册evaluate()方法会用到的参数名即可
|
||||||
|
# 如果没有注册该则效果与version1就是一样的
|
||||||
|
|
||||||
|
# 根据你的情况自定义指标
|
||||||
|
self.corr_num = 0
|
||||||
|
self.total = 0
|
||||||
|
|
||||||
|
def evaluate(self, label, pred): # 这里的参数名称需要和self._init_param_map()注册时一致。
|
||||||
|
# dev或test时,每个batch结束会调用一次该方法,需要实现如何根据每个batch累加metric
|
||||||
|
self.total += label.size(0)
|
||||||
|
self.corr_num += label.eq(pred).sum().item()
|
||||||
|
|
||||||
|
def get_metric(self, reset=True): # 在这里定义如何计算metric
|
||||||
|
acc = self.corr_num/self.total
|
||||||
|
if reset: # 是否清零以便重新计算
|
||||||
|
self.corr_num = 0
|
||||||
|
self.total = 0
|
||||||
|
return {'acc': acc} # 需要返回一个dict,key为该metric的名称,该名称会显示到Trainer的progress bar中
|
||||||
|
|
||||||
|
|
||||||
|
``MetricBase`` 将会在输入的字典 ``pred_dict`` 和 ``target_dict`` 中进行检查.
|
||||||
|
``pred_dict`` 是模型当中 ``forward()`` 函数或者 ``predict()`` 函数的返回值.
|
||||||
|
``target_dict`` 是DataSet当中的ground truth, 判定ground truth的条件是field的 ``is_target`` 被设置为True.
|
||||||
|
|
||||||
|
``MetricBase`` 会进行以下的类型检测:
|
||||||
|
|
||||||
|
1. self.evaluate当中是否有varargs, 这是不支持的.
|
||||||
|
2. self.evaluate当中所需要的参数是否既不在 ``pred_dict`` 也不在 ``target_dict`` .
|
||||||
|
3. self.evaluate当中所需要的参数是否既在 ``pred_dict`` 也在 ``target_dict`` .
|
||||||
|
|
||||||
|
除此以外,在参数被传入self.evaluate以前,这个函数会检测 ``pred_dict`` 和 ``target_dict`` 当中没有被用到的参数
|
||||||
|
如果kwargs是self.evaluate的参数,则不会检测
|
||||||
|
|
||||||
|
|
||||||
|
self.evaluate将计算一个批次(batch)的评价指标,并累计。 没有返回值
|
||||||
|
self.get_metric将统计当前的评价指标并返回评价结果, 返回值需要是一个dict, key是指标名称,value是指标的值
|
||||||
|
|
67
docs/source/tutorials/tutorial_9_callback.rst
Normal file
67
docs/source/tutorials/tutorial_9_callback.rst
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
===================================================
|
||||||
|
使用Callback自定义你的训练过程
|
||||||
|
===================================================
|
||||||
|
|
||||||
|
在训练时,我们常常要使用trick来提高模型的性能(如调节学习率),或者要打印训练中的信息。
|
||||||
|
这里我们提供Callback类,在Trainer中插入代码,完成一些自定义的操作。
|
||||||
|
|
||||||
|
我们使用和 :doc:`/user/quickstart` 中一样的任务来进行详细的介绍。
|
||||||
|
给出一段评价性文字,预测其情感倾向是积极(label=1)、消极(label=0)还是中性(label=2),使用 :class:`~fastNLP.Trainer` 和 :class:`~fastNLP.Tester` 来进行快速训练和测试。
|
||||||
|
关于数据处理,Loss和Optimizer的选择可以看其他教程,这里仅在训练时加入学习率衰减。
|
||||||
|
|
||||||
|
---------------------
|
||||||
|
Callback的构建和使用
|
||||||
|
---------------------
|
||||||
|
|
||||||
|
创建Callback
|
||||||
|
我们可以继承fastNLP :class:`~fastNLP.Callback` 类来定义自己的Callback。
|
||||||
|
这里我们实现一个让学习率线性衰减的Callback。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import fastNLP
|
||||||
|
|
||||||
|
class LRDecay(fastNLP.Callback):
|
||||||
|
def __init__(self):
|
||||||
|
super(MyCallback, self).__init__()
|
||||||
|
self.base_lrs = []
|
||||||
|
self.delta = []
|
||||||
|
|
||||||
|
def on_train_begin(self):
|
||||||
|
# 初始化,仅训练开始时调用
|
||||||
|
self.base_lrs = [pg['lr'] for pg in self.optimizer.param_groups]
|
||||||
|
self.delta = [float(lr) / self.n_epochs for lr in self.base_lrs]
|
||||||
|
|
||||||
|
def on_epoch_end(self):
|
||||||
|
# 每个epoch结束时,更新学习率
|
||||||
|
ep = self.epoch
|
||||||
|
lrs = [lr - d * ep for lr, d in zip(self.base_lrs, self.delta)]
|
||||||
|
self.change_lr(lrs)
|
||||||
|
|
||||||
|
def change_lr(self, lrs):
|
||||||
|
for pg, lr in zip(self.optimizer.param_groups, lrs):
|
||||||
|
pg['lr'] = lr
|
||||||
|
|
||||||
|
这里,:class:`~fastNLP.Callback` 中所有以 ``on_`` 开头的类方法会在 :class:`~fastNLP.Trainer` 的训练中在特定时间调用。
|
||||||
|
如 on_train_begin() 会在训练开始时被调用,on_epoch_end() 会在每个 epoch 结束时调用。
|
||||||
|
具体有哪些类方法,参见文档 :class:`~fastNLP.Callback` 。
|
||||||
|
|
||||||
|
另外,为了使用方便,可以在 :class:`~fastNLP.Callback` 内部访问 :class:`~fastNLP.Trainer` 中的属性,如 optimizer, epoch, step,分别对应训练时的优化器,当前epoch数,和当前的总step数。
|
||||||
|
具体可访问的属性,参见文档 :class:`~fastNLP.Callback` 。
|
||||||
|
|
||||||
|
使用Callback
|
||||||
|
在定义好 :class:`~fastNLP.Callback` 之后,就能将它传入Trainer的 ``callbacks`` 参数,在实际训练时使用。
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
"""
|
||||||
|
数据预处理,模型定义等等
|
||||||
|
"""
|
||||||
|
|
||||||
|
trainer = fastNLP.Trainer(
|
||||||
|
model=model, train_data=train_data, dev_data=dev_data,
|
||||||
|
optimizer=optimizer, metrics=metrics,
|
||||||
|
batch_size=10, n_epochs=100,
|
||||||
|
callbacks=[LRDecay()])
|
||||||
|
|
||||||
|
trainer.train()
|
3
docs/source/user/docs_in_code.rst
Normal file
3
docs/source/user/docs_in_code.rst
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
===============
|
||||||
|
在代码中写文档
|
||||||
|
===============
|
156
docs/source/user/example.rst
Normal file
156
docs/source/user/example.rst
Normal file
@ -0,0 +1,156 @@
|
|||||||
|
======
|
||||||
|
大标题
|
||||||
|
======
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
中文标题需要符号的数量至少是中文字数的两倍
|
||||||
|
|
||||||
|
.. warning::
|
||||||
|
符号的数量只可以多,不可以少。
|
||||||
|
|
||||||
|
小标题1
|
||||||
|
###########
|
||||||
|
|
||||||
|
小标题2
|
||||||
|
*********
|
||||||
|
|
||||||
|
小标题3(正常使用)
|
||||||
|
========================
|
||||||
|
|
||||||
|
小标题4
|
||||||
|
-------------------
|
||||||
|
|
||||||
|
推荐使用大标题、小标题3和小标题4
|
||||||
|
|
||||||
|
官方文档 http://docutils.sourceforge.net/docs/user/rst/quickref.html
|
||||||
|
|
||||||
|
`熟悉markdown的同学推荐参考这篇文章 <https://macplay.github.io/posts/cong-markdown-dao-restructuredtext/#id30>`_
|
||||||
|
|
||||||
|
\<\>内表示的是链接地址,\<\>外的是显示到外面的文字
|
||||||
|
|
||||||
|
常见语法
|
||||||
|
============
|
||||||
|
|
||||||
|
*emphasis*
|
||||||
|
|
||||||
|
**strong**
|
||||||
|
|
||||||
|
`text`
|
||||||
|
|
||||||
|
``inline literal``
|
||||||
|
|
||||||
|
http://docutils.sf.net/ 孤立的网址会自动生成链接
|
||||||
|
|
||||||
|
显示为特定的文字的链接 `sohu <http://www.sohu.com>`_
|
||||||
|
|
||||||
|
突出显示的
|
||||||
|
上面文字
|
||||||
|
|
||||||
|
正常缩进
|
||||||
|
|
||||||
|
形成锻炼
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
特殊模块
|
||||||
|
============
|
||||||
|
|
||||||
|
选项会自动识别
|
||||||
|
|
||||||
|
-v An option
|
||||||
|
-o file Same with value
|
||||||
|
--delta A long option
|
||||||
|
--delta=len Same with value
|
||||||
|
|
||||||
|
|
||||||
|
图片
|
||||||
|
|
||||||
|
.. image:: ../figures/procedures.PNG
|
||||||
|
:height: 200
|
||||||
|
:width: 560
|
||||||
|
:scale: 50
|
||||||
|
:alt: alternate text
|
||||||
|
:align: center
|
||||||
|
|
||||||
|
显示一个冒号的代码块::
|
||||||
|
|
||||||
|
中间要空一行
|
||||||
|
|
||||||
|
::
|
||||||
|
|
||||||
|
不显示冒号的代码块
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
:linenos:
|
||||||
|
:emphasize-lines: 1,3
|
||||||
|
|
||||||
|
print("专业的代码块")
|
||||||
|
print("")
|
||||||
|
print("有行号和高亮")
|
||||||
|
|
||||||
|
数学块
|
||||||
|
==========
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
H_2O + Na = NaOH + H_2 \uparrow
|
||||||
|
|
||||||
|
复杂表格
|
||||||
|
==========
|
||||||
|
|
||||||
|
+------------------------+------------+----------+----------+
|
||||||
|
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
|
||||||
|
| (header rows optional) | | | |
|
||||||
|
+========================+============+==========+==========+
|
||||||
|
| body row 1, column 1 | column 2 | column 3 | column 4 |
|
||||||
|
+------------------------+------------+----------+----------+
|
||||||
|
| body row 2 | Cells may span columns. |
|
||||||
|
+------------------------+------------+---------------------+
|
||||||
|
| body row 3 | Cells may | - Table cells |
|
||||||
|
+------------------------+ span rows. | - contain |
|
||||||
|
| body row 4 | | - body elements. |
|
||||||
|
+------------------------+------------+---------------------+
|
||||||
|
|
||||||
|
简易表格
|
||||||
|
==========
|
||||||
|
|
||||||
|
===== ===== ======
|
||||||
|
Inputs Output
|
||||||
|
------------ ------
|
||||||
|
A B A or B
|
||||||
|
===== ===== ======
|
||||||
|
False False False
|
||||||
|
True True True
|
||||||
|
===== ===== ======
|
||||||
|
|
||||||
|
csv 表格
|
||||||
|
============
|
||||||
|
|
||||||
|
.. csv-table::
|
||||||
|
:header: sentence, target
|
||||||
|
|
||||||
|
This is the first instance ., 0
|
||||||
|
Second instance ., 1
|
||||||
|
Third instance ., 1
|
||||||
|
..., ...
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
[重要]各种链接
|
||||||
|
===================
|
||||||
|
|
||||||
|
各种链接帮助我们连接到fastNLP文档的各个位置
|
||||||
|
|
||||||
|
\<\>内表示的是链接地址,\<\>外的是显示到外面的文字
|
||||||
|
|
||||||
|
:doc:`根据文件名链接 </user/quickstart>`
|
||||||
|
|
||||||
|
:mod:`~fastNLP.core.batch`
|
||||||
|
|
||||||
|
:class:`~fastNLP.Batch`
|
||||||
|
|
||||||
|
~表示只显示最后一项
|
||||||
|
|
||||||
|
:meth:`fastNLP.DataSet.apply`
|
||||||
|
|
@ -7,10 +7,12 @@
|
|||||||
|
|
||||||
fastNLP 依赖如下包::
|
fastNLP 依赖如下包::
|
||||||
|
|
||||||
torch>=0.4.0
|
numpy>=1.14.2
|
||||||
numpy
|
torch>=1.0.0
|
||||||
tqdm
|
tqdm>=4.28.1
|
||||||
nltk
|
nltk>=3.4.1
|
||||||
|
requests
|
||||||
|
spacy
|
||||||
|
|
||||||
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 `PyTorch 官网 <https://pytorch.org/get-started/locally/>`_ 。
|
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 `PyTorch 官网 <https://pytorch.org/get-started/locally/>`_ 。
|
||||||
在依赖包安装完成的情况,您可以在命令行执行如下指令完成安装
|
在依赖包安装完成的情况,您可以在命令行执行如下指令完成安装
|
||||||
@ -18,3 +20,4 @@ fastNLP 依赖如下包::
|
|||||||
.. code:: shell
|
.. code:: shell
|
||||||
|
|
||||||
>>> pip install fastNLP
|
>>> pip install fastNLP
|
||||||
|
>>> python -m spacy download en
|
||||||
|
@ -49,7 +49,7 @@
|
|||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from fastNLP.models import CNNText
|
from fastNLP.models import CNNText
|
||||||
model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)
|
model = CNNText((len(vocab),50), num_classes=5, dropout=0.1)
|
||||||
|
|
||||||
:class:`~fastNLP.models.CNNText` 的网络结构如下::
|
:class:`~fastNLP.models.CNNText` 的网络结构如下::
|
||||||
|
|
||||||
@ -121,4 +121,4 @@
|
|||||||
In Epoch:6/Step:12, got best dev performance:AccuracyMetric: acc=0.8
|
In Epoch:6/Step:12, got best dev performance:AccuracyMetric: acc=0.8
|
||||||
Reloaded the best model.
|
Reloaded the best model.
|
||||||
|
|
||||||
这份教程只是简单地介绍了使用 fastNLP 工作的流程,具体的细节分析见 :doc:`/user/tutorial_one`
|
这份教程只是简单地介绍了使用 fastNLP 工作的流程,更多的教程分析见 :doc:`/user/tutorials`
|
||||||
|
@ -1,371 +0,0 @@
|
|||||||
===============
|
|
||||||
详细指南
|
|
||||||
===============
|
|
||||||
|
|
||||||
我们使用和 :doc:`/user/quickstart` 中一样的任务来进行详细的介绍。给出一段文字,预测它的标签是0~4中的哪一个
|
|
||||||
(数据来源 `kaggle <https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews>`_ )。
|
|
||||||
|
|
||||||
--------------
|
|
||||||
数据处理
|
|
||||||
--------------
|
|
||||||
|
|
||||||
数据读入
|
|
||||||
我们可以使用 fastNLP :mod:`fastNLP.io` 模块中的 :class:`~fastNLP.io.CSVLoader` 类,轻松地从 csv 文件读取我们的数据。
|
|
||||||
这里的 dataset 是 fastNLP 中 :class:`~fastNLP.DataSet` 类的对象
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP.io import CSVLoader
|
|
||||||
|
|
||||||
loader = CSVLoader(headers=('raw_sentence', 'label'), sep='\t')
|
|
||||||
dataset = loader.load("./sample_data/tutorial_sample_dataset.csv")
|
|
||||||
|
|
||||||
除了读取数据外,fastNLP 还提供了读取其它文件类型的 Loader 类、读取 Embedding的 Loader 等。详见 :doc:`/fastNLP.io` 。
|
|
||||||
|
|
||||||
Instance 和 DataSet
|
|
||||||
fastNLP 中的 :class:`~fastNLP.DataSet` 类对象类似于二维表格,它的每一列是一个 :mod:`~fastNLP.core.field`
|
|
||||||
每一行是一个 :mod:`~fastNLP.core.instance` 。我们可以手动向数据集中添加 :class:`~fastNLP.Instance` 类的对象
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP import Instance
|
|
||||||
|
|
||||||
dataset.append(Instance(raw_sentence='fake data', label='0'))
|
|
||||||
|
|
||||||
此时的 ``dataset[-1]`` 的值如下,可以看到,数据集中的每个数据包含 ``raw_sentence`` 和 ``label`` 两个
|
|
||||||
:mod:`~fastNLP.core.field` ,他们的类型都是 ``str`` ::
|
|
||||||
|
|
||||||
{'raw_sentence': fake data type=str, 'label': 0 type=str}
|
|
||||||
|
|
||||||
field 的修改
|
|
||||||
我们使用 :class:`~fastNLP.DataSet` 类的 :meth:`~fastNLP.DataSet.apply` 方法将 ``raw_sentence`` 中字母变成小写,并将句子分词。
|
|
||||||
同时也将 ``label`` :mod:`~fastNLP.core.field` 转化为整数并改名为 ``target``
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='sentence')
|
|
||||||
dataset.apply_field(lambda x: x.split(), field_name='sentence', new_field_name='words')
|
|
||||||
dataset.apply(lambda x: int(x['label']), new_field_name='target')
|
|
||||||
|
|
||||||
``words`` 和 ``target`` 已经足够用于 :class:`~fastNLP.models.CNNText` 的训练了,但我们从其文档
|
|
||||||
:class:`~fastNLP.models.CNNText` 中看到,在 :meth:`~fastNLP.models.CNNText.forward` 的时候,还可以传入可选参数 ``seq_len`` 。
|
|
||||||
所以,我们再使用 :meth:`~fastNLP.DataSet.apply_field` 方法增加一个名为 ``seq_len`` 的 :mod:`~fastNLP.core.field` 。
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
dataset.apply_field(lambda x: len(x), field_name='words', new_field_name='seq_len')
|
|
||||||
|
|
||||||
观察可知: :meth:`~fastNLP.DataSet.apply_field` 与 :meth:`~fastNLP.DataSet.apply` 类似,
|
|
||||||
但所传入的 `lambda` 函数是针对一个 :class:`~fastNLP.Instance` 中的一个 :mod:`~fastNLP.core.field` 的;
|
|
||||||
而 :meth:`~fastNLP.DataSet.apply` 所传入的 `lambda` 函数是针对整个 :class:`~fastNLP.Instance` 的。
|
|
||||||
|
|
||||||
.. note::
|
|
||||||
`lambda` 函数即匿名函数,是 Python 的重要特性。 ``lambda x: len(x)`` 和下面的这个函数的作用相同::
|
|
||||||
|
|
||||||
def func_lambda(x):
|
|
||||||
return len(x)
|
|
||||||
|
|
||||||
你也可以编写复杂的函数做为 :meth:`~fastNLP.DataSet.apply_field` 与 :meth:`~fastNLP.DataSet.apply` 的参数
|
|
||||||
|
|
||||||
Vocabulary 的使用
|
|
||||||
我们再用 :class:`~fastNLP.Vocabulary` 类来统计数据中出现的单词,并使用 :meth:`~fastNLP.Vocabularyindex_dataset`
|
|
||||||
将单词序列转化为训练可用的数字序列。
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP import Vocabulary
|
|
||||||
|
|
||||||
vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')
|
|
||||||
vocab.index_dataset(dataset, field_name='words',new_field_name='words')
|
|
||||||
|
|
||||||
数据集分割
|
|
||||||
除了修改 :mod:`~fastNLP.core.field` 之外,我们还可以对 :class:`~fastNLP.DataSet` 进行分割,以供训练、开发和测试使用。
|
|
||||||
下面这段代码展示了 :meth:`~fastNLP.DataSet.split` 的使用方法(但实际应该放在后面两段改名和设置输入的代码之后)
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
train_dev_data, test_data = dataset.split(0.1)
|
|
||||||
train_data, dev_data = train_dev_data.split(0.1)
|
|
||||||
len(train_data), len(dev_data), len(test_data)
|
|
||||||
|
|
||||||
---------------------
|
|
||||||
使用内置模型训练
|
|
||||||
---------------------
|
|
||||||
|
|
||||||
内置模型的输入输出命名
|
|
||||||
fastNLP内置了一些完整的神经网络模型,详见 :doc:`/fastNLP.models` , 我们使用其中的 :class:`~fastNLP.models.CNNText` 模型进行训练。
|
|
||||||
为了使用内置的 :class:`~fastNLP.models.CNNText`,我们必须修改 :class:`~fastNLP.DataSet` 中 :mod:`~fastNLP.core.field` 的名称。
|
|
||||||
在这个例子中模型输入 (forward方法的参数) 为 ``words`` 和 ``seq_len`` ; 预测输出为 ``pred`` ;标准答案为 ``target`` 。
|
|
||||||
具体的命名规范可以参考 :doc:`/fastNLP.core.const` 。
|
|
||||||
|
|
||||||
如果不想查看文档,您也可以使用 :class:`~fastNLP.Const` 类进行命名。下面的代码展示了给 :class:`~fastNLP.DataSet` 中
|
|
||||||
:mod:`~fastNLP.core.field` 改名的 :meth:`~fastNLP.DataSet.rename_field` 方法,以及 :class:`~fastNLP.Const` 类的使用方法。
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP import Const
|
|
||||||
|
|
||||||
dataset.rename_field('words', Const.INPUT)
|
|
||||||
dataset.rename_field('seq_len', Const.INPUT_LEN)
|
|
||||||
dataset.rename_field('target', Const.TARGET)
|
|
||||||
|
|
||||||
在给 :class:`~fastNLP.DataSet` 中 :mod:`~fastNLP.core.field` 改名后,我们还需要设置训练所需的输入和目标,这里使用的是
|
|
||||||
:meth:`~fastNLP.DataSet.set_input` 和 :meth:`~fastNLP.DataSet.set_target` 两个函数。
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
dataset.set_input(Const.INPUT, Const.INPUT_LEN)
|
|
||||||
dataset.set_target(Const.TARGET)
|
|
||||||
|
|
||||||
快速训练
|
|
||||||
现在我们可以导入 fastNLP 内置的文本分类模型 :class:`~fastNLP.models.CNNText` ,并使用 :class:`~fastNLP.Trainer` 进行训练了
|
|
||||||
(其中 ``loss`` 和 ``metrics`` 的定义,我们将在后续两段代码中给出)。
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP.models import CNNText
|
|
||||||
from fastNLP import Trainer
|
|
||||||
|
|
||||||
model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)
|
|
||||||
|
|
||||||
trainer = Trainer(model=model_cnn, train_data=train_data, dev_data=dev_data,
|
|
||||||
loss=loss, metrics=metrics)
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
训练过程的输出如下::
|
|
||||||
|
|
||||||
input fields after batch(if batch size is 2):
|
|
||||||
words: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 26])
|
|
||||||
target fields after batch(if batch size is 2):
|
|
||||||
target: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
|
||||||
|
|
||||||
training epochs started 2019-05-09-10-59-39
|
|
||||||
Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.333333
|
|
||||||
|
|
||||||
Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.533333
|
|
||||||
|
|
||||||
Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.533333
|
|
||||||
|
|
||||||
Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.533333
|
|
||||||
|
|
||||||
Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.6
|
|
||||||
|
|
||||||
Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.8
|
|
||||||
|
|
||||||
Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.8
|
|
||||||
|
|
||||||
Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.733333
|
|
||||||
|
|
||||||
Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.733333
|
|
||||||
|
|
||||||
Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.733333
|
|
||||||
|
|
||||||
|
|
||||||
In Epoch:6/Step:12, got best dev performance:AccuracyMetric: acc=0.8
|
|
||||||
Reloaded the best model.
|
|
||||||
|
|
||||||
损失函数
|
|
||||||
训练模型需要提供一个损失函数, 下面提供了一个在分类问题中常用的交叉熵损失。注意它的 **初始化参数** 。
|
|
||||||
``pred`` 参数对应的是模型的 forward 方法返回的 dict 中的一个 key 的名字。
|
|
||||||
``target`` 参数对应的是 :class:`~fastNLP.DataSet` 中作为标签的 :mod:`~fastNLP.core.field` 的名字。
|
|
||||||
这里我们用 :class:`~fastNLP.Const` 来辅助命名,如果你自己编写模型中 forward 方法的返回值或
|
|
||||||
数据集中 :mod:`~fastNLP.core.field` 的名字与本例不同, 你可以把 ``pred`` 参数和 ``target`` 参数设定符合自己代码的值。
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP import CrossEntropyLoss
|
|
||||||
|
|
||||||
# loss = CrossEntropyLoss() 在本例中与下面这行代码等价
|
|
||||||
loss = CrossEntropyLoss(pred=Const.OUTPUT, target=Const.TARGET)
|
|
||||||
|
|
||||||
评价指标
|
|
||||||
训练模型需要提供一个评价指标。这里使用准确率做为评价指标。参数的 `命名规则` 跟上面类似。
|
|
||||||
``pred`` 参数对应的是模型的 forward 方法返回的 dict 中的一个 key 的名字。
|
|
||||||
``target`` 参数对应的是 :class:`~fastNLP.DataSet` 中作为标签的 :mod:`~fastNLP.core.field` 的名字。
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP import AccuracyMetric
|
|
||||||
|
|
||||||
# metrics=AccuracyMetric() 在本例中与下面这行代码等价
|
|
||||||
metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)
|
|
||||||
|
|
||||||
快速测试
|
|
||||||
与 :class:`~fastNLP.Trainer` 对应,fastNLP 也提供了 :class:`~fastNLP.Tester` 用于快速测试,用法如下
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP import Tester
|
|
||||||
|
|
||||||
tester = Tester(test_data, model_cnn, metrics=AccuracyMetric())
|
|
||||||
tester.test()
|
|
||||||
|
|
||||||
---------------------
|
|
||||||
编写自己的模型
|
|
||||||
---------------------
|
|
||||||
|
|
||||||
因为 fastNLP 是基于 `PyTorch <https://pytorch.org/>`_ 开发的框架,所以我们可以基于 PyTorch 模型编写自己的神经网络模型。
|
|
||||||
与标准的 PyTorch 模型不同,fastNLP 模型中 forward 方法返回的是一个字典,字典中至少需要包含 "pred" 这个字段。
|
|
||||||
而 forward 方法的参数名称必须与 :class:`~fastNLP.DataSet` 中用 :meth:`~fastNLP.DataSet.set_input` 设定的名称一致。
|
|
||||||
模型定义的代码如下:
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
class LSTMText(nn.Module):
|
|
||||||
def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.embedding = nn.Embedding(vocab_size, embedding_dim)
|
|
||||||
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True, dropout=dropout)
|
|
||||||
self.fc = nn.Linear(hidden_dim * 2, output_dim)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
def forward(self, words):
|
|
||||||
# (input) words : (batch_size, seq_len)
|
|
||||||
words = words.permute(1,0)
|
|
||||||
# words : (seq_len, batch_size)
|
|
||||||
|
|
||||||
embedded = self.dropout(self.embedding(words))
|
|
||||||
# embedded : (seq_len, batch_size, embedding_dim)
|
|
||||||
output, (hidden, cell) = self.lstm(embedded)
|
|
||||||
# output: (seq_len, batch_size, hidden_dim * 2)
|
|
||||||
# hidden: (num_layers * 2, batch_size, hidden_dim)
|
|
||||||
# cell: (num_layers * 2, batch_size, hidden_dim)
|
|
||||||
|
|
||||||
hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)
|
|
||||||
hidden = self.dropout(hidden)
|
|
||||||
# hidden: (batch_size, hidden_dim * 2)
|
|
||||||
|
|
||||||
pred = self.fc(hidden.squeeze(0))
|
|
||||||
# result: (batch_size, output_dim)
|
|
||||||
return {"pred":pred}
|
|
||||||
|
|
||||||
模型的使用方法与内置模型 :class:`~fastNLP.models.CNNText` 一致
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
model_lstm = LSTMText(len(vocab),50,5)
|
|
||||||
|
|
||||||
trainer = Trainer(model=model_lstm, train_data=train_data, dev_data=dev_data,
|
|
||||||
loss=loss, metrics=metrics)
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
tester = Tester(test_data, model_lstm, metrics=AccuracyMetric())
|
|
||||||
tester.test()
|
|
||||||
|
|
||||||
.. todo::
|
|
||||||
使用 :doc:`/fastNLP.modules` 编写模型
|
|
||||||
|
|
||||||
--------------------------
|
|
||||||
自己编写训练过程
|
|
||||||
--------------------------
|
|
||||||
|
|
||||||
如果你想用类似 PyTorch 的使用方法,自己编写训练过程,你可以参考下面这段代码。其中使用了 fastNLP 提供的 :class:`~fastNLP.Batch`
|
|
||||||
来获得小批量训练的小批量数据,使用 :class:`~fastNLP.BucketSampler` 做为 :class:`~fastNLP.Batch` 的参数来选择采样的方式。
|
|
||||||
这段代码中使用了 PyTorch 的 `torch.optim.Adam` 优化器 和 `torch.nn.CrossEntropyLoss` 损失函数,并自己计算了正确率
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP import BucketSampler
|
|
||||||
from fastNLP import Batch
|
|
||||||
import torch
|
|
||||||
import time
|
|
||||||
|
|
||||||
model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)
|
|
||||||
|
|
||||||
def train(epoch, data):
|
|
||||||
optim = torch.optim.Adam(model.parameters(), lr=0.001)
|
|
||||||
lossfunc = torch.nn.CrossEntropyLoss()
|
|
||||||
batch_size = 32
|
|
||||||
|
|
||||||
train_sampler = BucketSampler(batch_size=batch_size, seq_len_field_name='seq_len')
|
|
||||||
train_batch = Batch(batch_size=batch_size, dataset=data, sampler=train_sampler)
|
|
||||||
|
|
||||||
start_time = time.time()
|
|
||||||
for i in range(epoch):
|
|
||||||
loss_list = []
|
|
||||||
for batch_x, batch_y in train_batch:
|
|
||||||
optim.zero_grad()
|
|
||||||
output = model(batch_x['words'])
|
|
||||||
loss = lossfunc(output['pred'], batch_y['target'])
|
|
||||||
loss.backward()
|
|
||||||
optim.step()
|
|
||||||
loss_list.append(loss.item())
|
|
||||||
print('Epoch {:d} Avg Loss: {:.2f}'.format(i, sum(loss_list) / len(loss_list)),end=" ")
|
|
||||||
print('{:d}ms'.format(round((time.time()-start_time)*1000)))
|
|
||||||
loss_list.clear()
|
|
||||||
|
|
||||||
train(10, train_data)
|
|
||||||
|
|
||||||
tester = Tester(test_data, model, metrics=AccuracyMetric())
|
|
||||||
tester.test()
|
|
||||||
|
|
||||||
这段代码的输出如下::
|
|
||||||
|
|
||||||
Epoch 0 Avg Loss: 2.76 17ms
|
|
||||||
Epoch 1 Avg Loss: 2.55 29ms
|
|
||||||
Epoch 2 Avg Loss: 2.37 41ms
|
|
||||||
Epoch 3 Avg Loss: 2.30 53ms
|
|
||||||
Epoch 4 Avg Loss: 2.12 65ms
|
|
||||||
Epoch 5 Avg Loss: 2.16 76ms
|
|
||||||
Epoch 6 Avg Loss: 1.88 88ms
|
|
||||||
Epoch 7 Avg Loss: 1.84 99ms
|
|
||||||
Epoch 8 Avg Loss: 1.71 111ms
|
|
||||||
Epoch 9 Avg Loss: 1.62 122ms
|
|
||||||
[tester]
|
|
||||||
AccuracyMetric: acc=0.142857
|
|
||||||
|
|
||||||
----------------------------------
|
|
||||||
使用 Callback 增强 Trainer
|
|
||||||
----------------------------------
|
|
||||||
|
|
||||||
如果你不想自己实现繁琐的训练过程,只希望在训练过程中实现一些自己的功能(比如:输出从训练开始到当前 batch 结束的总时间),
|
|
||||||
你可以使用 fastNLP 提供的 :class:`~fastNLP.Callback` 类。下面的例子中,我们继承 :class:`~fastNLP.Callback` 类实现了这个功能。
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from fastNLP import Callback
|
|
||||||
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
class MyCallback(Callback):
|
|
||||||
def on_epoch_end(self):
|
|
||||||
print('Sum Time: {:d}ms\n\n'.format(round((time.time()-start_time)*1000)))
|
|
||||||
|
|
||||||
|
|
||||||
model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)
|
|
||||||
trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data,
|
|
||||||
loss=CrossEntropyLoss(), metrics=AccuracyMetric(), callbacks=[MyCallback()])
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
训练输出如下::
|
|
||||||
|
|
||||||
input fields after batch(if batch size is 2):
|
|
||||||
words: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16])
|
|
||||||
seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
|
||||||
target fields after batch(if batch size is 2):
|
|
||||||
target: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
|
||||||
|
|
||||||
training epochs started 2019-05-12-21-38-40
|
|
||||||
Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.285714
|
|
||||||
|
|
||||||
Sum Time: 51ms
|
|
||||||
|
|
||||||
|
|
||||||
…………………………
|
|
||||||
|
|
||||||
|
|
||||||
Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143
|
|
||||||
|
|
||||||
Sum Time: 212ms
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
In Epoch:10/Step:20, got best dev performance:AccuracyMetric: acc=0.857143
|
|
||||||
Reloaded the best model.
|
|
||||||
|
|
||||||
这个例子只是介绍了 :class:`~fastNLP.Callback` 类的使用方法。实际应用(比如:负采样、Learning Rate Decay、Early Stop 等)中
|
|
||||||
很多功能已经被 fastNLP 实现了。你可以直接 import 它们使用,详细请查看文档 :doc:`/fastNLP.core.callback` 。
|
|
20
docs/source/user/tutorials.rst
Normal file
20
docs/source/user/tutorials.rst
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
========================
|
||||||
|
fastNLP 详细使用教程
|
||||||
|
========================
|
||||||
|
|
||||||
|
这里是更详细的使用教程。对于大部分的用户,我们建议你从第一篇开始顺序阅读;如果你只想了解其中的一部分,也可以进行选读。
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 1
|
||||||
|
|
||||||
|
使用DataSet预处理文本 </tutorials/tutorial_1_data_preprocess>
|
||||||
|
使用DataSetLoader加载数据集 </tutorials/tutorial_2_load_dataset>
|
||||||
|
使用Embedding模块将文本转成向量 </tutorials/tutorial_3_embedding>
|
||||||
|
动手实现一个文本分类器I-使用Trainer和Tester快速训练和测试 </tutorials/tutorial_4_loss_optimizer>
|
||||||
|
动手实现一个文本分类器II-使用DataSetIter实现自定义训练过程 </tutorials/tutorial_5_datasetiter>
|
||||||
|
快速实现序列标注模型 </tutorials/tutorial_6_seq_labeling>
|
||||||
|
使用Modules和Models快速搭建自定义模型 </tutorials/tutorial_7_modules_models>
|
||||||
|
使用Metric快速评测你的模型 </tutorials/tutorial_8_metrics>
|
||||||
|
使用Callback自定义你的训练过程 </tutorials/tutorial_9_callback>
|
||||||
|
使用fitlog 辅助 fastNLP 进行科研 </tutorials/tutorial_10_fitlog>
|
||||||
|
|
@ -1,18 +1,23 @@
|
|||||||
"""
|
"""
|
||||||
fastNLP 由 :mod:`~fastNLP.core` 、 :mod:`~fastNLP.io` 、:mod:`~fastNLP.modules`、:mod:`~fastNLP.models`
|
fastNLP 由 :mod:`~fastNLP.core` 、 :mod:`~fastNLP.io` 、:mod:`~fastNLP.embeddings` 、 :mod:`~fastNLP.modules`、
|
||||||
等子模块组成,你可以点进去查看每个模块的文档。
|
:mod:`~fastNLP.models` 等子模块组成,你可以查看每个模块的文档。
|
||||||
|
|
||||||
- :mod:`~fastNLP.core` 是fastNLP 的核心模块,包括 DataSet、 Trainer、 Tester 等组件。详见文档 :doc:`/fastNLP.core`
|
- :mod:`~fastNLP.core` 是fastNLP 的核心模块,包括 DataSet、 Trainer、 Tester 等组件。详见文档 :doc:`/fastNLP.core`
|
||||||
- :mod:`~fastNLP.io` 是实现输入输出的模块,包括了数据集的读取,模型的存取等功能。详见文档 :doc:`/fastNLP.io`
|
- :mod:`~fastNLP.io` 是实现输入输出的模块,包括了数据集的读取,模型的存取等功能。详见文档 :doc:`/fastNLP.io`
|
||||||
|
- :mod:`~fastNLP.embeddings` 提供用于构建复杂网络模型所需的各种embedding。详见文档 :doc:`/fastNLP.embeddings`
|
||||||
- :mod:`~fastNLP.modules` 包含了用于搭建神经网络模型的诸多组件,可以帮助用户快速搭建自己所需的网络。详见文档 :doc:`/fastNLP.modules`
|
- :mod:`~fastNLP.modules` 包含了用于搭建神经网络模型的诸多组件,可以帮助用户快速搭建自己所需的网络。详见文档 :doc:`/fastNLP.modules`
|
||||||
- :mod:`~fastNLP.models` 包含了一些使用 fastNLP 实现的完整网络模型,包括CNNText、SeqLabeling等常见模型。详见文档 :doc:`/fastNLP.models`
|
- :mod:`~fastNLP.models` 包含了一些使用 fastNLP 实现的完整网络模型,包括 :class:`~fastNLP.models.CNNText` 、 :class:`~fastNLP.models.SeqLabeling` 等常见模型。详见文档 :doc:`fastNLP.models`
|
||||||
|
|
||||||
fastNLP 中最常用的组件可以直接从 fastNLP 包中 import ,他们的文档如下:
|
fastNLP 中最常用的组件可以直接从 fastNLP 包中 import ,他们的文档如下:
|
||||||
"""
|
"""
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"Instance",
|
"Instance",
|
||||||
"FieldArray",
|
"FieldArray",
|
||||||
"Batch",
|
|
||||||
|
"DataSetIter",
|
||||||
|
"BatchIter",
|
||||||
|
"TorchLoaderIter",
|
||||||
|
|
||||||
"Vocabulary",
|
"Vocabulary",
|
||||||
"DataSet",
|
"DataSet",
|
||||||
"Const",
|
"Const",
|
||||||
@ -33,7 +38,7 @@ __all__ = [
|
|||||||
|
|
||||||
"AccuracyMetric",
|
"AccuracyMetric",
|
||||||
"SpanFPreRecMetric",
|
"SpanFPreRecMetric",
|
||||||
"SQuADMetric",
|
"ExtractiveQAMetric",
|
||||||
|
|
||||||
"Optimizer",
|
"Optimizer",
|
||||||
"SGD",
|
"SGD",
|
||||||
@ -52,8 +57,10 @@ __all__ = [
|
|||||||
|
|
||||||
"cache_results"
|
"cache_results"
|
||||||
]
|
]
|
||||||
__version__ = '0.4.0'
|
__version__ = '0.4.5'
|
||||||
|
|
||||||
from .core import *
|
from .core import *
|
||||||
from . import models
|
from . import models
|
||||||
from . import modules
|
from . import modules
|
||||||
|
from . import embeddings
|
||||||
|
from .io import data_loader
|
||||||
|
@ -1,12 +1,12 @@
|
|||||||
"""
|
"""
|
||||||
core 模块里实现了 fastNLP 的核心框架,常用的功能都可以从 fastNLP 包中直接 import。当然你也同样可以从 core 模块的子模块中 import,
|
core 模块里实现了 fastNLP 的核心框架,常用的功能都可以从 fastNLP 包中直接 import。当然你也同样可以从 core 模块的子模块中 import,
|
||||||
例如 Batch 组件有两种 import 的方式::
|
例如 :class:`~fastNLP.DataSetIter` 组件有两种 import 的方式::
|
||||||
|
|
||||||
# 直接从 fastNLP 中 import
|
# 直接从 fastNLP 中 import
|
||||||
from fastNLP import Batch
|
from fastNLP import DataSetIter
|
||||||
|
|
||||||
# 从 core 模块的子模块 batch 中 import
|
# 从 core 模块的子模块 batch 中 import DataSetIter
|
||||||
from fastNLP.core.batch import Batch
|
from fastNLP.core.batch import DataSetIter
|
||||||
|
|
||||||
对于常用的功能,你只需要在 :doc:`fastNLP` 中查看即可。如果想了解各个子模块的具体作用,您可以在下面找到每个子模块的具体文档。
|
对于常用的功能,你只需要在 :doc:`fastNLP` 中查看即可。如果想了解各个子模块的具体作用,您可以在下面找到每个子模块的具体文档。
|
||||||
|
|
||||||
@ -14,14 +14,14 @@ core 模块里实现了 fastNLP 的核心框架,常用的功能都可以从 fa
|
|||||||
介绍core 的子模块的分工,好像必要性不大
|
介绍core 的子模块的分工,好像必要性不大
|
||||||
|
|
||||||
"""
|
"""
|
||||||
from .batch import Batch
|
from .batch import DataSetIter, BatchIter, TorchLoaderIter
|
||||||
from .callback import Callback, GradientClipCallback, EarlyStopCallback, TensorboardCallback, LRScheduler, ControlC
|
from .callback import Callback, GradientClipCallback, EarlyStopCallback, TensorboardCallback, LRScheduler, ControlC
|
||||||
from .const import Const
|
from .const import Const
|
||||||
from .dataset import DataSet
|
from .dataset import DataSet
|
||||||
from .field import FieldArray, Padder, AutoPadder, EngChar2DPadder
|
from .field import FieldArray, Padder, AutoPadder, EngChar2DPadder
|
||||||
from .instance import Instance
|
from .instance import Instance
|
||||||
from .losses import LossFunc, CrossEntropyLoss, L1Loss, BCELoss, NLLLoss, LossInForward
|
from .losses import LossFunc, CrossEntropyLoss, L1Loss, BCELoss, NLLLoss, LossInForward
|
||||||
from .metrics import AccuracyMetric, SpanFPreRecMetric, SQuADMetric
|
from .metrics import AccuracyMetric, SpanFPreRecMetric, ExtractiveQAMetric
|
||||||
from .optimizer import Optimizer, SGD, Adam
|
from .optimizer import Optimizer, SGD, Adam
|
||||||
from .sampler import SequentialSampler, BucketSampler, RandomSampler, Sampler
|
from .sampler import SequentialSampler, BucketSampler, RandomSampler, Sampler
|
||||||
from .tester import Tester
|
from .tester import Tester
|
||||||
|
88
fastNLP/core/_parallel_utils.py
Normal file
88
fastNLP/core/_parallel_utils.py
Normal file
@ -0,0 +1,88 @@
|
|||||||
|
|
||||||
|
import threading
|
||||||
|
import torch
|
||||||
|
from torch.nn.parallel.parallel_apply import get_a_var
|
||||||
|
|
||||||
|
from torch.nn.parallel.scatter_gather import scatter_kwargs, gather
|
||||||
|
from torch.nn.parallel.replicate import replicate
|
||||||
|
|
||||||
|
|
||||||
|
def parallel_apply(modules, func_name, inputs, kwargs_tup=None, devices=None):
|
||||||
|
r"""Applies each `module` in :attr:`modules` in parallel on arguments
|
||||||
|
contained in :attr:`inputs` (positional) and :attr:`kwargs_tup` (keyword)
|
||||||
|
on each of :attr:`devices`.
|
||||||
|
|
||||||
|
:attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and
|
||||||
|
:attr:`devices` (if given) should all have same length. Moreover, each
|
||||||
|
element of :attr:`inputs` can either be a single object as the only argument
|
||||||
|
to a module, or a collection of positional arguments.
|
||||||
|
"""
|
||||||
|
assert len(modules) == len(inputs)
|
||||||
|
if kwargs_tup is not None:
|
||||||
|
assert len(modules) == len(kwargs_tup)
|
||||||
|
else:
|
||||||
|
kwargs_tup = ({},) * len(modules)
|
||||||
|
if devices is not None:
|
||||||
|
assert len(modules) == len(devices)
|
||||||
|
else:
|
||||||
|
devices = [None] * len(modules)
|
||||||
|
|
||||||
|
lock = threading.Lock()
|
||||||
|
results = {}
|
||||||
|
grad_enabled = torch.is_grad_enabled()
|
||||||
|
|
||||||
|
def _worker(i, module, input, kwargs, device=None):
|
||||||
|
torch.set_grad_enabled(grad_enabled)
|
||||||
|
if device is None:
|
||||||
|
device = get_a_var(input).get_device()
|
||||||
|
try:
|
||||||
|
with torch.cuda.device(device):
|
||||||
|
# this also avoids accidental slicing of `input` if it is a Tensor
|
||||||
|
if not isinstance(input, (list, tuple)):
|
||||||
|
input = (input,)
|
||||||
|
output = getattr(module, func_name)(*input, **kwargs)
|
||||||
|
with lock:
|
||||||
|
results[i] = output
|
||||||
|
except Exception as e:
|
||||||
|
with lock:
|
||||||
|
results[i] = e
|
||||||
|
|
||||||
|
if len(modules) > 1:
|
||||||
|
threads = [threading.Thread(target=_worker,
|
||||||
|
args=(i, module, input, kwargs, device))
|
||||||
|
for i, (module, input, kwargs, device) in
|
||||||
|
enumerate(zip(modules, inputs, kwargs_tup, devices))]
|
||||||
|
|
||||||
|
for thread in threads:
|
||||||
|
thread.start()
|
||||||
|
for thread in threads:
|
||||||
|
thread.join()
|
||||||
|
else:
|
||||||
|
_worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0])
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
for i in range(len(inputs)):
|
||||||
|
output = results[i]
|
||||||
|
if isinstance(output, Exception):
|
||||||
|
raise output
|
||||||
|
outputs.append(output)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
|
||||||
|
def _data_parallel_wrapper(func_name, device_ids, output_device):
|
||||||
|
"""
|
||||||
|
这个函数是用于对需要多卡执行的函数的wrapper函数。参考的nn.DataParallel的forward函数
|
||||||
|
|
||||||
|
:param str, func_name: 对network中的这个函数进行多卡运行
|
||||||
|
:param device_ids: nn.DataParallel中的device_ids
|
||||||
|
:param output_device: nn.DataParallel中的output_device
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
def wrapper(network, *inputs, **kwargs):
|
||||||
|
inputs, kwargs = scatter_kwargs(inputs, kwargs, device_ids, dim=0)
|
||||||
|
if len(device_ids) == 1:
|
||||||
|
return getattr(network, func_name)(*inputs[0], **kwargs[0])
|
||||||
|
replicas = replicate(network, device_ids[:len(inputs)])
|
||||||
|
outputs = parallel_apply(replicas, func_name, inputs, kwargs, device_ids[:len(replicas)])
|
||||||
|
return gather(outputs, output_device)
|
||||||
|
return wrapper
|
@ -1,19 +1,22 @@
|
|||||||
"""
|
"""
|
||||||
batch 模块实现了 fastNLP 所需的 Batch 类。
|
batch 模块实现了 fastNLP 所需的 :class:`~fastNLP.core.batch.DataSetIter` 类。
|
||||||
|
|
||||||
"""
|
"""
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"Batch"
|
"BatchIter",
|
||||||
|
"DataSetIter",
|
||||||
|
"TorchLoaderIter",
|
||||||
]
|
]
|
||||||
|
|
||||||
import atexit
|
import atexit
|
||||||
from queue import Empty, Full
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.utils.data
|
||||||
|
from numbers import Number
|
||||||
|
|
||||||
from .sampler import RandomSampler
|
from .sampler import SequentialSampler
|
||||||
|
from .dataset import DataSet
|
||||||
|
|
||||||
_python_is_exit = False
|
_python_is_exit = False
|
||||||
|
|
||||||
@ -26,160 +29,189 @@ def _set_python_is_exit():
|
|||||||
atexit.register(_set_python_is_exit)
|
atexit.register(_set_python_is_exit)
|
||||||
|
|
||||||
|
|
||||||
class Batch(object):
|
class DataSetGetter:
|
||||||
"""
|
def __init__(self, dataset: DataSet, as_numpy=False):
|
||||||
别名::class:`fastNLP.Batch` :class:`fastNLP.core.batch.Batch`
|
self.dataset = dataset
|
||||||
|
self.inputs = {n: f for n, f in dataset.get_all_fields().items() if f.is_input}
|
||||||
|
self.targets = {n: f for n, f in dataset.get_all_fields().items() if f.is_target}
|
||||||
|
self.as_numpy = as_numpy
|
||||||
|
self.idx_list = list(range(len(dataset)))
|
||||||
|
|
||||||
Batch 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出,
|
def __getitem__(self, idx: int):
|
||||||
|
# mapping idx to sampled idx
|
||||||
|
idx = self.idx_list[idx]
|
||||||
|
inputs = {n:f.get(idx) for n, f in self.inputs.items()}
|
||||||
|
targets = {n:f.get(idx) for n, f in self.targets.items()}
|
||||||
|
return idx, inputs, targets
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.dataset)
|
||||||
|
|
||||||
|
def collate_fn(self, batch: list):
|
||||||
|
# TODO 支持在DataSet中定义collate_fn,因为有时候可能需要不同的field之间融合,比如BERT的场景
|
||||||
|
batch_x = {n:[] for n in self.inputs.keys()}
|
||||||
|
batch_y = {n:[] for n in self.targets.keys()}
|
||||||
|
indices = []
|
||||||
|
for idx, x, y in batch:
|
||||||
|
indices.append(idx)
|
||||||
|
for n, v in x.items():
|
||||||
|
batch_x[n].append(v)
|
||||||
|
for n, v in y.items():
|
||||||
|
batch_y[n].append(v)
|
||||||
|
|
||||||
|
def pad_batch(batch_dict, field_array):
|
||||||
|
for n, vlist in batch_dict.items():
|
||||||
|
f = field_array[n]
|
||||||
|
if f.padder is None:
|
||||||
|
batch_dict[n] = np.array(vlist)
|
||||||
|
else:
|
||||||
|
data = f.pad(vlist)
|
||||||
|
if not self.as_numpy:
|
||||||
|
try:
|
||||||
|
data, flag = _to_tensor(data, f.dtype)
|
||||||
|
except TypeError as e:
|
||||||
|
print(f"Field {n} cannot be converted to torch.tensor.")
|
||||||
|
raise e
|
||||||
|
batch_dict[n] = data
|
||||||
|
return batch_dict
|
||||||
|
|
||||||
|
return (indices,
|
||||||
|
pad_batch(batch_x, self.inputs),
|
||||||
|
pad_batch(batch_y, self.targets))
|
||||||
|
|
||||||
|
def set_idx_list(self, idx_list):
|
||||||
|
if len(idx_list) != len(self.idx_list):
|
||||||
|
raise ValueError
|
||||||
|
self.idx_list = idx_list
|
||||||
|
|
||||||
|
def __getattr__(self, item):
|
||||||
|
if hasattr(self.dataset, item):
|
||||||
|
return getattr(self.dataset, item)
|
||||||
|
else:
|
||||||
|
raise AttributeError("'DataSetGetter' object has no attribute '{}'".format(item))
|
||||||
|
|
||||||
|
|
||||||
|
class SamplerAdapter(torch.utils.data.Sampler):
|
||||||
|
def __init__(self, sampler, dataset):
|
||||||
|
self.sampler = sampler
|
||||||
|
self.dataset = dataset
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return iter(self.sampler(self.dataset))
|
||||||
|
|
||||||
|
|
||||||
|
class BatchIter:
|
||||||
|
def __init__(self):
|
||||||
|
self.dataiter = None
|
||||||
|
self.num_batches = None
|
||||||
|
self.cur_batch_indices = None
|
||||||
|
self.batch_size = None
|
||||||
|
|
||||||
|
def init_iter(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_num_batches(num_samples, batch_size, drop_last):
|
||||||
|
num_batches = num_samples // batch_size
|
||||||
|
if not drop_last and (num_samples % batch_size > 0):
|
||||||
|
num_batches += 1
|
||||||
|
return num_batches
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
self.init_iter()
|
||||||
|
for indices, batch_x, batch_y in self.dataiter:
|
||||||
|
self.cur_batch_indices = indices
|
||||||
|
yield batch_x, batch_y
|
||||||
|
|
||||||
|
def get_batch_indices(self):
|
||||||
|
return self.cur_batch_indices
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.num_batches
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dataset(self):
|
||||||
|
return self.dataiter.dataset
|
||||||
|
|
||||||
|
|
||||||
|
class DataSetIter(BatchIter):
|
||||||
|
"""
|
||||||
|
别名::class:`fastNLP.DataSetIter` :class:`fastNLP.core.batch.DataSetIter`
|
||||||
|
|
||||||
|
DataSetIter 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出,
|
||||||
组成 `x` 和 `y`::
|
组成 `x` 和 `y`::
|
||||||
|
|
||||||
batch = Batch(data_set, batch_size=16, sampler=SequentialSampler())
|
batch = DataSetIter(data_set, batch_size=16, sampler=SequentialSampler())
|
||||||
num_batch = len(batch)
|
num_batch = len(batch)
|
||||||
for batch_x, batch_y in batch:
|
for batch_x, batch_y in batch:
|
||||||
# do stuff ...
|
# do stuff ...
|
||||||
|
|
||||||
:param dataset: :class:`~fastNLP.DataSet` 对象, 数据集
|
:param dataset: :class:`~fastNLP.DataSet` 对象, 数据集
|
||||||
:param int batch_size: 取出的batch大小
|
:param int batch_size: 取出的batch大小
|
||||||
:param sampler: 规定使用的 :class:`~fastNLP.Sampler` 方式. 若为 ``None`` , 使用 :class:`~fastNLP.RandomSampler`.
|
:param sampler: 规定使用的 :class:`~fastNLP.Sampler` 方式. 若为 ``None`` , 使用 :class:`~fastNLP.SequentialSampler`.
|
||||||
|
|
||||||
Default: ``None``
|
Default: ``None``
|
||||||
:param bool as_numpy: 若为 ``True`` , 输出batch为 numpy.array. 否则为 :class:`torch.Tensor`.
|
:param bool as_numpy: 若为 ``True`` , 输出batch为 numpy.array. 否则为 :class:`torch.Tensor`.
|
||||||
|
|
||||||
Default: ``False``
|
|
||||||
:param bool prefetch: 若为 ``True`` 使用多进程预先取出下一batch.
|
|
||||||
|
|
||||||
Default: ``False``
|
Default: ``False``
|
||||||
|
:param int num_workers: 使用多少个进程来预处理数据
|
||||||
|
:param bool pin_memory: 是否将产生的tensor使用pin memory, 可能会加快速度。
|
||||||
|
:param bool drop_last: 如果最后一个batch没有batch_size这么多sample,就扔掉最后一个
|
||||||
|
:param timeout:
|
||||||
|
:param worker_init_fn: 在每个worker启动时调用该函数,会传入一个值,该值是worker的index。
|
||||||
"""
|
"""
|
||||||
|
def __init__(self, dataset, batch_size=1, sampler=None, as_numpy=False,
|
||||||
def __init__(self, dataset, batch_size, sampler=None, as_numpy=False, prefetch=False):
|
num_workers=0, pin_memory=False, drop_last=False,
|
||||||
self.dataset = dataset
|
timeout=0, worker_init_fn=None):
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(dataset, DataSet)
|
||||||
|
sampler = SamplerAdapter(sampler=sampler or SequentialSampler(), dataset=dataset)
|
||||||
|
dataset = DataSetGetter(dataset, as_numpy)
|
||||||
|
collate_fn = dataset.collate_fn if hasattr(dataset, 'collate_fn') else None
|
||||||
|
self.dataiter = torch.utils.data.DataLoader(
|
||||||
|
dataset=dataset, batch_size=batch_size, sampler=sampler,
|
||||||
|
collate_fn=collate_fn, num_workers=num_workers,
|
||||||
|
pin_memory=pin_memory, drop_last=drop_last,
|
||||||
|
timeout=timeout, worker_init_fn=worker_init_fn)
|
||||||
|
self.num_batches = self.get_num_batches(len(dataset), batch_size, drop_last)
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
if sampler is None:
|
|
||||||
sampler = RandomSampler()
|
|
||||||
self.sampler = sampler
|
|
||||||
self.as_numpy = as_numpy
|
|
||||||
self.idx_list = None
|
|
||||||
self.curidx = 0
|
|
||||||
self.num_batches = len(dataset) // batch_size + int(len(dataset) % batch_size != 0)
|
|
||||||
self.cur_batch_indices = None
|
|
||||||
self.prefetch = prefetch
|
|
||||||
self.lengths = 0
|
|
||||||
|
|
||||||
def fetch_one(self):
|
|
||||||
if self.curidx >= len(self.idx_list):
|
|
||||||
return None
|
|
||||||
else:
|
|
||||||
endidx = min(self.curidx + self.batch_size, len(self.idx_list))
|
|
||||||
batch_x, batch_y = {}, {}
|
|
||||||
|
|
||||||
indices = self.idx_list[self.curidx:endidx]
|
|
||||||
self.cur_batch_indices = indices
|
|
||||||
|
|
||||||
for field_name, field in self.dataset.get_all_fields().items():
|
|
||||||
if field.is_target or field.is_input:
|
|
||||||
batch = field.get(indices)
|
|
||||||
if not self.as_numpy and field.padder is not None:
|
|
||||||
batch = _to_tensor(batch, field.dtype)
|
|
||||||
if field.is_target:
|
|
||||||
batch_y[field_name] = batch
|
|
||||||
if field.is_input:
|
|
||||||
batch_x[field_name] = batch
|
|
||||||
|
|
||||||
self.curidx = endidx
|
|
||||||
return batch_x, batch_y
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
"""
|
|
||||||
Iterate on dataset, fetch batch data. Fetch process don't block the iterate process
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
if self.prefetch:
|
|
||||||
return self._run_batch_iter(self)
|
|
||||||
|
|
||||||
def batch_iter():
|
|
||||||
self.init_iter()
|
|
||||||
while 1:
|
|
||||||
res = self.fetch_one()
|
|
||||||
if res is None:
|
|
||||||
break
|
|
||||||
yield res
|
|
||||||
|
|
||||||
return batch_iter()
|
|
||||||
|
|
||||||
def init_iter(self):
|
|
||||||
self.idx_list = self.sampler(self.dataset)
|
|
||||||
self.curidx = 0
|
|
||||||
self.lengths = self.dataset.get_length()
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return self.num_batches
|
|
||||||
|
|
||||||
def get_batch_indices(self):
|
|
||||||
"""
|
|
||||||
取得当前batch在DataSet中所在的index下标序列
|
|
||||||
|
|
||||||
:return list(int) indexes: 下标序列
|
|
||||||
"""
|
|
||||||
return self.cur_batch_indices
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _run_fetch(batch, q):
|
|
||||||
try:
|
|
||||||
global _python_is_exit
|
|
||||||
batch.init_iter()
|
|
||||||
# print('start fetch')
|
|
||||||
while 1:
|
|
||||||
res = batch.fetch_one()
|
|
||||||
# print('fetch one')
|
|
||||||
while 1:
|
|
||||||
try:
|
|
||||||
q.put(res, timeout=3)
|
|
||||||
break
|
|
||||||
except Full:
|
|
||||||
if _python_is_exit:
|
|
||||||
return
|
|
||||||
if res is None:
|
|
||||||
# print('fetch done, waiting processing')
|
|
||||||
break
|
|
||||||
# print('fetch exit')
|
|
||||||
except Exception as e:
|
|
||||||
q.put(e)
|
|
||||||
finally:
|
|
||||||
q.join()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _run_batch_iter(batch):
|
|
||||||
q = mp.JoinableQueue(maxsize=10)
|
|
||||||
fetch_p = mp.Process(target=Batch._run_fetch, args=(batch, q))
|
|
||||||
fetch_p.daemon = True
|
|
||||||
fetch_p.start()
|
|
||||||
# print('fork fetch process')
|
|
||||||
while 1:
|
|
||||||
try:
|
|
||||||
res = q.get(timeout=1)
|
|
||||||
q.task_done()
|
|
||||||
# print('get fetched')
|
|
||||||
if res is None:
|
|
||||||
break
|
|
||||||
elif isinstance(res, Exception):
|
|
||||||
raise res
|
|
||||||
yield res
|
|
||||||
except Empty as e:
|
|
||||||
if fetch_p.is_alive():
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
fetch_p.terminate()
|
|
||||||
fetch_p.join()
|
|
||||||
# print('iter done')
|
|
||||||
|
|
||||||
|
|
||||||
def _to_tensor(batch, dtype):
|
class TorchLoaderIter(BatchIter):
|
||||||
|
def __init__(self, dataset):
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(dataset, torch.utils.data.DataLoader)
|
||||||
|
self.dataiter = dataset
|
||||||
|
self.num_batches = self.get_num_batches(len(dataset), dataset.batch_size, dataset.drop_last)
|
||||||
|
self.batch_size = dataset.batch_size
|
||||||
|
|
||||||
|
|
||||||
|
class OnlineDataGettter:
|
||||||
|
# TODO
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class OnlineDataIter(BatchIter):
|
||||||
|
# TODO
|
||||||
|
def __init__(self, dataset, batch_size=1, buffer_size=10000, sampler=None, as_numpy=False,
|
||||||
|
num_workers=0, pin_memory=False, drop_last=False,
|
||||||
|
timeout=0, worker_init_fn=None, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
|
||||||
|
def _to_tensor(batch, field_dtype):
|
||||||
try:
|
try:
|
||||||
if dtype in (int, np.int8, np.int16, np.int32, np.int64):
|
if field_dtype is not None and isinstance(field_dtype, type)\
|
||||||
batch = torch.LongTensor(batch)
|
and issubclass(field_dtype, Number) \
|
||||||
if dtype in (float, np.float32, np.float64):
|
and not isinstance(batch, torch.Tensor):
|
||||||
batch = torch.FloatTensor(batch)
|
if issubclass(batch.dtype.type, np.floating):
|
||||||
except:
|
new_batch = torch.as_tensor(batch).float() # 默认使用float32
|
||||||
pass
|
elif issubclass(batch.dtype.type, np.integer):
|
||||||
return batch
|
new_batch = torch.as_tensor(batch).long() # 复用内存地址,避免复制
|
||||||
|
else:
|
||||||
|
new_batch = torch.as_tensor(batch)
|
||||||
|
return new_batch, True
|
||||||
|
else:
|
||||||
|
return batch, False
|
||||||
|
except Exception as e:
|
||||||
|
raise e
|
||||||
|
@ -2,11 +2,11 @@ r"""
|
|||||||
callback模块实现了 fastNLP 中的许多 callback 类,用于增强 :class:`~fastNLP.Trainer` 类。
|
callback模块实现了 fastNLP 中的许多 callback 类,用于增强 :class:`~fastNLP.Trainer` 类。
|
||||||
|
|
||||||
虽然Trainer本身已经集成了一些功能,但仍然不足以囊括训练过程中可能需要到的功能,
|
虽然Trainer本身已经集成了一些功能,但仍然不足以囊括训练过程中可能需要到的功能,
|
||||||
比如负采样,learning rate decay, Early Stop等。
|
比如负采样,learning rate decay 和 early stop等。
|
||||||
为了解决这个问题fastNLP引入了callback的机制,Callback 是一种在Trainer训练过程中特定阶段会运行的函数集合。
|
为了解决这个问题,fastNLP引入了callback的机制,:class:`~fastNLP.Callback` 是一种在Trainer训练过程中特定阶段会运行的函数集合。
|
||||||
关于Trainer的详细文档,请参见 :doc:`trainer 模块<fastNLP.core.trainer>`
|
关于 :class:`~fastNLP.Trainer` 的详细文档,请参见 :doc:`trainer 模块<fastNLP.core.trainer>`
|
||||||
|
|
||||||
我们将 :meth:`~fastNLP.Train.train` 这个函数内部分为以下的阶段,在对应阶段会触发相应的调用::
|
我们将 :meth:`~fastNLP.Trainer.train` 这个函数内部分为以下的阶段,在对应阶段会触发相应的调用::
|
||||||
|
|
||||||
callback.on_train_begin() # 开始进行训练
|
callback.on_train_begin() # 开始进行训练
|
||||||
for i in range(1, n_epochs+1):
|
for i in range(1, n_epochs+1):
|
||||||
@ -31,8 +31,8 @@ callback模块实现了 fastNLP 中的许多 callback 类,用于增强 :class:
|
|||||||
callback.on_train_end() # 训练结束
|
callback.on_train_end() # 训练结束
|
||||||
callback.on_exception() # 这是一个特殊的步骤,在训练过程中遭遇exception会跳转到这里。
|
callback.on_exception() # 这是一个特殊的步骤,在训练过程中遭遇exception会跳转到这里。
|
||||||
|
|
||||||
如下面的例子所示,我们可以使用内置的 callback 类,或者继承 :class:`~fastNLP.core.callback.Callback`
|
如下面的例子所示,我们可以使用内置的 callback 组件,或者继承 :class:`~fastNLP.core.callback.Callback`
|
||||||
定义自己的 callback 类::
|
定义自己的 callback 组件::
|
||||||
|
|
||||||
from fastNLP import Callback, EarlyStopCallback, Trainer, CrossEntropyLoss, AccuracyMetric
|
from fastNLP import Callback, EarlyStopCallback, Trainer, CrossEntropyLoss, AccuracyMetric
|
||||||
from fastNLP.models import CNNText
|
from fastNLP.models import CNNText
|
||||||
@ -66,6 +66,8 @@ import os
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
import sys
|
||||||
|
from .utils import _save_model
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from tensorboardX import SummaryWriter
|
from tensorboardX import SummaryWriter
|
||||||
@ -113,7 +115,7 @@ class Callback(object):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def n_steps(self):
|
def n_steps(self):
|
||||||
"""Trainer一共会运行多少步"""
|
"""Trainer一共会采多少个batch。当Trainer中update_every设置为非1的值时,该值不等于update的次数"""
|
||||||
return self._trainer.n_steps
|
return self._trainer.n_steps
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -181,7 +183,7 @@ class Callback(object):
|
|||||||
:param dict batch_x: DataSet中被设置为input的field的batch。
|
:param dict batch_x: DataSet中被设置为input的field的batch。
|
||||||
:param dict batch_y: DataSet中被设置为target的field的batch。
|
:param dict batch_y: DataSet中被设置为target的field的batch。
|
||||||
:param list(int) indices: 这次采样使用到的indices,可以通过DataSet[indices]获取出这个batch采出的Instance,在一些
|
:param list(int) indices: 这次采样使用到的indices,可以通过DataSet[indices]获取出这个batch采出的Instance,在一些
|
||||||
情况下可以帮助定位是哪个Sample导致了错误。仅在Trainer的prefetch为False时可用。
|
情况下可以帮助定位是哪个Sample导致了错误。仅当num_workers=0时有效。
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
@ -399,10 +401,11 @@ class GradientClipCallback(Callback):
|
|||||||
self.clip_value = clip_value
|
self.clip_value = clip_value
|
||||||
|
|
||||||
def on_backward_end(self):
|
def on_backward_end(self):
|
||||||
if self.parameters is None:
|
if self.step%self.update_every==0:
|
||||||
self.clip_fun(self.model.parameters(), self.clip_value)
|
if self.parameters is None:
|
||||||
else:
|
self.clip_fun(self.model.parameters(), self.clip_value)
|
||||||
self.clip_fun(self.parameters, self.clip_value)
|
else:
|
||||||
|
self.clip_fun(self.parameters, self.clip_value)
|
||||||
|
|
||||||
|
|
||||||
class EarlyStopCallback(Callback):
|
class EarlyStopCallback(Callback):
|
||||||
@ -445,10 +448,10 @@ class FitlogCallback(Callback):
|
|||||||
并将验证结果写入到fitlog中。这些数据集的结果是根据dev上最好的结果报道的,即如果dev在第3个epoch取得了最佳,则
|
并将验证结果写入到fitlog中。这些数据集的结果是根据dev上最好的结果报道的,即如果dev在第3个epoch取得了最佳,则
|
||||||
fitlog中记录的关于这些数据集的结果就是来自第三个epoch的结果。
|
fitlog中记录的关于这些数据集的结果就是来自第三个epoch的结果。
|
||||||
|
|
||||||
:param DataSet,dict(DataSet) data: 传入DataSet对象,会使用多个Trainer中的metric对数据进行验证。如果需要传入多个
|
:param ~fastNLP.DataSet,Dict[~fastNLP.DataSet] data: 传入DataSet对象,会使用多个Trainer中的metric对数据进行验证。如果需要传入多个
|
||||||
DataSet请通过dict的方式传入,dict的key将作为对应dataset的name传递给fitlog。若tester不为None时,data需要通过
|
DataSet请通过dict的方式传入,dict的key将作为对应dataset的name传递给fitlog。若tester不为None时,data需要通过
|
||||||
dict的方式传入。如果仅传入DataSet, 则被命名为test
|
dict的方式传入。如果仅传入DataSet, 则被命名为test
|
||||||
:param Tester tester: Tester对象,将在on_valid_end时调用。tester中的DataSet会被称为为`test`
|
:param ~fastNLP.Tester tester: Tester对象,将在on_valid_end时调用。tester中的DataSet会被称为为`test`
|
||||||
:param int log_loss_every: 多少个step记录一次loss(记录的是这几个batch的loss平均值),如果数据集较大建议将该值设置得
|
:param int log_loss_every: 多少个step记录一次loss(记录的是这几个batch的loss平均值),如果数据集较大建议将该值设置得
|
||||||
大一些,不然会导致log文件巨大。默认为0, 即不要记录loss。
|
大一些,不然会导致log文件巨大。默认为0, 即不要记录loss。
|
||||||
:param int verbose: 是否在终端打印evaluation的结果,0不打印。
|
:param int verbose: 是否在终端打印evaluation的结果,0不打印。
|
||||||
@ -548,7 +551,7 @@ class LRScheduler(Callback):
|
|||||||
else:
|
else:
|
||||||
raise ValueError(f"Expect torch.optim.lr_scheduler for LRScheduler. Got {type(lr_scheduler)}.")
|
raise ValueError(f"Expect torch.optim.lr_scheduler for LRScheduler. Got {type(lr_scheduler)}.")
|
||||||
|
|
||||||
def on_epoch_begin(self):
|
def on_epoch_end(self):
|
||||||
self.scheduler.step(self.epoch)
|
self.scheduler.step(self.epoch)
|
||||||
|
|
||||||
|
|
||||||
@ -671,7 +674,7 @@ class TensorboardCallback(Callback):
|
|||||||
|
|
||||||
.. warning::
|
.. warning::
|
||||||
fastNLP 已停止对此功能的维护,请等待 fastNLP 兼容 PyTorch1.1 的下一个版本。
|
fastNLP 已停止对此功能的维护,请等待 fastNLP 兼容 PyTorch1.1 的下一个版本。
|
||||||
或者使用和 fastNLP 高度配合的 fitlog(参见 :doc:`/user/with_fitlog` )。
|
或者使用和 fastNLP 高度配合的 fitlog(参见 :doc:`/tutorials/tutorial_10_fitlog` )。
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -736,6 +739,132 @@ class TensorboardCallback(Callback):
|
|||||||
del self._summary_writer
|
del self._summary_writer
|
||||||
|
|
||||||
|
|
||||||
|
class WarmupCallback(Callback):
|
||||||
|
"""
|
||||||
|
按一定的周期调节Learning rate的大小。
|
||||||
|
|
||||||
|
:param int,float warmup: 如果warmup为int,则在该step之前,learning rate根据schedule的策略变化; 如果warmup为float,
|
||||||
|
如0.1, 则前10%的step是按照schedule策略调整learning rate。
|
||||||
|
:param str schedule: 以哪种方式调整。linear: 前warmup的step上升到指定的learning rate(从Trainer中的optimizer处获取的), 后
|
||||||
|
warmup的step下降到0; constant前warmup的step上升到指定learning rate,后面的step保持learning rate.
|
||||||
|
"""
|
||||||
|
def __init__(self, warmup=0.1, schedule='constant'):
|
||||||
|
super().__init__()
|
||||||
|
self.warmup = max(warmup, 0.)
|
||||||
|
|
||||||
|
self.initial_lrs = [] # 存放param_group的learning rate
|
||||||
|
if schedule == 'constant':
|
||||||
|
self.get_lr = self._get_constant_lr
|
||||||
|
elif schedule == 'linear':
|
||||||
|
self.get_lr = self._get_linear_lr
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Only support 'linear', 'constant'.")
|
||||||
|
|
||||||
|
def _get_constant_lr(self, progress):
|
||||||
|
if progress<self.warmup:
|
||||||
|
return progress/self.warmup
|
||||||
|
return 1
|
||||||
|
|
||||||
|
def _get_linear_lr(self, progress):
|
||||||
|
if progress<self.warmup:
|
||||||
|
return progress/self.warmup
|
||||||
|
return max((progress - 1.) / (self.warmup - 1.), 0.)
|
||||||
|
|
||||||
|
def on_train_begin(self):
|
||||||
|
self.t_steps = (len(self.trainer.train_data) // (self.batch_size*self.update_every) +
|
||||||
|
int(len(self.trainer.train_data) % (self.batch_size*self.update_every)!= 0)) * self.n_epochs
|
||||||
|
if self.warmup>1:
|
||||||
|
self.warmup = self.warmup/self.t_steps
|
||||||
|
self.t_steps = max(2, self.t_steps) # 不能小于2
|
||||||
|
# 获取param_group的初始learning rate
|
||||||
|
for group in self.optimizer.param_groups:
|
||||||
|
self.initial_lrs.append(group['lr'])
|
||||||
|
|
||||||
|
def on_backward_end(self):
|
||||||
|
if self.step%self.update_every==0:
|
||||||
|
progress = (self.step/self.update_every)/self.t_steps
|
||||||
|
for lr, group in zip(self.initial_lrs, self.optimizer.param_groups):
|
||||||
|
group['lr'] = lr * self.get_lr(progress)
|
||||||
|
|
||||||
|
|
||||||
|
class SaveModelCallback(Callback):
|
||||||
|
"""
|
||||||
|
由于Trainer在训练过程中只会保存最佳的模型, 该callback可实现多种方式的结果存储。
|
||||||
|
会根据训练开始的时间戳在save_dir下建立文件夹,再在文件夹下存放多个模型
|
||||||
|
-save_dir
|
||||||
|
-2019-07-03-15-06-36
|
||||||
|
-epoch:0_step:20_{metric_key}:{evaluate_performance}.pt # metric是给定的metric_key, evaluate_performance是性能
|
||||||
|
-epoch:1_step:40_{metric_key}:{evaluate_performance}.pt
|
||||||
|
-2019-07-03-15-10-00
|
||||||
|
-epoch:0_step:20_{metric_key}:{evaluate_performance}.pt # metric是给定的metric_key, evaluate_perfomance是性能
|
||||||
|
:param str save_dir: 将模型存放在哪个目录下,会在该目录下创建以时间戳命名的目录,并存放模型
|
||||||
|
:param int top: 保存dev表现top多少模型。-1为保存所有模型。
|
||||||
|
:param bool only_param: 是否只保存模型d饿权重。
|
||||||
|
:param save_on_exception: 发生exception时,是否保存一份发生exception的模型。模型名称为epoch:x_step:x_Exception:{exception_name}.
|
||||||
|
"""
|
||||||
|
def __init__(self, save_dir, top=3, only_param=False, save_on_exception=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if not os.path.isdir(save_dir):
|
||||||
|
raise IsADirectoryError("{} is not a directory.".format(save_dir))
|
||||||
|
self.save_dir = save_dir
|
||||||
|
if top < 0:
|
||||||
|
self.top = sys.maxsize
|
||||||
|
else:
|
||||||
|
self.top = top
|
||||||
|
self._ordered_save_models = [] # List[Tuple], Tuple[0]是metric, Tuple[1]是path。metric是依次变好的,所以从头删
|
||||||
|
|
||||||
|
self.only_param = only_param
|
||||||
|
self.save_on_exception = save_on_exception
|
||||||
|
|
||||||
|
def on_train_begin(self):
|
||||||
|
self.save_dir = os.path.join(self.save_dir, self.trainer.start_time)
|
||||||
|
|
||||||
|
def on_valid_end(self, eval_result, metric_key, optimizer, is_better_eval):
|
||||||
|
metric_value = list(eval_result.values())[0][metric_key]
|
||||||
|
self._save_this_model(metric_value)
|
||||||
|
|
||||||
|
def _insert_into_ordered_save_models(self, pair):
|
||||||
|
# pair:(metric_value, model_name)
|
||||||
|
# 返回save的模型pair与删除的模型pair. pair中第一个元素是metric的值,第二个元素是模型的名称
|
||||||
|
index = -1
|
||||||
|
for _pair in self._ordered_save_models:
|
||||||
|
if _pair[0]>=pair[0] and self.trainer.increase_better:
|
||||||
|
break
|
||||||
|
if not self.trainer.increase_better and _pair[0]<=pair[0]:
|
||||||
|
break
|
||||||
|
index += 1
|
||||||
|
save_pair = None
|
||||||
|
if len(self._ordered_save_models)<self.top or (len(self._ordered_save_models)>=self.top and index!=-1):
|
||||||
|
save_pair = pair
|
||||||
|
self._ordered_save_models.insert(index+1, pair)
|
||||||
|
delete_pair = None
|
||||||
|
if len(self._ordered_save_models)>self.top:
|
||||||
|
delete_pair = self._ordered_save_models.pop(0)
|
||||||
|
return save_pair, delete_pair
|
||||||
|
|
||||||
|
def _save_this_model(self, metric_value):
|
||||||
|
name = "epoch:{}_step:{}_{}:{:.6f}.pt".format(self.epoch, self.step, self.trainer.metric_key, metric_value)
|
||||||
|
save_pair, delete_pair = self._insert_into_ordered_save_models((metric_value, name))
|
||||||
|
if save_pair:
|
||||||
|
try:
|
||||||
|
_save_model(self.model, model_name=name, save_dir=self.save_dir, only_param=self.only_param)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"The following exception:{e} happens when save model to {self.save_dir}.")
|
||||||
|
if delete_pair:
|
||||||
|
try:
|
||||||
|
delete_model_path = os.path.join(self.save_dir, delete_pair[1])
|
||||||
|
if os.path.exists(delete_model_path):
|
||||||
|
os.remove(delete_model_path)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Fail to delete model {name} at {self.save_dir} caused by exception:{e}.")
|
||||||
|
|
||||||
|
def on_exception(self, exception):
|
||||||
|
if self.save_on_exception:
|
||||||
|
name = "epoch:{}_step:{}_Exception:{}.pt".format(self.epoch, self.step, exception.__class__.__name__)
|
||||||
|
_save_model(self.model, model_name=name, save_dir=self.save_dir, only_param=self.only_param)
|
||||||
|
|
||||||
|
|
||||||
class CallbackException(BaseException):
|
class CallbackException(BaseException):
|
||||||
"""
|
"""
|
||||||
当需要通过callback跳出训练的时候可以通过抛出CallbackException并在on_exception中捕获这个值。
|
当需要通过callback跳出训练的时候可以通过抛出CallbackException并在on_exception中捕获这个值。
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
"""
|
"""
|
||||||
:class:`~fastNLP.core.dataset.DataSet` 是fastNLP中用于承载数据的容器。可以将DataSet看做是一个表格,
|
:class:`~fastNLP.core.dataset.DataSet` 是fastNLP中用于承载数据的容器。可以将DataSet看做是一个表格,
|
||||||
每一行是一个sample (在fastNLP中被称为 :mod:`~.instance` ),
|
每一行是一个sample (在fastNLP中被称为 :mod:`~fastNLP.core.instance` ),
|
||||||
每一列是一个feature (在fastNLP中称为 :mod:`.field` )。
|
每一列是一个feature (在fastNLP中称为 :mod:`~fastNLP.core.field` )。
|
||||||
|
|
||||||
.. csv-table:: Following is a demo layout of DataSet
|
.. csv-table:: Following is a demo layout of DataSet
|
||||||
:header: "sentence", "words", "seq_len"
|
:header: "sentence", "words", "seq_len"
|
||||||
@ -13,57 +13,64 @@
|
|||||||
|
|
||||||
在fastNLP内部每一行是一个 :class:`~fastNLP.Instance` 对象; 每一列是一个 :class:`~fastNLP.FieldArray` 对象。
|
在fastNLP内部每一行是一个 :class:`~fastNLP.Instance` 对象; 每一列是一个 :class:`~fastNLP.FieldArray` 对象。
|
||||||
|
|
||||||
1 DataSet的创建
|
----------------------------
|
||||||
创建DataSet主要有以下的3种方式
|
1.DataSet的创建
|
||||||
|
----------------------------
|
||||||
|
|
||||||
|
创建DataSet主要有以下的3种方式
|
||||||
|
|
||||||
1.1 传入dict
|
1.1 传入dict
|
||||||
|
----------------------------
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
data = {'sentence':["This is the first instance .", "Second instance .", "Third instance ."],
|
data = {'sentence':["This is the first instance .", "Second instance .", "Third instance ."],
|
||||||
'words': [['this', 'is', 'the', 'first', 'instance', '.'], ['Second', 'instance', '.'], ['Third', 'instance', '.'],
|
'words': [['this', 'is', 'the', 'first', 'instance', '.'], ['Second', 'instance', '.'], ['Third', 'instance', '.'],
|
||||||
'seq_len': [6, 3, 3]}
|
'seq_len': [6, 3, 3]}
|
||||||
dataset = DataSet(data)
|
dataset = DataSet(data)
|
||||||
# 传入的dict的每个key的value应该为具有相同长度的list
|
# 传入的dict的每个key的value应该为具有相同长度的list
|
||||||
|
|
||||||
1.2 通过构建Instance
|
1.2 通过 Instance 构建
|
||||||
|
----------------------------
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
from fastNLP import Instance
|
from fastNLP import Instance
|
||||||
dataset = DataSet()
|
dataset = DataSet()
|
||||||
instance = Instance(sentence="This is the first instance",
|
instance = Instance(sentence="This is the first instance",
|
||||||
words=['this', 'is', 'the', 'first', 'instance', '.'],
|
words=['this', 'is', 'the', 'first', 'instance', '.'],
|
||||||
seq_len=6)
|
seq_len=6)
|
||||||
dataset.append(instance)
|
dataset.append(instance)
|
||||||
# 可以继续append更多内容,但是append的instance应该和第一个instance拥有完全相同的field
|
# 可以继续append更多内容,但是append的instance应该和第一个instance拥有完全相同的field
|
||||||
|
|
||||||
1.3 通过list(Instance)
|
1.3 通过 List[Instance] 构建
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
from fastNLP import Instance
|
from fastNLP import Instance
|
||||||
instances = []
|
instances = []
|
||||||
instances.append(Instance(sentence="This is the first instance",
|
winstances.append(Instance(sentence="This is the first instance",
|
||||||
words=['this', 'is', 'the', 'first', 'instance', '.'],
|
ords=['this', 'is', 'the', 'first', 'instance', '.'],
|
||||||
seq_len=6))
|
seq_len=6))
|
||||||
instances.append(Instance(sentence="Second instance .",
|
instances.append(Instance(sentence="Second instance .",
|
||||||
words=['Second', 'instance', '.'],
|
words=['Second', 'instance', '.'],
|
||||||
seq_len=3))
|
seq_len=3))
|
||||||
dataset = DataSet(instances)
|
dataset = DataSet(instances)
|
||||||
|
|
||||||
|
--------------------------------------
|
||||||
|
2.DataSet与预处理
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
2 DataSet与预处理
|
常见的预处理有如下几种
|
||||||
常见的预处理有如下几种
|
|
||||||
|
|
||||||
2.1 从某个文本文件读取内容 #
|
2.1 从某个文本文件读取内容
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
.. todo::
|
.. code-block::
|
||||||
引用DataLoader
|
|
||||||
|
|
||||||
Example::
|
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
from fastNLP import Instance
|
from fastNLP import Instance
|
||||||
@ -78,21 +85,13 @@
|
|||||||
sent, label = line.strip().split('\t')
|
sent, label = line.strip().split('\t')
|
||||||
dataset.append(Instance(sentence=sent, label=label))
|
dataset.append(Instance(sentence=sent, label=label))
|
||||||
|
|
||||||
2.2 index, 返回结果为对DataSet对象的浅拷贝
|
.. note::
|
||||||
|
直接读取特定数据集的数据请参考 :doc:`/tutorials/tutorial_2_load_dataset`
|
||||||
|
|
||||||
Example::
|
2.2 对DataSet中的内容处理
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
import numpy as np
|
.. code-block::
|
||||||
from fastNLP import DataSet
|
|
||||||
dataset = DataSet({'a': np.arange(10), 'b': [[_] for _ in range(10)]})
|
|
||||||
d[0] # 使用一个下标获取一个instance
|
|
||||||
>>{'a': 0 type=int,'b': [2] type=list} # 得到一个instance
|
|
||||||
d[1:3] # 使用slice获取一个新的DataSet
|
|
||||||
>>DataSet({'a': 1 type=int, 'b': [2] type=list}, {'a': 2 type=int, 'b': [2] type=list})
|
|
||||||
|
|
||||||
2.3 对DataSet中的内容处理
|
|
||||||
|
|
||||||
Example::
|
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
data = {'sentence':["This is the first instance .", "Second instance .", "Third instance ."]}
|
data = {'sentence':["This is the first instance .", "Second instance .", "Third instance ."]}
|
||||||
@ -108,9 +107,10 @@
|
|||||||
return words
|
return words
|
||||||
dataset.apply(get_words, new_field_name='words')
|
dataset.apply(get_words, new_field_name='words')
|
||||||
|
|
||||||
2.4 删除DataSet的内容
|
2.3 删除DataSet的内容
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
dataset = DataSet({'a': list(range(-5, 5))})
|
dataset = DataSet({'a': list(range(-5, 5))})
|
||||||
@ -124,16 +124,18 @@
|
|||||||
dataset.delete_field('a')
|
dataset.delete_field('a')
|
||||||
|
|
||||||
|
|
||||||
2.5 遍历DataSet的内容
|
2.4 遍历DataSet的内容
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
for instance in dataset:
|
for instance in dataset:
|
||||||
# do something
|
# do something
|
||||||
|
|
||||||
2.6 一些其它操作
|
2.5 一些其它操作
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
# 检查是否存在名为'a'的field
|
# 检查是否存在名为'a'的field
|
||||||
dataset.has_field('a') # 或 ('a' in dataset)
|
dataset.has_field('a') # 或 ('a' in dataset)
|
||||||
@ -141,21 +143,25 @@
|
|||||||
dataset.rename_field('a', 'b')
|
dataset.rename_field('a', 'b')
|
||||||
# DataSet的长度
|
# DataSet的长度
|
||||||
len(dataset)
|
len(dataset)
|
||||||
|
|
||||||
|
--------------------------------------
|
||||||
|
3.DataSet与自然语言处理(NLP)
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
3 DataSet与自然语言处理(NLP)
|
在目前深度学习的模型中,大都依赖于随机梯度下降法(SGD)进行模型的优化。随机梯度下降需要将数据切分成一个个的 batch,
|
||||||
在目前深度学习的模型中,大都依赖于随机梯度下降法(SGD)进行模型的优化。随机梯度下降需要将数据切分成一个一个的Batch,
|
一个batch进行一次前向计算(forward)与梯度后向传播(backward)。在自然语言处理的场景下,往往还需要对数据进行pad。这是
|
||||||
一个Batch进行一次前向计算(forward)与梯度后向传播(backward)。在自然语言处理的场景下,往往还需要对数据进行pad。这是
|
由于句子的长度一般是不同的,但是一次batch中的每个field都必须是一个tensor,所以需要将所有句子都补齐到相同的长度。
|
||||||
由于句子的长度一般是不同的,但是一次Batch中的每个field都必须是一个tensor,所以需要将所有句子都补齐到相同的长度。
|
|
||||||
|
|
||||||
3.1 DataSet与Batch
|
3.1 DataSet与DataSetIter
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
我们先看fastNLP中如何将数据分成一个一个的Batch的例子, 这里我们使用随机生成的数据来模拟一个二分类文本分类任务,
|
我们先看fastNLP中如何将数据分成一个一个的batch的例子, 这里我们使用随机生成的数据来模拟一个二分类文本分类任务,
|
||||||
words和characters是输入,labels是文本类别
|
words和characters是输入,labels是文本类别
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
from fastNLP import Batch
|
from fastNLP import DataSetIter
|
||||||
from fastNLP import SequentialSampler
|
from fastNLP import SequentialSampler
|
||||||
from fastNLP import EngChar2DPadder
|
from fastNLP import EngChar2DPadder
|
||||||
|
|
||||||
@ -175,7 +181,7 @@
|
|||||||
d.set_target('label')
|
d.set_target('label')
|
||||||
d.set_input('words', 'chars')
|
d.set_input('words', 'chars')
|
||||||
|
|
||||||
for batch_x, batch_y in Batch(d, sampler=SequentialSampler(), batch_size=2):
|
for batch_x, batch_y in DataSetIter(d, sampler=SequentialSampler(), batch_size=2):
|
||||||
print("batch_x:", batch_x)
|
print("batch_x:", batch_x)
|
||||||
print("batch_y:", batch_y)
|
print("batch_y:", batch_y)
|
||||||
break
|
break
|
||||||
@ -194,23 +200,26 @@
|
|||||||
# [ 0, 0, 0, 0, 0]]])}
|
# [ 0, 0, 0, 0, 0]]])}
|
||||||
# {'label': tensor([0, 0])}
|
# {'label': tensor([0, 0])}
|
||||||
|
|
||||||
其中 :class:`~fastNLP.Batch` 是用于从DataSet中按照batch_size为大小取出batch的迭代器,
|
其中 :class:`~fastNLP.DataSetIter` 是用于从DataSet中按照batch_size为大小取出batch的迭代器,
|
||||||
:class:`~fastNLP.SequentialSampler` 用于指示 Batch 以怎样的
|
:class:`~fastNLP.SequentialSampler` 用于指示 :class:`~fastNLP.DataSetIter` 以怎样的
|
||||||
顺序从DataSet中取出instance以组成一个batch,
|
顺序从DataSet中取出instance以组成一个batch,
|
||||||
更详细的说明请参照 :class:`~fastNLP.Batch` 和 :class:`~fastNLP.SequentialSampler` 文档。
|
更详细的说明请参照 :class:`~fastNLP.DataSetIter` 和 :class:`~fastNLP.SequentialSampler` 文档。
|
||||||
|
|
||||||
通过DataSet.set_input('words', 'chars'), fastNLP将认为'words'和'chars'这两个field都是input,并将它们都放入迭代器
|
通过 ``DataSet.set_input('words', 'chars')`` , fastNLP将认为 `words` 和 `chars` 这两个field都是input,并将它们都放入迭代器
|
||||||
生成的第一个dict中; DataSet.set_target('labels'), fastNLP将认为'labels'这个field是target,并将其放入到迭代器的第
|
生成的第一个dict中; ``DataSet.set_target('labels')`` , fastNLP将认为 `labels` 这个field是target,并将其放入到迭代器的第
|
||||||
二个dict中。如上例中所打印结果。分为input和target的原因是由于它们在被 :class:`~fastNLP.Trainer` 所使用时会有所差异,
|
二个dict中。如上例中所打印结果。分为input和target的原因是由于它们在被 :class:`~fastNLP.Trainer` 所使用时会有所差异,
|
||||||
详见 :class:`~fastNLP.Trainer`
|
详见 :class:`~fastNLP.Trainer`
|
||||||
|
|
||||||
当把某个field设置为'target'或者'input'的时候(两者不是互斥的,可以同时设为input和target),fastNLP不仅仅只是将其放
|
当把某个field设置为 `target` 或者 `input` 的时候(两者不是互斥的,可以同时设为两种),fastNLP不仅仅只是将其放
|
||||||
置到不同的dict中,而还会对被设置为input或target的field进行类型检查。类型检查的目的是为了看能否把该field转为
|
置到不同的dict中,而还会对被设置为 `input` 或 `target` 的 field 进行类型检查。类型检查的目的是为了看能否把该 field 转为
|
||||||
pytorch的torch.LongTensor或torch.FloatTensor类型(也可以在Batch中设置输出numpy类型,参考 :class:`~fastNLP.Batch` ),如上例所示,
|
pytorch的 :class:`torch.LongTensor` 或 :class:`torch.FloatTensor` 类型
|
||||||
fastNLP已将words,chars和label转为了Tensor类型。如果field在每个instance都拥有相同的维度(不能超过两维),且最内层
|
(也可以在 :class:`~fastNLP.DataSetIter` 中设置输出numpy类型,参考 :class:`~fastNLP.DataSetIter` )。
|
||||||
的元素都为相同的type(int, float, np.int*, np.float*),则fastNLP默认将对该field进行pad。也支持全为str的field作为
|
|
||||||
target和input,这种情况下,fastNLP默认不进行pad。另外,当某个field已经被设置为了target或者input后,之后append的
|
如上例所示,fastNLP已将 `words` ,`chars` 和 `label` 转为了 :class:`Tensor` 类型。
|
||||||
instance对应的field必须要和前面已有的内容一致,否则会报错。
|
如果 field 在每个 `instance` 都拥有相同的维度(不能超过两维),且最内层的元素都为相同的 type(int, float, np.int*, np.float*),
|
||||||
|
则fastNLP默认将对该 field 进行pad。也支持全为str的field作为target和input,这种情况下,fastNLP默认不进行pad。
|
||||||
|
另外,当某个 field 已经被设置为了 target 或者 input 后,之后 `append` 的
|
||||||
|
`instance` 对应的 field 必须要和前面已有的内容一致,否则会报错。
|
||||||
|
|
||||||
可以查看field的dtype::
|
可以查看field的dtype::
|
||||||
|
|
||||||
@ -229,6 +238,7 @@
|
|||||||
错误::
|
错误::
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
|
|
||||||
d = DataSet({'data': [1, 'a']})
|
d = DataSet({'data': [1, 'a']})
|
||||||
d.set_input('data')
|
d.set_input('data')
|
||||||
>> RuntimeError: Mixed data types in Field data: [<class 'str'>, <class 'int'>]
|
>> RuntimeError: Mixed data types in Field data: [<class 'str'>, <class 'int'>]
|
||||||
@ -243,6 +253,7 @@
|
|||||||
当某个field被设置为忽略type之后,fastNLP将不对其进行pad。
|
当某个field被设置为忽略type之后,fastNLP将不对其进行pad。
|
||||||
|
|
||||||
3.2 DataSet与pad
|
3.2 DataSet与pad
|
||||||
|
--------------------------------------
|
||||||
|
|
||||||
在fastNLP里,pad是与一个field绑定的。即不同的field可以使用不同的pad方式,比如在英文任务中word需要的pad和
|
在fastNLP里,pad是与一个field绑定的。即不同的field可以使用不同的pad方式,比如在英文任务中word需要的pad和
|
||||||
character的pad方式往往是不同的。fastNLP是通过一个叫做 :class:`~fastNLP.Padder` 的子类来完成的。
|
character的pad方式往往是不同的。fastNLP是通过一个叫做 :class:`~fastNLP.Padder` 的子类来完成的。
|
||||||
@ -252,7 +263,7 @@
|
|||||||
如果 :class:`~fastNLP.AutoPadder` 或 :class:`~fastNLP.EngChar2DPadder` 无法满足需求,
|
如果 :class:`~fastNLP.AutoPadder` 或 :class:`~fastNLP.EngChar2DPadder` 无法满足需求,
|
||||||
也可以自己写一个 :class:`~fastNLP.Padder` 。
|
也可以自己写一个 :class:`~fastNLP.Padder` 。
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
from fastNLP import DataSet
|
from fastNLP import DataSet
|
||||||
from fastNLP import EngChar2DPadder
|
from fastNLP import EngChar2DPadder
|
||||||
@ -285,7 +296,8 @@ from .field import AutoPadder
|
|||||||
from .field import FieldArray
|
from .field import FieldArray
|
||||||
from .instance import Instance
|
from .instance import Instance
|
||||||
from .utils import _get_func_signature
|
from .utils import _get_func_signature
|
||||||
|
from .field import AppendToTargetOrInputException
|
||||||
|
from .field import SetInputOrTargetException
|
||||||
|
|
||||||
class DataSet(object):
|
class DataSet(object):
|
||||||
"""
|
"""
|
||||||
@ -416,13 +428,13 @@ class DataSet(object):
|
|||||||
"""
|
"""
|
||||||
将一个instance对象append到DataSet后面。
|
将一个instance对象append到DataSet后面。
|
||||||
|
|
||||||
:param instance: :class:`~fastNLP.Instance` 类型。若DataSet不为空,则instance应该拥有和DataSet完全一样的field。
|
:param ~fastNLP.Instance instance: 若DataSet不为空,则instance应该拥有和DataSet完全一样的field。
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if len(self.field_arrays) == 0:
|
if len(self.field_arrays) == 0:
|
||||||
# DataSet has no field yet
|
# DataSet has no field yet
|
||||||
for name, field in instance.fields.items():
|
for name, field in instance.fields.items():
|
||||||
field = field.tolist() if isinstance(field, np.ndarray) else field
|
# field = field.tolist() if isinstance(field, np.ndarray) else field
|
||||||
self.field_arrays[name] = FieldArray(name, [field]) # 第一个样本,必须用list包装起来
|
self.field_arrays[name] = FieldArray(name, [field]) # 第一个样本,必须用list包装起来
|
||||||
else:
|
else:
|
||||||
if len(self.field_arrays) != len(instance.fields):
|
if len(self.field_arrays) != len(instance.fields):
|
||||||
@ -431,14 +443,18 @@ class DataSet(object):
|
|||||||
.format(len(self.field_arrays), len(instance.fields)))
|
.format(len(self.field_arrays), len(instance.fields)))
|
||||||
for name, field in instance.fields.items():
|
for name, field in instance.fields.items():
|
||||||
assert name in self.field_arrays
|
assert name in self.field_arrays
|
||||||
self.field_arrays[name].append(field)
|
try:
|
||||||
|
self.field_arrays[name].append(field)
|
||||||
|
except AppendToTargetOrInputException as e:
|
||||||
|
print(f"Cannot append to field:{name}.")
|
||||||
|
raise e
|
||||||
|
|
||||||
def add_fieldarray(self, field_name, fieldarray):
|
def add_fieldarray(self, field_name, fieldarray):
|
||||||
"""
|
"""
|
||||||
将fieldarray添加到DataSet中.
|
将fieldarray添加到DataSet中.
|
||||||
|
|
||||||
:param str field_name: 新加入的field的名称
|
:param str field_name: 新加入的field的名称
|
||||||
:param fieldarray: :class:`~fastNLP.FieldArray` 类型。需要加入DataSet的field的内容
|
:param ~fastNLP.core.FieldArray fieldarray: 需要加入DataSet的field的内容
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
if not isinstance(fieldarray, FieldArray):
|
if not isinstance(fieldarray, FieldArray):
|
||||||
@ -454,8 +470,7 @@ class DataSet(object):
|
|||||||
|
|
||||||
:param str field_name: 新增的field的名称
|
:param str field_name: 新增的field的名称
|
||||||
:param list fields: 需要新增的field的内容
|
:param list fields: 需要新增的field的内容
|
||||||
:param None, padder: :class:`~fastNLP.Padder` 类型,
|
:param None,~fastNLP.Padder padder: 如果为None,则不进行pad,默认使用 :class:`~fastNLP.AutoPadder` 自动判断是否需要做pad。
|
||||||
如果为None,则不进行pad,默认使用 :class:`~fastNLP.AutoPadder` 自动判断是否需要做pad。
|
|
||||||
:param bool is_input: 新加入的field是否是input
|
:param bool is_input: 新加入的field是否是input
|
||||||
:param bool is_target: 新加入的field是否是target
|
:param bool is_target: 新加入的field是否是target
|
||||||
:param bool ignore_type: 是否忽略对新加入的field的类型检查
|
:param bool ignore_type: 是否忽略对新加入的field的类型检查
|
||||||
@ -517,7 +532,7 @@ class DataSet(object):
|
|||||||
"""
|
"""
|
||||||
返回一个dict,key为field_name, value为对应的 :class:`~fastNLP.FieldArray`
|
返回一个dict,key为field_name, value为对应的 :class:`~fastNLP.FieldArray`
|
||||||
|
|
||||||
:return: dict: 返回如上所述的字典
|
:return dict: 返回如上所述的字典
|
||||||
"""
|
"""
|
||||||
return self.field_arrays
|
return self.field_arrays
|
||||||
|
|
||||||
@ -525,7 +540,7 @@ class DataSet(object):
|
|||||||
"""
|
"""
|
||||||
返回一个list,包含所有 field 的名字
|
返回一个list,包含所有 field 的名字
|
||||||
|
|
||||||
:return: list: 返回如上所述的列表
|
:return list: 返回如上所述的列表
|
||||||
"""
|
"""
|
||||||
return sorted(self.field_arrays.keys())
|
return sorted(self.field_arrays.keys())
|
||||||
|
|
||||||
@ -549,6 +564,7 @@ class DataSet(object):
|
|||||||
self.field_arrays[new_name].name = new_name
|
self.field_arrays[new_name].name = new_name
|
||||||
else:
|
else:
|
||||||
raise KeyError("DataSet has no field named {}.".format(old_name))
|
raise KeyError("DataSet has no field named {}.".format(old_name))
|
||||||
|
return self
|
||||||
|
|
||||||
def set_target(self, *field_names, flag=True):
|
def set_target(self, *field_names, flag=True):
|
||||||
"""
|
"""
|
||||||
@ -565,7 +581,11 @@ class DataSet(object):
|
|||||||
assert isinstance(flag, bool), "Only bool type supported."
|
assert isinstance(flag, bool), "Only bool type supported."
|
||||||
for name in field_names:
|
for name in field_names:
|
||||||
if name in self.field_arrays:
|
if name in self.field_arrays:
|
||||||
self.field_arrays[name].is_target = flag
|
try:
|
||||||
|
self.field_arrays[name].is_target = flag
|
||||||
|
except SetInputOrTargetException as e:
|
||||||
|
print(f"Cannot set field:{name} as target.")
|
||||||
|
raise e
|
||||||
else:
|
else:
|
||||||
raise KeyError("{} is not a valid field name.".format(name))
|
raise KeyError("{} is not a valid field name.".format(name))
|
||||||
|
|
||||||
@ -581,7 +601,11 @@ class DataSet(object):
|
|||||||
"""
|
"""
|
||||||
for name in field_names:
|
for name in field_names:
|
||||||
if name in self.field_arrays:
|
if name in self.field_arrays:
|
||||||
self.field_arrays[name].is_input = flag
|
try:
|
||||||
|
self.field_arrays[name].is_input = flag
|
||||||
|
except SetInputOrTargetException as e:
|
||||||
|
print(f"Cannot set field:{name} as input, exception happens at the {e.index} value.")
|
||||||
|
raise e
|
||||||
else:
|
else:
|
||||||
raise KeyError("{} is not a valid field name.".format(name))
|
raise KeyError("{} is not a valid field name.".format(name))
|
||||||
|
|
||||||
@ -610,7 +634,7 @@ class DataSet(object):
|
|||||||
dataset.set_padder('chars', padder) # 则chars这个field会使用EngChar2DPadder进行pad操作
|
dataset.set_padder('chars', padder) # 则chars这个field会使用EngChar2DPadder进行pad操作
|
||||||
|
|
||||||
:param str field_name: 设置field的padding方式为padder
|
:param str field_name: 设置field的padding方式为padder
|
||||||
:param None, Padder padder: 设置为None即删除padder, 即对该field不进行pad操作。
|
:param None,~fastNLP.Padder padder: 设置为None即删除padder, 即对该field不进行pad操作。
|
||||||
"""
|
"""
|
||||||
if field_name not in self.field_arrays:
|
if field_name not in self.field_arrays:
|
||||||
raise KeyError("There is no field named {}.".format(field_name))
|
raise KeyError("There is no field named {}.".format(field_name))
|
||||||
@ -658,7 +682,7 @@ class DataSet(object):
|
|||||||
2. is_target: bool, 如果为True则将名为 `new_field_name` 的field设置为target
|
2. is_target: bool, 如果为True则将名为 `new_field_name` 的field设置为target
|
||||||
|
|
||||||
3. ignore_type: bool, 如果为True则将名为 `new_field_name` 的field的ignore_type设置为true, 忽略其类型
|
3. ignore_type: bool, 如果为True则将名为 `new_field_name` 的field的ignore_type设置为true, 忽略其类型
|
||||||
:return: list(Any), 里面的元素为func的返回值,所以list长度为DataSet的长度
|
:return List[Any]: 里面的元素为func的返回值,所以list长度为DataSet的长度
|
||||||
|
|
||||||
"""
|
"""
|
||||||
assert len(self) != 0, "Null DataSet cannot use apply_field()."
|
assert len(self) != 0, "Null DataSet cannot use apply_field()."
|
||||||
@ -685,7 +709,7 @@ class DataSet(object):
|
|||||||
"""
|
"""
|
||||||
将results作为加入到新的field中,field名称为new_field_name
|
将results作为加入到新的field中,field名称为new_field_name
|
||||||
|
|
||||||
:param list(str) results: 一般是apply*()之后的结果
|
:param List[str] results: 一般是apply*()之后的结果
|
||||||
:param str new_field_name: 新加入的field的名称
|
:param str new_field_name: 新加入的field的名称
|
||||||
:param dict kwargs: 用户apply*()时传入的自定义参数
|
:param dict kwargs: 用户apply*()时传入的自定义参数
|
||||||
:return:
|
:return:
|
||||||
@ -728,7 +752,7 @@ class DataSet(object):
|
|||||||
|
|
||||||
3. ignore_type: bool, 如果为True则将 `new_field_name` 的field的ignore_type设置为true, 忽略其类型
|
3. ignore_type: bool, 如果为True则将 `new_field_name` 的field的ignore_type设置为true, 忽略其类型
|
||||||
|
|
||||||
:return: list(Any), 里面的元素为func的返回值,所以list长度为DataSet的长度
|
:return List[Any]: 里面的元素为func的返回值,所以list长度为DataSet的长度
|
||||||
"""
|
"""
|
||||||
assert len(self) != 0, "Null DataSet cannot use apply()."
|
assert len(self) != 0, "Null DataSet cannot use apply()."
|
||||||
idx = -1
|
idx = -1
|
||||||
@ -748,7 +772,20 @@ class DataSet(object):
|
|||||||
self._add_apply_field(results, new_field_name, kwargs)
|
self._add_apply_field(results, new_field_name, kwargs)
|
||||||
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
def add_seq_len(self, field_name:str, new_field_name='seq_len'):
|
||||||
|
"""
|
||||||
|
将使用len()直接对field_name中每个元素作用,将其结果作为seqence length, 并放入seq_len这个field。
|
||||||
|
|
||||||
|
:param field_name: str.
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
if self.has_field(field_name=field_name):
|
||||||
|
self.apply_field(len, field_name, new_field_name=new_field_name)
|
||||||
|
else:
|
||||||
|
raise KeyError(f"Field:{field_name} not found.")
|
||||||
|
return self
|
||||||
|
|
||||||
def drop(self, func, inplace=True):
|
def drop(self, func, inplace=True):
|
||||||
"""
|
"""
|
||||||
func接受一个Instance,返回bool值。返回值为True时,该Instance会被移除或者加入到返回的DataSet中。
|
func接受一个Instance,返回bool值。返回值为True时,该Instance会被移除或者加入到返回的DataSet中。
|
||||||
@ -774,17 +811,19 @@ class DataSet(object):
|
|||||||
else:
|
else:
|
||||||
return DataSet()
|
return DataSet()
|
||||||
|
|
||||||
def split(self, ratio):
|
def split(self, ratio, shuffle=True):
|
||||||
"""
|
"""
|
||||||
将DataSet按照ratio的比例拆分,返回两个DataSet
|
将DataSet按照ratio的比例拆分,返回两个DataSet
|
||||||
|
|
||||||
:param float ratio: 0<ratio<1, 返回的第一个DataSet拥有 `ratio` 这么多数据,第二个DataSet拥有 `(1-ratio)` 这么多数据
|
:param float ratio: 0<ratio<1, 返回的第一个DataSet拥有 `(1-ratio)` 这么多数据,第二个DataSet拥有`ratio`这么多数据
|
||||||
:return: [DataSet, DataSet]
|
:param bool shuffle: 在split前是否shuffle一下
|
||||||
|
:return: [ :class:`~fastNLP.读取后的DataSet` , :class:`~fastNLP.读取后的DataSet` ]
|
||||||
"""
|
"""
|
||||||
assert isinstance(ratio, float)
|
assert isinstance(ratio, float)
|
||||||
assert 0 < ratio < 1
|
assert 0 < ratio < 1
|
||||||
all_indices = [_ for _ in range(len(self))]
|
all_indices = [_ for _ in range(len(self))]
|
||||||
np.random.shuffle(all_indices)
|
if shuffle:
|
||||||
|
np.random.shuffle(all_indices)
|
||||||
split = int(ratio * len(self))
|
split = int(ratio * len(self))
|
||||||
dev_indices = all_indices[:split]
|
dev_indices = all_indices[:split]
|
||||||
train_indices = all_indices[split:]
|
train_indices = all_indices[split:]
|
||||||
@ -802,7 +841,7 @@ class DataSet(object):
|
|||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def read_csv(cls, csv_path, headers=None, sep=",", dropna=True):
|
def read_csv(cls, csv_path, headers=None, sep=",", dropna=True):
|
||||||
"""
|
r"""
|
||||||
.. warning::
|
.. warning::
|
||||||
此方法会在下个版本移除,请使用 :class:`fastNLP.io.CSVLoader`
|
此方法会在下个版本移除,请使用 :class:`fastNLP.io.CSVLoader`
|
||||||
|
|
||||||
@ -813,7 +852,7 @@ class DataSet(object):
|
|||||||
与csv文件中每行的元素个数相同。
|
与csv文件中每行的元素个数相同。
|
||||||
:param str sep: 分割符
|
:param str sep: 分割符
|
||||||
:param bool dropna: 是否忽略与header数量不一致行。
|
:param bool dropna: 是否忽略与header数量不一致行。
|
||||||
:return: 一个 :class:`~fastNLP.DataSet` 类型的对象
|
:return: 读取后的 :class:`~fastNLP.读取后的DataSet`。
|
||||||
"""
|
"""
|
||||||
warnings.warn('DataSet.read_csv is deprecated, use CSVLoader instead',
|
warnings.warn('DataSet.read_csv is deprecated, use CSVLoader instead',
|
||||||
category=DeprecationWarning)
|
category=DeprecationWarning)
|
||||||
@ -853,11 +892,11 @@ class DataSet(object):
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load(path):
|
def load(path):
|
||||||
"""
|
r"""
|
||||||
从保存的DataSet pickle文件的路径中读取DataSet
|
从保存的DataSet pickle文件的路径中读取DataSet
|
||||||
|
|
||||||
:param str path: 从哪里读取DataSet
|
:param str path: 从哪里读取DataSet
|
||||||
:return: 一个 :class:`~fastNLP.DataSet` 类型的对象
|
:return: 读取后的 :class:`~fastNLP.读取后的DataSet`。
|
||||||
"""
|
"""
|
||||||
with open(path, 'rb') as f:
|
with open(path, 'rb') as f:
|
||||||
d = pickle.load(f)
|
d = pickle.load(f)
|
||||||
|
@ -1,251 +1,164 @@
|
|||||||
"""
|
|
||||||
field模块实现了 FieldArray 和若干 Padder。 FieldArray 是 :class:`~fastNLP.DataSet` 中一列的存储方式,
|
|
||||||
原理部分请参考 :doc:`fastNLP.core.dataset`
|
|
||||||
|
|
||||||
"""
|
|
||||||
__all__ = [
|
|
||||||
"FieldArray",
|
|
||||||
"Padder",
|
|
||||||
"AutoPadder",
|
|
||||||
"EngChar2DPadder"
|
|
||||||
]
|
|
||||||
|
|
||||||
from copy import deepcopy
|
|
||||||
|
|
||||||
|
from numbers import Number
|
||||||
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from typing import Any
|
||||||
|
from abc import abstractmethod
|
||||||
|
from copy import deepcopy
|
||||||
|
from collections import Counter
|
||||||
|
|
||||||
|
class SetInputOrTargetException(Exception):
|
||||||
|
def __init__(self, msg, index=None, field_name=None):
|
||||||
|
super().__init__(msg)
|
||||||
|
self.msg = msg
|
||||||
|
self.index = index # 标示在哪个数据遭遇到问题了
|
||||||
|
self.field_name = field_name # 标示当前field的名称
|
||||||
|
|
||||||
class FieldArray(object):
|
class AppendToTargetOrInputException(Exception):
|
||||||
"""
|
def __init__(self, msg, index=None, field_name=None):
|
||||||
别名::class:`fastNLP.FieldArray` :class:`fastNLP.core.field.FieldArray`
|
super().__init__(msg)
|
||||||
|
self.msg = msg
|
||||||
|
self.index = index # 标示在哪个数据遭遇到问题了
|
||||||
|
self.field_name = field_name # 标示当前field的名称
|
||||||
|
|
||||||
FieldArray 是用于保存 :class:`~fastNLP.DataSet` 中一个field的类型。
|
class FieldArray:
|
||||||
|
def __init__(self, name, content, is_target=False, is_input=False, padder=None, ignore_type=False):
|
||||||
:param str name: FieldArray的名称
|
if len(content)==0:
|
||||||
:param list,numpy.ndarray content: 列表的元素可以为list,int,float,
|
raise RuntimeError("Empty fieldarray is not allowed.")
|
||||||
:param bool is_target: 这个field是否是一个target field。
|
_content = content
|
||||||
:param bool is_input: 这个field是否是一个input field。
|
try:
|
||||||
:param padder: :class:`~fastNLP.Padder` 类型。赋值给fieldarray的padder的对象会被deepcopy一份,需要修改padder参数必须通过
|
_content = list(_content)
|
||||||
fieldarray.set_pad_val()。默认为None,即使用 :class:`~fastNLP.AutoPadder` 。
|
except BaseException as e:
|
||||||
:param bool ignore_type: 是否忽略该field的type,一般如果这个field不需要转为torch.FloatTensor或torch.LongTensor,
|
print(f"Cannot convert content(of type:{type(content)}) into list.")
|
||||||
就可以设置为True。具体意义请参考 :class:`~fastNLP.DataSet` 。
|
raise e
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, name, content, is_target=None, is_input=None, padder=None, ignore_type=False):
|
|
||||||
self.name = name
|
self.name = name
|
||||||
if isinstance(content, list):
|
self.content = _content
|
||||||
# 如果DataSet使用dict初始化, content 可能是二维list/二维array/三维list
|
self._ignore_type = ignore_type
|
||||||
# 如果DataSet使用list of Instance 初始化, content可能是 [list]/[array]/[2D list]
|
# 根据input的情况设置input,target等
|
||||||
for idx, item in enumerate(content):
|
self._cell_ndim = None # 多少维度
|
||||||
# 这是使用list of Instance 初始化时第一个样本:FieldArray(name, [field])
|
self.dtype = None # 最内层的element都是什么类型的
|
||||||
# 将[np.array] 转化为 list of list
|
self._is_input = False
|
||||||
# 也可以支持[array, array, array]的情况
|
self._is_target = False
|
||||||
if isinstance(item, np.ndarray):
|
|
||||||
content[idx] = content[idx].tolist()
|
if is_input:
|
||||||
elif isinstance(content, np.ndarray):
|
self.is_input = is_input
|
||||||
content = content.tolist() # convert np.ndarray into 2-D list
|
if is_target:
|
||||||
else:
|
self.is_target = is_target
|
||||||
raise TypeError("content in FieldArray can only be list or numpy.ndarray, got {}.".format(type(content)))
|
|
||||||
if len(content) == 0:
|
|
||||||
raise RuntimeError("Cannot initialize FieldArray with empty list.")
|
|
||||||
|
|
||||||
self.content = content # 1维 或 2维 或 3维 list, 形状可能不对齐
|
|
||||||
self.content_dim = None # 表示content是多少维的list
|
|
||||||
if padder is None:
|
if padder is None:
|
||||||
padder = AutoPadder(pad_val=0)
|
padder = AutoPadder(pad_val=0)
|
||||||
else:
|
else:
|
||||||
assert isinstance(padder, Padder), "padder must be of type Padder."
|
assert isinstance(padder, Padder), "padder must be of type fastNLP.Padder."
|
||||||
padder = deepcopy(padder)
|
padder = deepcopy(padder)
|
||||||
self.set_padder(padder)
|
self.set_padder(padder)
|
||||||
self.ignore_type = ignore_type
|
|
||||||
|
@property
|
||||||
self.BASIC_TYPES = (int, float, str) # content中可接受的Python基本类型,这里没有np.array
|
def ignore_type(self):
|
||||||
|
return self._ignore_type
|
||||||
self.pytype = None
|
|
||||||
self.dtype = None
|
@ignore_type.setter
|
||||||
self._is_input = None
|
def ignore_type(self, value):
|
||||||
self._is_target = None
|
if value:
|
||||||
|
self._cell_ndim = None
|
||||||
if is_input is not None or is_target is not None:
|
self.dtype = None
|
||||||
self.is_input = is_input
|
self._ignore_type = value
|
||||||
self.is_target = is_target
|
|
||||||
|
|
||||||
def _set_dtype(self):
|
|
||||||
if self.ignore_type is False:
|
|
||||||
self.pytype = self._type_detection(self.content)
|
|
||||||
self.dtype = self._map_to_np_type(self.pytype)
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def is_input(self):
|
def is_input(self):
|
||||||
return self._is_input
|
return self._is_input
|
||||||
|
|
||||||
@is_input.setter
|
@is_input.setter
|
||||||
def is_input(self, value):
|
def is_input(self, value):
|
||||||
"""
|
"""
|
||||||
当 field_array.is_input = True / False 时被调用
|
当 field_array.is_input = True / False 时被调用
|
||||||
"""
|
"""
|
||||||
if value is True:
|
# 如果(value为True)且(_is_input和_is_target都是False)且(ignore_type为False)
|
||||||
self._set_dtype()
|
if value is True and \
|
||||||
|
self._is_target is False and \
|
||||||
|
self._ignore_type is False:
|
||||||
|
self._check_dtype_and_ndim()
|
||||||
|
if value is False and self._is_target is False:
|
||||||
|
self.dtype = None
|
||||||
|
self._cell_ndim = None
|
||||||
self._is_input = value
|
self._is_input = value
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def is_target(self):
|
def is_target(self):
|
||||||
return self._is_target
|
return self._is_target
|
||||||
|
|
||||||
@is_target.setter
|
@is_target.setter
|
||||||
def is_target(self, value):
|
def is_target(self, value):
|
||||||
"""
|
"""
|
||||||
当 field_array.is_target = True / False 时被调用
|
当 field_array.is_target = True / False 时被调用
|
||||||
"""
|
"""
|
||||||
if value is True:
|
if value is True and \
|
||||||
self._set_dtype()
|
self._is_input is False and \
|
||||||
|
self._ignore_type is False:
|
||||||
|
self._check_dtype_and_ndim()
|
||||||
|
if value is False and self._is_input is False:
|
||||||
|
self.dtype = None
|
||||||
|
self._cell_ndim = None
|
||||||
self._is_target = value
|
self._is_target = value
|
||||||
|
|
||||||
def _type_detection(self, content):
|
|
||||||
"""
|
|
||||||
当该field被设置为is_input或者is_target时被调用
|
|
||||||
|
|
||||||
|
def _check_dtype_and_ndim(self):
|
||||||
"""
|
"""
|
||||||
if len(content) == 0:
|
检查当前content所有的element是否是同一个类型,且是否每个元素具有相同的维度。通过的话,设置_cell_ndim与_ele_type属性;没有
|
||||||
raise RuntimeError("Empty list in Field {}.".format(self.name))
|
通过将直接报错.
|
||||||
|
|
||||||
type_set = set([type(item) for item in content])
|
|
||||||
|
|
||||||
if list in type_set:
|
|
||||||
if len(type_set) > 1:
|
|
||||||
# list 跟 非list 混在一起
|
|
||||||
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set)))
|
|
||||||
# >1维list
|
|
||||||
inner_type_set = set()
|
|
||||||
for l in content:
|
|
||||||
[inner_type_set.add(type(obj)) for obj in l]
|
|
||||||
if list not in inner_type_set:
|
|
||||||
# 二维list
|
|
||||||
self.content_dim = 2
|
|
||||||
return self._basic_type_detection(inner_type_set)
|
|
||||||
else:
|
|
||||||
if len(inner_type_set) == 1:
|
|
||||||
# >2维list
|
|
||||||
inner_inner_type_set = set()
|
|
||||||
for _2d_list in content:
|
|
||||||
for _1d_list in _2d_list:
|
|
||||||
[inner_inner_type_set.add(type(obj)) for obj in _1d_list]
|
|
||||||
if list in inner_inner_type_set:
|
|
||||||
raise RuntimeError("FieldArray cannot handle 4-D or more-D list.")
|
|
||||||
# 3维list
|
|
||||||
self.content_dim = 3
|
|
||||||
return self._basic_type_detection(inner_inner_type_set)
|
|
||||||
else:
|
|
||||||
# list 跟 非list 混在一起
|
|
||||||
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(inner_type_set)))
|
|
||||||
else:
|
|
||||||
# 一维list
|
|
||||||
for content_type in type_set:
|
|
||||||
if content_type not in self.BASIC_TYPES:
|
|
||||||
raise RuntimeError("Unexpected data type in Field '{}'. Expect one of {}. Got {}.".format(
|
|
||||||
self.name, self.BASIC_TYPES, content_type))
|
|
||||||
self.content_dim = 1
|
|
||||||
return self._basic_type_detection(type_set)
|
|
||||||
|
|
||||||
def _basic_type_detection(self, type_set):
|
|
||||||
"""
|
|
||||||
:param type_set: a set of Python types
|
|
||||||
:return: one of self.BASIC_TYPES
|
|
||||||
"""
|
|
||||||
if len(type_set) == 1:
|
|
||||||
return type_set.pop()
|
|
||||||
elif len(type_set) == 2:
|
|
||||||
# 有多个basic type; 可能需要up-cast
|
|
||||||
if float in type_set and int in type_set:
|
|
||||||
# up-cast int to float
|
|
||||||
return float
|
|
||||||
else:
|
|
||||||
# str 跟 int 或者 float 混在一起
|
|
||||||
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set)))
|
|
||||||
else:
|
|
||||||
# str, int, float混在一起
|
|
||||||
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set)))
|
|
||||||
|
|
||||||
def _1d_list_check(self, val):
|
|
||||||
"""如果不是1D list就报错
|
|
||||||
"""
|
|
||||||
type_set = set((type(obj) for obj in val))
|
|
||||||
if any(obj not in self.BASIC_TYPES for obj in type_set):
|
|
||||||
raise ValueError("Mixed data types in Field {}: {}".format(self.name, list(type_set)))
|
|
||||||
self._basic_type_detection(type_set)
|
|
||||||
# otherwise: _basic_type_detection will raise error
|
|
||||||
return True
|
|
||||||
|
|
||||||
def _2d_list_check(self, val):
|
|
||||||
"""如果不是2D list 就报错
|
|
||||||
"""
|
|
||||||
type_set = set(type(obj) for obj in val)
|
|
||||||
if list(type_set) != [list]:
|
|
||||||
raise ValueError("Mixed data types in Field {}: {}".format(self.name, type_set))
|
|
||||||
inner_type_set = set()
|
|
||||||
for l in val:
|
|
||||||
for obj in l:
|
|
||||||
inner_type_set.add(type(obj))
|
|
||||||
self._basic_type_detection(inner_type_set)
|
|
||||||
return True
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _map_to_np_type(basic_type):
|
|
||||||
type_mapping = {int: np.int64, float: np.float64, str: np.str, np.ndarray: np.ndarray}
|
|
||||||
return type_mapping[basic_type]
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
return "FieldArray {}: {}".format(self.name, self.content.__repr__())
|
|
||||||
|
|
||||||
def append(self, val):
|
|
||||||
"""将val append到这个field的尾部。如果这个field已经被设置为input或者target,则在append之前会检查该类型是否与已有
|
|
||||||
的内容是匹配的。
|
|
||||||
|
|
||||||
:param Any val: 需要append的值。
|
:return:
|
||||||
"""
|
"""
|
||||||
if self.ignore_type is False:
|
cell_0 = self.content[0]
|
||||||
if isinstance(val, list):
|
index = 0
|
||||||
pass
|
try:
|
||||||
elif isinstance(val, tuple): # 确保最外层是list
|
type_0, dim_0 = _get_ele_type_and_dim(cell_0)
|
||||||
val = list(val)
|
for cell in self.content[1:]:
|
||||||
elif isinstance(val, np.ndarray):
|
index += 1
|
||||||
val = val.tolist()
|
type_i, dim_i = _get_ele_type_and_dim(cell)
|
||||||
elif any((isinstance(val, t) for t in self.BASIC_TYPES)):
|
if type_i!=type_0:
|
||||||
pass
|
raise SetInputOrTargetException("Type:{} in index {} is different from the first element with type:{}."
|
||||||
else:
|
".".format(type_i, index, type_0))
|
||||||
raise RuntimeError(
|
if dim_0!=dim_i:
|
||||||
"Unexpected data type {}. Should be list, np.array, or {}".format(type(val), self.BASIC_TYPES))
|
raise SetInputOrTargetException("Dimension:{} in index {} is different from the first element with "
|
||||||
|
"dimension:{}.".format(dim_i, index, dim_0))
|
||||||
if self.is_input is True or self.is_target is True:
|
self._cell_ndim = dim_0
|
||||||
if type(val) == list:
|
self.dtype = type_0
|
||||||
if len(val) == 0:
|
except SetInputOrTargetException as e:
|
||||||
raise ValueError("Cannot append an empty list.")
|
e.index = index
|
||||||
if self.content_dim == 2 and self._1d_list_check(val):
|
raise e
|
||||||
# 1维list检查
|
|
||||||
pass
|
def append(self, val:Any):
|
||||||
elif self.content_dim == 3 and self._2d_list_check(val):
|
"""
|
||||||
# 2维list检查
|
:param val: 把该val append到fieldarray。
|
||||||
pass
|
:return:
|
||||||
else:
|
"""
|
||||||
raise RuntimeError(
|
if (self._is_target or self._is_input) and self._ignore_type is False:
|
||||||
"Dimension not matched: expect dim={}, got {}.".format(self.content_dim - 1, val))
|
type_, dim_ = _get_ele_type_and_dim(val)
|
||||||
elif type(val) in self.BASIC_TYPES and self.content_dim == 1:
|
if self.dtype!=type_:
|
||||||
# scalar检查
|
raise AppendToTargetOrInputException(f"Value(type:{type_}) are of different types with "
|
||||||
if type(val) == float and self.pytype == int:
|
f"previous values(type:{self.dtype}).")
|
||||||
self.pytype = float
|
if self._cell_ndim!=dim_:
|
||||||
self.dtype = self._map_to_np_type(self.pytype)
|
raise AppendToTargetOrInputException(f"Value(dim:{dim_}) are of different dimensions with "
|
||||||
else:
|
f"previous values(dim:{self._cell_ndim}).")
|
||||||
raise RuntimeError(
|
self.content.append(val)
|
||||||
"Unexpected data type {}. Should be list, np.array, or {}".format(type(val), self.BASIC_TYPES))
|
else:
|
||||||
self.content.append(val)
|
self.content.append(val)
|
||||||
|
|
||||||
def __getitem__(self, indices):
|
def __getitem__(self, indices):
|
||||||
return self.get(indices, pad=False)
|
return self.get(indices, pad=False)
|
||||||
|
|
||||||
def __setitem__(self, idx, val):
|
def __setitem__(self, idx, val):
|
||||||
assert isinstance(idx, int)
|
assert isinstance(idx, int)
|
||||||
|
if (self._is_target or self._is_input) and self.ignore_type is False: # 需要检测类型
|
||||||
|
type_, dim_ = _get_ele_type_and_dim(val)
|
||||||
|
if self.dtype!=type_:
|
||||||
|
raise RuntimeError(f"Value(type:{type_}) are of different types with "
|
||||||
|
f"other values(type:{self.dtype}).")
|
||||||
|
if self._cell_ndim!=dim_:
|
||||||
|
raise RuntimeError(f"Value(dim:{dim_}) are of different dimensions with "
|
||||||
|
f"previous values(dim:{self._cell_ndim}).")
|
||||||
self.content[idx] = val
|
self.content[idx] = val
|
||||||
|
|
||||||
def get(self, indices, pad=True):
|
def get(self, indices, pad=True):
|
||||||
"""
|
"""
|
||||||
根据给定的indices返回内容
|
根据给定的indices返回内容
|
||||||
@ -257,14 +170,17 @@ class FieldArray(object):
|
|||||||
if isinstance(indices, int):
|
if isinstance(indices, int):
|
||||||
return self.content[indices]
|
return self.content[indices]
|
||||||
if self.is_input is False and self.is_target is False:
|
if self.is_input is False and self.is_target is False:
|
||||||
raise RuntimeError("Please specify either is_input or is_target is True for {}".format(self.name))
|
raise RuntimeError("Please specify either is_input or is_target to True for {}".format(self.name))
|
||||||
|
|
||||||
contents = [self.content[i] for i in indices]
|
contents = [self.content[i] for i in indices]
|
||||||
if self.padder is None or pad is False:
|
if self.padder is None or pad is False:
|
||||||
return np.array(contents)
|
return np.array(contents)
|
||||||
else:
|
else:
|
||||||
return self.padder(contents, field_name=self.name, field_ele_dtype=self.dtype)
|
return self.pad(contents)
|
||||||
|
|
||||||
|
def pad(self, contents):
|
||||||
|
return self.padder(contents, field_name=self.name, field_ele_dtype=self.dtype, dim=self._cell_ndim)
|
||||||
|
|
||||||
def set_padder(self, padder):
|
def set_padder(self, padder):
|
||||||
"""
|
"""
|
||||||
设置padder,在这个field进行pad的时候用这个padder进行pad,如果为None则不进行pad。
|
设置padder,在这个field进行pad的时候用这个padder进行pad,如果为None则不进行pad。
|
||||||
@ -276,7 +192,7 @@ class FieldArray(object):
|
|||||||
self.padder = deepcopy(padder)
|
self.padder = deepcopy(padder)
|
||||||
else:
|
else:
|
||||||
self.padder = None
|
self.padder = None
|
||||||
|
|
||||||
def set_pad_val(self, pad_val):
|
def set_pad_val(self, pad_val):
|
||||||
"""
|
"""
|
||||||
修改padder的pad_val.
|
修改padder的pad_val.
|
||||||
@ -286,7 +202,7 @@ class FieldArray(object):
|
|||||||
if self.padder is not None:
|
if self.padder is not None:
|
||||||
self.padder.set_pad_val(pad_val)
|
self.padder.set_pad_val(pad_val)
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
"""
|
"""
|
||||||
Returns the size of FieldArray.
|
Returns the size of FieldArray.
|
||||||
@ -294,7 +210,7 @@ class FieldArray(object):
|
|||||||
:return int length:
|
:return int length:
|
||||||
"""
|
"""
|
||||||
return len(self.content)
|
return len(self.content)
|
||||||
|
|
||||||
def to(self, other):
|
def to(self, other):
|
||||||
"""
|
"""
|
||||||
将other的属性复制给本FieldArray(other必须为FieldArray类型).
|
将other的属性复制给本FieldArray(other必须为FieldArray类型).
|
||||||
@ -303,22 +219,225 @@ class FieldArray(object):
|
|||||||
:param other: :class:`~fastNLP.FieldArray` 从哪个field拷贝属性
|
:param other: :class:`~fastNLP.FieldArray` 从哪个field拷贝属性
|
||||||
:return: :class:`~fastNLP.FieldArray`
|
:return: :class:`~fastNLP.FieldArray`
|
||||||
"""
|
"""
|
||||||
assert isinstance(other, FieldArray), "Only support FieldArray type, not {}.".format(type(other))
|
assert isinstance(other, FieldArray), "Only supports fastNLP.FieldArray type, not {}.".format(type(other))
|
||||||
|
|
||||||
|
self.ignore_type = other.ignore_type
|
||||||
self.is_input = other.is_input
|
self.is_input = other.is_input
|
||||||
self.is_target = other.is_target
|
self.is_target = other.is_target
|
||||||
self.padder = other.padder
|
self.padder = other.padder
|
||||||
self.ignore_type = other.ignore_type
|
|
||||||
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def split(self, sep:str=None, inplace:bool=True):
|
||||||
|
"""
|
||||||
|
依次对自身的元素使用.split()方法,应该只有当本field的元素为str时,该方法才有用。将返回值
|
||||||
|
|
||||||
def _is_iterable(content):
|
:param sep: 分割符,如果为None则直接调用str.split()。
|
||||||
|
:param inplace: 如果为True,则将新生成值替换本field。否则返回list。
|
||||||
|
:return: List[List[str]] or self
|
||||||
|
"""
|
||||||
|
new_contents = []
|
||||||
|
for index, cell in enumerate(self.content):
|
||||||
|
try:
|
||||||
|
new_contents.append(cell.split(sep))
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception happens when process value in index {index}.")
|
||||||
|
raise e
|
||||||
|
return self._after_process(new_contents, inplace=inplace)
|
||||||
|
|
||||||
|
def int(self, inplace:bool=True):
|
||||||
|
"""
|
||||||
|
将本field中的值调用int(cell). 支持field中内容为以下两种情况(1)['1', '2', ...](即field中每个值为str的),
|
||||||
|
(2) [['1', '2', ..], ['3', ..], ...](即field中每个值为一个list,list中的值会被依次转换。)
|
||||||
|
|
||||||
|
:param inplace: 如果为True,则将新生成值替换本field。否则返回list。
|
||||||
|
:return: List[int], List[List[int]], self
|
||||||
|
"""
|
||||||
|
new_contents = []
|
||||||
|
for index, cell in enumerate(self.content):
|
||||||
|
try:
|
||||||
|
if isinstance(cell, list):
|
||||||
|
new_contents.append([int(value) for value in cell])
|
||||||
|
else:
|
||||||
|
new_contents.append(int(cell))
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception happens when process value in index {index}.")
|
||||||
|
print(e)
|
||||||
|
return self._after_process(new_contents, inplace=inplace)
|
||||||
|
|
||||||
|
def float(self, inplace=True):
|
||||||
|
"""
|
||||||
|
将本field中的值调用float(cell). 支持field中内容为以下两种情况(1)['1', '2', ...](即field中每个值为str的),
|
||||||
|
(2) [['1', '2', ..], ['3', ..], ...](即field中每个值为一个list,list中的值会被依次转换。)
|
||||||
|
|
||||||
|
:param inplace: 如果为True,则将新生成值替换本field。否则返回list。
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
new_contents = []
|
||||||
|
for index, cell in enumerate(self.content):
|
||||||
|
try:
|
||||||
|
if isinstance(cell, list):
|
||||||
|
new_contents.append([float(value) for value in cell])
|
||||||
|
else:
|
||||||
|
new_contents.append(float(cell))
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception happens when process value in index {index}.")
|
||||||
|
raise e
|
||||||
|
return self._after_process(new_contents, inplace=inplace)
|
||||||
|
|
||||||
|
def bool(self, inplace=True):
|
||||||
|
"""
|
||||||
|
将本field中的值调用bool(cell). 支持field中内容为以下两种情况(1)['1', '2', ...](即field中每个值为str的),
|
||||||
|
(2) [['1', '2', ..], ['3', ..], ...](即field中每个值为一个list,list中的值会被依次转换。)
|
||||||
|
|
||||||
|
:param inplace: 如果为True,则将新生成值替换本field。否则返回list。
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
new_contents = []
|
||||||
|
for index, cell in enumerate(self.content):
|
||||||
|
try:
|
||||||
|
if isinstance(cell, list):
|
||||||
|
new_contents.append([bool(value) for value in cell])
|
||||||
|
else:
|
||||||
|
new_contents.append(bool(cell))
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception happens when process value in index {index}.")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
return self._after_process(new_contents, inplace=inplace)
|
||||||
|
|
||||||
|
def lower(self, inplace=True):
|
||||||
|
"""
|
||||||
|
将本field中的值调用cell.lower(). 支持field中内容为以下两种情况(1)['1', '2', ...](即field中每个值为str的),
|
||||||
|
(2) [['1', '2', ..], ['3', ..], ...](即field中每个值为一个list,list中的值会被依次转换。)
|
||||||
|
|
||||||
|
:param inplace: 如果为True,则将新生成值替换本field。否则返回list。
|
||||||
|
:return: List[int], List[List[int]], self
|
||||||
|
"""
|
||||||
|
new_contents = []
|
||||||
|
for index, cell in enumerate(self.content):
|
||||||
|
try:
|
||||||
|
if isinstance(cell, list):
|
||||||
|
new_contents.append([value.lower() for value in cell])
|
||||||
|
else:
|
||||||
|
new_contents.append(cell.lower())
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception happens when process value in index {index}.")
|
||||||
|
raise e
|
||||||
|
return self._after_process(new_contents, inplace=inplace)
|
||||||
|
|
||||||
|
def upper(self, inplace=True):
|
||||||
|
"""
|
||||||
|
将本field中的值调用cell.lower(). 支持field中内容为以下两种情况(1)['1', '2', ...](即field中每个值为str的),
|
||||||
|
(2) [['1', '2', ..], ['3', ..], ...](即field中每个值为一个list,list中的值会被依次转换。)
|
||||||
|
|
||||||
|
:param inplace: 如果为True,则将新生成值替换本field。否则返回list。
|
||||||
|
:return: List[int], List[List[int]], self
|
||||||
|
"""
|
||||||
|
new_contents = []
|
||||||
|
for index, cell in enumerate(self.content):
|
||||||
|
try:
|
||||||
|
if isinstance(cell, list):
|
||||||
|
new_contents.append([value.upper() for value in cell])
|
||||||
|
else:
|
||||||
|
new_contents.append(cell.upper())
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception happens when process value in index {index}.")
|
||||||
|
raise e
|
||||||
|
return self._after_process(new_contents, inplace=inplace)
|
||||||
|
|
||||||
|
def value_count(self):
|
||||||
|
"""
|
||||||
|
返回该field下不同value的数量。多用于统计label数量
|
||||||
|
|
||||||
|
:return: Counter, key是label,value是出现次数
|
||||||
|
"""
|
||||||
|
count = Counter()
|
||||||
|
|
||||||
|
def cum(cell):
|
||||||
|
if _is_iterable(cell) and not isinstance(cell, str):
|
||||||
|
for cell_ in cell:
|
||||||
|
cum(cell_)
|
||||||
|
else:
|
||||||
|
count[cell] += 1
|
||||||
|
for cell in self.content:
|
||||||
|
cum(cell)
|
||||||
|
return count
|
||||||
|
|
||||||
|
def _after_process(self, new_contents, inplace):
|
||||||
|
"""
|
||||||
|
当调用处理函数之后,决定是否要替换field。
|
||||||
|
|
||||||
|
:param new_contents:
|
||||||
|
:param inplace:
|
||||||
|
:return: self或者生成的content
|
||||||
|
"""
|
||||||
|
if inplace:
|
||||||
|
self.content = new_contents
|
||||||
|
try:
|
||||||
|
self.is_input = self.is_input
|
||||||
|
self.is_target = self.is_input
|
||||||
|
except SetInputOrTargetException as e:
|
||||||
|
print("The newly generated field cannot be set as input or target.")
|
||||||
|
raise e
|
||||||
|
return self
|
||||||
|
else:
|
||||||
|
return new_contents
|
||||||
|
|
||||||
|
|
||||||
|
def _get_ele_type_and_dim(cell:Any, dim=0):
|
||||||
|
"""
|
||||||
|
识别cell的类别与dimension的数量
|
||||||
|
|
||||||
|
numpy scalar type:https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.scalars.html
|
||||||
|
:param cell:
|
||||||
|
:param dim:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
if isinstance(cell, (str, Number, np.bool_)):
|
||||||
|
if hasattr(cell, 'dtype'):
|
||||||
|
return cell.dtype.type, dim
|
||||||
|
return type(cell), dim
|
||||||
|
elif isinstance(cell, list):
|
||||||
|
dim += 1
|
||||||
|
res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell]
|
||||||
|
types = set([i for i,j in res])
|
||||||
|
dims = set([j for i,j in res])
|
||||||
|
if len(types)>1:
|
||||||
|
raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types)))
|
||||||
|
elif len(types)==0:
|
||||||
|
raise SetInputOrTargetException("Empty value encountered.")
|
||||||
|
if len(dims)>1:
|
||||||
|
raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims)))
|
||||||
|
return types.pop(), dims.pop()
|
||||||
|
elif isinstance(cell, torch.Tensor):
|
||||||
|
return cell.dtype, cell.dim() + dim # 如果是torch.mean的结果是0
|
||||||
|
elif isinstance(cell, np.ndarray):
|
||||||
|
if cell.dtype != np.dtype('O'): # 如果不是object的话说明是well-formatted的了
|
||||||
|
return cell.dtype.type, cell.ndim + dim # dtype.type返回的会是np.int32, np.float等
|
||||||
|
# 否则需要继续往下iterate
|
||||||
|
dim += 1
|
||||||
|
res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell]
|
||||||
|
types = set([i for i,j in res])
|
||||||
|
dims = set([j for i,j in res])
|
||||||
|
if len(types)>1:
|
||||||
|
raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types)))
|
||||||
|
elif len(types)==0:
|
||||||
|
raise SetInputOrTargetException("Empty value encountered.")
|
||||||
|
if len(dims)>1:
|
||||||
|
raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims)))
|
||||||
|
return types.pop(), dims.pop()
|
||||||
|
else: # 包含tuple, set, dict以及其它的类型
|
||||||
|
raise SetInputOrTargetException(f"Cannot process type:{type(cell)}.")
|
||||||
|
|
||||||
|
|
||||||
|
def _is_iterable(value):
|
||||||
|
# 检查是否是iterable的, duck typing
|
||||||
try:
|
try:
|
||||||
_ = (e for e in content)
|
iter(value)
|
||||||
except TypeError:
|
return True
|
||||||
|
except BaseException as e:
|
||||||
return False
|
return False
|
||||||
return True
|
|
||||||
|
|
||||||
|
|
||||||
class Padder:
|
class Padder:
|
||||||
@ -327,32 +446,36 @@ class Padder:
|
|||||||
|
|
||||||
所有padder都需要继承这个类,并覆盖__call__方法。
|
所有padder都需要继承这个类,并覆盖__call__方法。
|
||||||
用于对batch进行padding操作。传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前deepcopy一份。
|
用于对batch进行padding操作。传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前deepcopy一份。
|
||||||
|
|
||||||
.. py:function:: __call__(self, contents, field_name, field_ele_dtype):
|
.. py:function:: __call__(self, contents, field_name, field_ele_dtype):
|
||||||
传入的是List内容。假设有以下的DataSet。
|
|
||||||
|
|
||||||
:param list(Any) contents: 传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前
|
传入的是List内容。假设有以下的DataSet。
|
||||||
|
|
||||||
|
:param List[Any] contents: 传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前
|
||||||
deepcopy一份。
|
deepcopy一份。
|
||||||
:param str, field_name: field的名称。
|
:param str, field_name: field的名称。
|
||||||
:param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True,该这个值为None。
|
:param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True,该这个值为None。
|
||||||
:return: np.array([padded_element])
|
:return: np.array([padded_element])
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, pad_val=0, **kwargs):
|
def __init__(self, pad_val=0, **kwargs):
|
||||||
self.pad_val = pad_val
|
self.pad_val = pad_val
|
||||||
|
|
||||||
def set_pad_val(self, pad_val):
|
def set_pad_val(self, pad_val):
|
||||||
self.pad_val = pad_val
|
self.pad_val = pad_val
|
||||||
|
|
||||||
def __call__(self, contents, field_name, field_ele_dtype):
|
@abstractmethod
|
||||||
|
def __call__(self, contents, field_name, field_ele_dtype, dim:int):
|
||||||
"""
|
"""
|
||||||
传入的是List内容。假设有以下的DataSet。
|
传入的是List内容。假设有以下的DataSet。
|
||||||
|
|
||||||
:param list(Any) contents: 传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前
|
:param List[Any] contents: 传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前
|
||||||
deepcopy一份。
|
deepcopy一份。
|
||||||
:param str, field_name: field的名称。
|
:param str, field_name: field的名称。
|
||||||
:param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True,该这个值为None。
|
:param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True,
|
||||||
|
该这个值为None。
|
||||||
|
:param dim: 这个field的维度。当ignore_type为True时,该值为None
|
||||||
:return: np.array([padded_element])
|
:return: np.array([padded_element])
|
||||||
|
|
||||||
Example::
|
Example::
|
||||||
@ -394,50 +517,86 @@ class AutoPadder(Padder):
|
|||||||
根据contents的数据自动判定是否需要做padding。
|
根据contents的数据自动判定是否需要做padding。
|
||||||
|
|
||||||
1 如果元素类型(元素类型是指field中最里层元素的数据类型, 可以通过FieldArray.dtype查看,比如['This', 'is', ...]的元素类
|
1 如果元素类型(元素类型是指field中最里层元素的数据类型, 可以通过FieldArray.dtype查看,比如['This', 'is', ...]的元素类
|
||||||
型为np.str, [[1,2], ...]的元素类型为np.int64)的数据不为(np.int64, np.float64)则不会进行pad
|
型为str, [[1,2], ...]的元素类型为int)的数据不为数值类型则不会进行pad
|
||||||
|
|
||||||
2 如果元素类型为(np.int64, np.float64),
|
2 如果元素类型为数值类型,比如np.int64, np.float64, int, float, torch.int64等
|
||||||
|
|
||||||
2.1 如果该field的内容为(np.int64, np.float64),比如为seq_len, 则不进行padding
|
2.1 如果该field的内容为数值类型(包括int, float等),比如为seq_len, 则不进行padding
|
||||||
|
|
||||||
2.2 如果该field的内容为List, 那么会将Batch中的List pad为一样长。若该List下还有里层的List需要padding,请使用其它padder。
|
2.2 如果该field的内容等价于一维list, 那么会将Batch中的List pad为一样长。
|
||||||
即如果Instance中field形如[1, 2, 3, ...],则可以pad;若为[[1,2], [3,4, ...]]则不能进行pad
|
|
||||||
|
2.3 如果该field的内容等价于二维list,那么会按照英语character padding的方式进行padding。如果是character padding建议使用
|
||||||
|
:class: fastNLP.EngChar2DPadder.
|
||||||
|
|
||||||
|
2.4 如果该field的内容等价于三维list,则如果每个instance在每个维度上相等,会组成一个batch的tensor返回,这种情况应该是为图片
|
||||||
|
的情况。
|
||||||
|
|
||||||
|
3 其它情况不进行处理,返回一个np.array类型。
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, pad_val=0):
|
def __init__(self, pad_val=0):
|
||||||
"""
|
|
||||||
:param pad_val: int, padding的位置使用该index
|
|
||||||
"""
|
|
||||||
super().__init__(pad_val=pad_val)
|
super().__init__(pad_val=pad_val)
|
||||||
|
|
||||||
def _is_two_dimension(self, contents):
|
def __call__(self, contents, field_name, field_ele_dtype, dim):
|
||||||
"""
|
if field_ele_dtype:
|
||||||
判断contents是不是只有两个维度。[[1,2], [3]]是两个维度. [[[1,2], [3, 4, 5]], [[4,5]]]有三个维度
|
if dim>3:
|
||||||
:param contents:
|
return np.array(contents)
|
||||||
:return:
|
if isinstance(field_ele_dtype, type) and \
|
||||||
"""
|
(issubclass(field_ele_dtype, np.number) or issubclass(field_ele_dtype, Number)):
|
||||||
value = contents[0]
|
if dim==0:
|
||||||
if isinstance(value, (np.ndarray, list)):
|
array = np.array(contents, dtype=field_ele_dtype)
|
||||||
value = value[0]
|
elif dim==1:
|
||||||
if isinstance(value, (np.ndarray, list)):
|
max_len = max(map(len, contents))
|
||||||
return False
|
array = np.full((len(contents), max_len), self.pad_val, dtype=field_ele_dtype)
|
||||||
return True
|
for i, content_i in enumerate(contents):
|
||||||
return False
|
array[i, :len(content_i)] = content_i
|
||||||
|
elif dim==2:
|
||||||
def __call__(self, contents, field_name, field_ele_dtype):
|
max_len = max(map(len, contents))
|
||||||
|
max_word_len = max([max([len(content_ii) for content_ii in content_i]) for
|
||||||
if not _is_iterable(contents[0]):
|
content_i in contents])
|
||||||
array = np.array([content for content in contents], dtype=field_ele_dtype)
|
array = np.full((len(contents), max_len, max_word_len), self.pad_val, dtype=field_ele_dtype)
|
||||||
elif field_ele_dtype in (np.int64, np.float64) and self._is_two_dimension(contents):
|
for i, content_i in enumerate(contents):
|
||||||
max_len = max([len(content) for content in contents])
|
for j, content_ii in enumerate(content_i):
|
||||||
array = np.full((len(contents), max_len), self.pad_val, dtype=field_ele_dtype)
|
array[i, j, :len(content_ii)] = content_ii
|
||||||
for i, content in enumerate(contents):
|
else:
|
||||||
array[i][:len(content)] = content
|
shape = np.shape(contents)
|
||||||
elif field_ele_dtype is None:
|
if len(shape)==4: # 说明各dimension是相同的大小
|
||||||
array = np.array(contents) # 当ignore_type=True时,直接返回contents
|
array = np.array(contents, dtype=field_ele_dtype)
|
||||||
else: # should only be str
|
else:
|
||||||
array = np.array([content for content in contents])
|
raise RuntimeError(f"Field:{field_name} has 3 dimensions, every sample should have the same shape.")
|
||||||
return array
|
return array
|
||||||
|
elif str(field_ele_dtype).startswith('torch'):
|
||||||
|
if dim==0:
|
||||||
|
tensor = torch.tensor(contents).to(field_ele_dtype)
|
||||||
|
elif dim==1:
|
||||||
|
max_len = max(map(len, contents))
|
||||||
|
tensor = torch.full((len(contents), max_len), fill_value=self.pad_val, dtype=field_ele_dtype)
|
||||||
|
for i, content_i in enumerate(contents):
|
||||||
|
tensor[i, :len(content_i)] = torch.tensor(content_i)
|
||||||
|
elif dim==2:
|
||||||
|
max_len = max(map(len, contents))
|
||||||
|
max_word_len = max([max([len(content_ii) for content_ii in content_i]) for
|
||||||
|
content_i in contents])
|
||||||
|
tensor = torch.full((len(contents), max_len, max_word_len), fill_value=self.pad_val,
|
||||||
|
dtype=field_ele_dtype)
|
||||||
|
for i, content_i in enumerate(contents):
|
||||||
|
for j, content_ii in enumerate(content_i):
|
||||||
|
tensor[i, j, :len(content_ii)] = torch.tensor(content_ii)
|
||||||
|
else:
|
||||||
|
shapes = set([np.shape(content_i) for content_i in contents])
|
||||||
|
if len(shapes)>1:
|
||||||
|
raise RuntimeError(f"Field:{field_name} has 3 dimensions, every sample should have the same shape.")
|
||||||
|
shape = shapes.pop()
|
||||||
|
if len(shape)==3:
|
||||||
|
tensor = torch.full([len(contents)]+list(shape), fill_value=self.pad_val, dtype=field_ele_dtype)
|
||||||
|
for i, content_i in enumerate(contents):
|
||||||
|
tensor[i] = torch.tensor(content_i, dtype=field_ele_dtype)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(f"Field:{field_name} has 3 dimensions, every sample should have the same shape.")
|
||||||
|
return tensor
|
||||||
|
else:
|
||||||
|
return np.array(contents) # 不进行任何操作
|
||||||
|
else:
|
||||||
|
return np.array(contents)
|
||||||
|
|
||||||
|
|
||||||
class EngChar2DPadder(Padder):
|
class EngChar2DPadder(Padder):
|
||||||
@ -463,7 +622,7 @@ class EngChar2DPadder(Padder):
|
|||||||
dataset.set_padder('chars', padder) # chars这个field的设置为了EnChar2DPadder
|
dataset.set_padder('chars', padder) # chars这个field的设置为了EnChar2DPadder
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, pad_val=0, pad_length=0):
|
def __init__(self, pad_val=0, pad_length=0):
|
||||||
"""
|
"""
|
||||||
:param pad_val: int, pad的位置使用该index
|
:param pad_val: int, pad的位置使用该index
|
||||||
@ -471,32 +630,10 @@ class EngChar2DPadder(Padder):
|
|||||||
都pad或截取到该长度.
|
都pad或截取到该长度.
|
||||||
"""
|
"""
|
||||||
super().__init__(pad_val=pad_val)
|
super().__init__(pad_val=pad_val)
|
||||||
|
|
||||||
self.pad_length = pad_length
|
self.pad_length = pad_length
|
||||||
|
|
||||||
def _exactly_three_dims(self, contents, field_name):
|
def __call__(self, contents, field_name, field_ele_dtype, dim):
|
||||||
"""
|
|
||||||
检查传入的contents是否刚好是3维,如果不是3维就报错。理论上,第一个维度是batch,第二个维度是word,第三个维度是character
|
|
||||||
:param contents:
|
|
||||||
:param field_name: str
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
if not isinstance(contents, list):
|
|
||||||
raise TypeError("contents should be a list, not {}.".format(type(contents)))
|
|
||||||
value = contents[0]
|
|
||||||
try:
|
|
||||||
value = value[0]
|
|
||||||
except:
|
|
||||||
raise ValueError("Field:{} only has one dimension.".format(field_name))
|
|
||||||
try:
|
|
||||||
value = value[0]
|
|
||||||
except:
|
|
||||||
raise ValueError("Field:{} only has two dimensions.".format(field_name))
|
|
||||||
|
|
||||||
if _is_iterable(value):
|
|
||||||
raise ValueError("Field:{} has more than 3 dimension.".format(field_name))
|
|
||||||
|
|
||||||
def __call__(self, contents, field_name, field_ele_dtype):
|
|
||||||
"""
|
"""
|
||||||
期望输入类似于
|
期望输入类似于
|
||||||
[
|
[
|
||||||
@ -510,11 +647,11 @@ class EngChar2DPadder(Padder):
|
|||||||
:param field_ele_dtype
|
:param field_ele_dtype
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
if field_ele_dtype not in (np.int64, np.float64):
|
if field_ele_dtype not in (np.int64, np.float64, int, float):
|
||||||
raise TypeError('dtype of Field:{} should be np.int64 or np.float64 to do 2D padding, get {}.'.format(
|
raise TypeError('dtype of Field:{} should be np.int64 or np.float64 to do 2D padding, get {}.'.format(
|
||||||
field_name, field_ele_dtype
|
field_name, field_ele_dtype
|
||||||
))
|
))
|
||||||
self._exactly_three_dims(contents, field_name)
|
assert dim==2, f"Field:{field_name} has {dim}, EngChar2DPadder only supports input with 2 dimensions."
|
||||||
if self.pad_length < 1:
|
if self.pad_length < 1:
|
||||||
max_char_length = max([max(len(char_lst) for char_lst in word_lst) for word_lst in contents])
|
max_char_length = max([max(len(char_lst) for char_lst in word_lst) for word_lst in contents])
|
||||||
else:
|
else:
|
||||||
@ -522,12 +659,12 @@ class EngChar2DPadder(Padder):
|
|||||||
max_sent_length = max(len(word_lst) for word_lst in contents)
|
max_sent_length = max(len(word_lst) for word_lst in contents)
|
||||||
batch_size = len(contents)
|
batch_size = len(contents)
|
||||||
dtype = type(contents[0][0][0])
|
dtype = type(contents[0][0][0])
|
||||||
|
|
||||||
padded_array = np.full((batch_size, max_sent_length, max_char_length), fill_value=self.pad_val,
|
padded_array = np.full((batch_size, max_sent_length, max_char_length), fill_value=self.pad_val,
|
||||||
dtype=dtype)
|
dtype=dtype)
|
||||||
for b_idx, word_lst in enumerate(contents):
|
for b_idx, word_lst in enumerate(contents):
|
||||||
for c_idx, char_lst in enumerate(word_lst):
|
for c_idx, char_lst in enumerate(word_lst):
|
||||||
chars = char_lst[:max_char_length]
|
chars = char_lst[:max_char_length]
|
||||||
padded_array[b_idx, c_idx, :len(chars)] = chars
|
padded_array[b_idx, c_idx, :len(chars)] = chars
|
||||||
|
|
||||||
return padded_array
|
return padded_array
|
||||||
|
@ -20,12 +20,14 @@ from collections import defaultdict
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from ..core.const import Const
|
||||||
from .utils import _CheckError
|
from .utils import _CheckError
|
||||||
from .utils import _CheckRes
|
from .utils import _CheckRes
|
||||||
from .utils import _build_args
|
from .utils import _build_args
|
||||||
from .utils import _check_arg_dict_list
|
from .utils import _check_arg_dict_list
|
||||||
from .utils import _check_function_or_method
|
from .utils import _check_function_or_method
|
||||||
from .utils import _get_func_signature
|
from .utils import _get_func_signature
|
||||||
|
from .utils import seq_len_to_mask
|
||||||
|
|
||||||
|
|
||||||
class LossBase(object):
|
class LossBase(object):
|
||||||
@ -34,14 +36,23 @@ class LossBase(object):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.param_map = {}
|
self._param_map = {} # key是fun的参数,value是以该值从传入的dict取出value
|
||||||
self._checked = False
|
self._checked = False
|
||||||
|
|
||||||
|
@property
|
||||||
|
def param_map(self):
|
||||||
|
if len(self._param_map) == 0: # 如果为空说明还没有初始化
|
||||||
|
func_spect = inspect.getfullargspec(self.get_loss)
|
||||||
|
func_args = [arg for arg in func_spect.args if arg != 'self']
|
||||||
|
for arg in func_args:
|
||||||
|
self._param_map[arg] = arg
|
||||||
|
return self._param_map
|
||||||
|
|
||||||
def get_loss(self, *args, **kwargs):
|
def get_loss(self, *args, **kwargs):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def _init_param_map(self, key_map=None, **kwargs):
|
def _init_param_map(self, key_map=None, **kwargs):
|
||||||
"""检查key_map和其他参数map,并将这些映射关系添加到self.param_map
|
"""检查key_map和其他参数map,并将这些映射关系添加到self._param_map
|
||||||
|
|
||||||
:param dict key_map: 表示key的映射关系
|
:param dict key_map: 表示key的映射关系
|
||||||
:param kwargs: key word args里面的每一个的键-值对都会被构造成映射关系
|
:param kwargs: key word args里面的每一个的键-值对都会被构造成映射关系
|
||||||
@ -53,30 +64,30 @@ class LossBase(object):
|
|||||||
raise TypeError("key_map must be `dict`, got {}.".format(type(key_map)))
|
raise TypeError("key_map must be `dict`, got {}.".format(type(key_map)))
|
||||||
for key, value in key_map.items():
|
for key, value in key_map.items():
|
||||||
if value is None:
|
if value is None:
|
||||||
self.param_map[key] = key
|
self._param_map[key] = key
|
||||||
continue
|
continue
|
||||||
if not isinstance(key, str):
|
if not isinstance(key, str):
|
||||||
raise TypeError(f"key in key_map must be `str`, not `{type(key)}`.")
|
raise TypeError(f"key in key_map must be `str`, not `{type(key)}`.")
|
||||||
if not isinstance(value, str):
|
if not isinstance(value, str):
|
||||||
raise TypeError(f"value in key_map must be `str`, not `{type(value)}`.")
|
raise TypeError(f"value in key_map must be `str`, not `{type(value)}`.")
|
||||||
self.param_map[key] = value
|
self._param_map[key] = value
|
||||||
value_counter[value].add(key)
|
value_counter[value].add(key)
|
||||||
for key, value in kwargs.items():
|
for key, value in kwargs.items():
|
||||||
if value is None:
|
if value is None:
|
||||||
self.param_map[key] = key
|
self._param_map[key] = key
|
||||||
continue
|
continue
|
||||||
if not isinstance(value, str):
|
if not isinstance(value, str):
|
||||||
raise TypeError(f"in {key}={value}, value must be `str`, not `{type(value)}`.")
|
raise TypeError(f"in {key}={value}, value must be `str`, not `{type(value)}`.")
|
||||||
self.param_map[key] = value
|
self._param_map[key] = value
|
||||||
value_counter[value].add(key)
|
value_counter[value].add(key)
|
||||||
for value, key_set in value_counter.items():
|
for value, key_set in value_counter.items():
|
||||||
if len(key_set) > 1:
|
if len(key_set) > 1:
|
||||||
raise ValueError(f"Several parameters:{key_set} are provided with one output {value}.")
|
raise ValueError(f"Several parameters:{key_set} are provided with one output {value}.")
|
||||||
|
|
||||||
# check consistence between signature and param_map
|
# check consistence between signature and _param_map
|
||||||
func_spect = inspect.getfullargspec(self.get_loss)
|
func_spect = inspect.getfullargspec(self.get_loss)
|
||||||
func_args = [arg for arg in func_spect.args if arg != 'self']
|
func_args = [arg for arg in func_spect.args if arg != 'self']
|
||||||
for func_param, input_param in self.param_map.items():
|
for func_param, input_param in self._param_map.items():
|
||||||
if func_param not in func_args:
|
if func_param not in func_args:
|
||||||
raise NameError(
|
raise NameError(
|
||||||
f"Parameter `{func_param}` is not in {_get_func_signature(self.get_loss)}. Please check the "
|
f"Parameter `{func_param}` is not in {_get_func_signature(self.get_loss)}. Please check the "
|
||||||
@ -86,22 +97,7 @@ class LossBase(object):
|
|||||||
# if func_spect.varargs:
|
# if func_spect.varargs:
|
||||||
# raise NameError(f"Delete `*{func_spect.varargs}` in {get_func_signature(self.get_loss)}(Do not use "
|
# raise NameError(f"Delete `*{func_spect.varargs}` in {get_func_signature(self.get_loss)}(Do not use "
|
||||||
# f"positional argument.).")
|
# f"positional argument.).")
|
||||||
|
|
||||||
def _fast_param_map(self, pred_dict, target_dict):
|
|
||||||
"""Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
|
|
||||||
such as pred_dict has one element, target_dict has one element
|
|
||||||
|
|
||||||
:param pred_dict:
|
|
||||||
:param target_dict:
|
|
||||||
:return: dict, if dict is not {}, pass it to self.evaluate. Otherwise do mapping.
|
|
||||||
"""
|
|
||||||
fast_param = {}
|
|
||||||
if len(self.param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1:
|
|
||||||
fast_param['pred'] = list(pred_dict.values())[0]
|
|
||||||
fast_param['target'] = list(target_dict.values())[0]
|
|
||||||
return fast_param
|
|
||||||
return fast_param
|
|
||||||
|
|
||||||
def __call__(self, pred_dict, target_dict, check=False):
|
def __call__(self, pred_dict, target_dict, check=False):
|
||||||
"""
|
"""
|
||||||
:param dict pred_dict: 模型的forward函数返回的dict
|
:param dict pred_dict: 模型的forward函数返回的dict
|
||||||
@ -109,55 +105,43 @@ class LossBase(object):
|
|||||||
:param Boolean check: 每一次执行映射函数的时候是否检查映射表,默认为不检查
|
:param Boolean check: 每一次执行映射函数的时候是否检查映射表,默认为不检查
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
fast_param = self._fast_param_map(pred_dict, target_dict)
|
|
||||||
if fast_param:
|
|
||||||
loss = self.get_loss(**fast_param)
|
|
||||||
return loss
|
|
||||||
|
|
||||||
if not self._checked:
|
if not self._checked:
|
||||||
# 1. check consistence between signature and param_map
|
# 1. check consistence between signature and _param_map
|
||||||
func_spect = inspect.getfullargspec(self.get_loss)
|
func_spect = inspect.getfullargspec(self.get_loss)
|
||||||
func_args = set([arg for arg in func_spect.args if arg != 'self'])
|
func_args = set([arg for arg in func_spect.args if arg != 'self'])
|
||||||
for func_arg, input_arg in self.param_map.items():
|
for func_arg, input_arg in self._param_map.items():
|
||||||
if func_arg not in func_args:
|
if func_arg not in func_args:
|
||||||
raise NameError(f"`{func_arg}` not in {_get_func_signature(self.get_loss)}.")
|
raise NameError(f"`{func_arg}` not in {_get_func_signature(self.get_loss)}.")
|
||||||
|
|
||||||
# 2. only part of the param_map are passed, left are not
|
# 2. only part of the _param_map are passed, left are not
|
||||||
for arg in func_args:
|
for arg in func_args:
|
||||||
if arg not in self.param_map:
|
if arg not in self._param_map:
|
||||||
self.param_map[arg] = arg # This param does not need mapping.
|
self._param_map[arg] = arg # This param does not need mapping.
|
||||||
self._evaluate_args = func_args
|
self._evaluate_args = func_args
|
||||||
self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self.param_map.items()}
|
self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self._param_map.items()}
|
||||||
|
|
||||||
# need to wrap inputs in dict.
|
|
||||||
mapped_pred_dict = {}
|
mapped_pred_dict = {}
|
||||||
mapped_target_dict = {}
|
mapped_target_dict = {}
|
||||||
duplicated = []
|
for input_arg, mapped_arg in self._reverse_param_map.items():
|
||||||
for input_arg in set(list(pred_dict.keys()) + list(target_dict.keys())):
|
|
||||||
not_duplicate_flag = 0
|
|
||||||
if input_arg in self._reverse_param_map:
|
|
||||||
mapped_arg = self._reverse_param_map[input_arg]
|
|
||||||
not_duplicate_flag += 1
|
|
||||||
else:
|
|
||||||
mapped_arg = input_arg
|
|
||||||
if input_arg in pred_dict:
|
if input_arg in pred_dict:
|
||||||
mapped_pred_dict[mapped_arg] = pred_dict[input_arg]
|
mapped_pred_dict[mapped_arg] = pred_dict[input_arg]
|
||||||
not_duplicate_flag += 1
|
|
||||||
if input_arg in target_dict:
|
if input_arg in target_dict:
|
||||||
mapped_target_dict[mapped_arg] = target_dict[input_arg]
|
mapped_target_dict[mapped_arg] = target_dict[input_arg]
|
||||||
not_duplicate_flag += 1
|
|
||||||
if not_duplicate_flag == 3:
|
|
||||||
duplicated.append(input_arg)
|
|
||||||
|
|
||||||
# missing
|
# missing
|
||||||
if not self._checked:
|
if not self._checked:
|
||||||
|
duplicated = []
|
||||||
|
for input_arg, mapped_arg in self._reverse_param_map.items():
|
||||||
|
if input_arg in pred_dict and input_arg in target_dict:
|
||||||
|
duplicated.append(input_arg)
|
||||||
check_res = _check_arg_dict_list(self.get_loss, [mapped_pred_dict, mapped_target_dict])
|
check_res = _check_arg_dict_list(self.get_loss, [mapped_pred_dict, mapped_target_dict])
|
||||||
# replace missing.
|
# replace missing.
|
||||||
missing = check_res.missing
|
missing = check_res.missing
|
||||||
replaced_missing = list(missing)
|
replaced_missing = list(missing)
|
||||||
for idx, func_arg in enumerate(missing):
|
for idx, func_arg in enumerate(missing):
|
||||||
# Don't delete `` in this information, nor add ``
|
# Don't delete `` in this information, nor add ``
|
||||||
replaced_missing[idx] = f"{self.param_map[func_arg]}" + f"(assign to `{func_arg}` " \
|
replaced_missing[idx] = f"{self._param_map[func_arg]}" + f"(assign to `{func_arg}` " \
|
||||||
f"in `{self.__class__.__name__}`)"
|
f"in `{self.__class__.__name__}`)"
|
||||||
|
|
||||||
check_res = _CheckRes(missing=replaced_missing,
|
check_res = _CheckRes(missing=replaced_missing,
|
||||||
@ -170,6 +154,8 @@ class LossBase(object):
|
|||||||
if check_res.missing or check_res.duplicated:
|
if check_res.missing or check_res.duplicated:
|
||||||
raise _CheckError(check_res=check_res,
|
raise _CheckError(check_res=check_res,
|
||||||
func_signature=_get_func_signature(self.get_loss))
|
func_signature=_get_func_signature(self.get_loss))
|
||||||
|
self._checked = True
|
||||||
|
|
||||||
refined_args = _build_args(self.get_loss, **mapped_pred_dict, **mapped_target_dict)
|
refined_args = _build_args(self.get_loss, **mapped_pred_dict, **mapped_target_dict)
|
||||||
|
|
||||||
loss = self.get_loss(**refined_args)
|
loss = self.get_loss(**refined_args)
|
||||||
@ -204,15 +190,11 @@ class LossFunc(LossBase):
|
|||||||
|
|
||||||
super(LossFunc, self).__init__()
|
super(LossFunc, self).__init__()
|
||||||
_check_function_or_method(func)
|
_check_function_or_method(func)
|
||||||
|
self.get_loss = func
|
||||||
if key_map is not None:
|
if key_map is not None:
|
||||||
if not isinstance(key_map, dict):
|
if not isinstance(key_map, dict):
|
||||||
raise RuntimeError(f"Loss error: key_map except a {type({})} but got a {type(key_map)}")
|
raise RuntimeError(f"Loss error: key_map except a {type({})} but got a {type(key_map)}")
|
||||||
self.param_map = key_map
|
self._init_param_map(key_map, **kwargs)
|
||||||
if len(kwargs) > 0:
|
|
||||||
for key, val in kwargs.items():
|
|
||||||
self.param_map.update({key: val})
|
|
||||||
|
|
||||||
self.get_loss = func
|
|
||||||
|
|
||||||
|
|
||||||
class CrossEntropyLoss(LossBase):
|
class CrossEntropyLoss(LossBase):
|
||||||
@ -223,7 +205,10 @@ class CrossEntropyLoss(LossBase):
|
|||||||
|
|
||||||
:param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred`
|
:param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred`
|
||||||
:param target: 参数映射表中 `target` 的映射关系,None表示映射关系为 `target` -> `target`
|
:param target: 参数映射表中 `target` 的映射关系,None表示映射关系为 `target` -> `target`
|
||||||
:param padding_idx: padding的index,在计算loss时将忽略target中标号为padding_idx的内容
|
:param seq_len: 句子的长度, 长度之外的token不会计算loss。。
|
||||||
|
:param padding_idx: padding的index,在计算loss时将忽略target中标号为padding_idx的内容, 可以通过该值代替
|
||||||
|
传入seq_len.
|
||||||
|
:param str reduction: 支持 `mean` ,`sum` 和 `none` .
|
||||||
|
|
||||||
Example::
|
Example::
|
||||||
|
|
||||||
@ -231,15 +216,25 @@ class CrossEntropyLoss(LossBase):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, pred=None, target=None, padding_idx=-100):
|
def __init__(self, pred=None, target=None, seq_len=None, padding_idx=-100, reduction='mean'):
|
||||||
# TODO 需要做一些检查,F.cross_entropy在计算时,如果pred是(16, 10 ,4), target的形状按道理应该是(16, 10), 但实际需要(16,4)
|
|
||||||
super(CrossEntropyLoss, self).__init__()
|
super(CrossEntropyLoss, self).__init__()
|
||||||
self._init_param_map(pred=pred, target=target)
|
self._init_param_map(pred=pred, target=target, seq_len=seq_len)
|
||||||
self.padding_idx = padding_idx
|
self.padding_idx = padding_idx
|
||||||
|
assert reduction in ('mean', 'sum', 'none')
|
||||||
|
self.reduction = reduction
|
||||||
|
|
||||||
def get_loss(self, pred, target):
|
def get_loss(self, pred, target, seq_len=None):
|
||||||
|
if pred.dim() > 2:
|
||||||
|
if pred.size(1) != target.size(1):
|
||||||
|
pred = pred.transpose(1, 2)
|
||||||
|
pred = pred.reshape(-1, pred.size(-1))
|
||||||
|
target = target.reshape(-1)
|
||||||
|
if seq_len is not None:
|
||||||
|
mask = seq_len_to_mask(seq_len).reshape(-1).eq(0)
|
||||||
|
target = target.masked_fill(mask, self.padding_idx)
|
||||||
|
|
||||||
return F.cross_entropy(input=pred, target=target,
|
return F.cross_entropy(input=pred, target=target,
|
||||||
ignore_index=self.padding_idx)
|
ignore_index=self.padding_idx, reduction=self.reduction)
|
||||||
|
|
||||||
|
|
||||||
class L1Loss(LossBase):
|
class L1Loss(LossBase):
|
||||||
@ -250,15 +245,18 @@ class L1Loss(LossBase):
|
|||||||
|
|
||||||
:param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred`
|
:param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred`
|
||||||
:param target: 参数映射表中 `target` 的映射关系,None表示映射关系为 `target` >`target`
|
:param target: 参数映射表中 `target` 的映射关系,None表示映射关系为 `target` >`target`
|
||||||
|
:param str reduction: 支持'mean','sum'和'none'.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, pred=None, target=None):
|
def __init__(self, pred=None, target=None, reduction='mean'):
|
||||||
super(L1Loss, self).__init__()
|
super(L1Loss, self).__init__()
|
||||||
self._init_param_map(pred=pred, target=target)
|
self._init_param_map(pred=pred, target=target)
|
||||||
|
assert reduction in ('mean', 'sum', 'none')
|
||||||
|
self.reduction = reduction
|
||||||
|
|
||||||
def get_loss(self, pred, target):
|
def get_loss(self, pred, target):
|
||||||
return F.l1_loss(input=pred, target=target)
|
return F.l1_loss(input=pred, target=target, reduction=self.reduction)
|
||||||
|
|
||||||
|
|
||||||
class BCELoss(LossBase):
|
class BCELoss(LossBase):
|
||||||
@ -267,16 +265,19 @@ class BCELoss(LossBase):
|
|||||||
|
|
||||||
二分类交叉熵损失函数
|
二分类交叉熵损失函数
|
||||||
|
|
||||||
:param pred: 参数映射表中`pred`的映射关系,None表示映射关系为`pred`->`pred`
|
:param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred`
|
||||||
:param target: 参数映射表中`target`的映射关系,None表示映射关系为`target`->`target`
|
:param target: 参数映射表中 `target` 的映射关系,None表示映射关系为 `target` -> `target`
|
||||||
|
:param str reduction: 支持 `mean` ,`sum` 和 `none` .
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, pred=None, target=None):
|
def __init__(self, pred=None, target=None, reduction='mean'):
|
||||||
super(BCELoss, self).__init__()
|
super(BCELoss, self).__init__()
|
||||||
self._init_param_map(pred=pred, target=target)
|
self._init_param_map(pred=pred, target=target)
|
||||||
|
assert reduction in ('mean', 'sum', 'none')
|
||||||
|
self.reduction = reduction
|
||||||
|
|
||||||
def get_loss(self, pred, target):
|
def get_loss(self, pred, target):
|
||||||
return F.binary_cross_entropy(input=pred, target=target)
|
return F.binary_cross_entropy(input=pred, target=target, reduction=self.reduction)
|
||||||
|
|
||||||
|
|
||||||
class NLLLoss(LossBase):
|
class NLLLoss(LossBase):
|
||||||
@ -285,16 +286,22 @@ class NLLLoss(LossBase):
|
|||||||
|
|
||||||
负对数似然损失函数
|
负对数似然损失函数
|
||||||
|
|
||||||
:param pred: 参数映射表中`pred`的映射关系,None表示映射关系为`pred`->`pred`
|
:param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred`
|
||||||
:param target: 参数映射表中`target`的映射关系,None表示映射关系为`target`->`target`
|
:param target: 参数映射表中 `target` 的映射关系,None表示映射关系为 `target` -> `target`
|
||||||
|
:param ignore_idx: ignore的index,在计算loss时将忽略target中标号为ignore_idx的内容, 可以通过该值代替
|
||||||
|
传入seq_len.
|
||||||
|
:param str reduction: 支持 `mean` ,`sum` 和 `none` .
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, pred=None, target=None):
|
def __init__(self, pred=None, target=None, ignore_idx=-100, reduction='mean'):
|
||||||
super(NLLLoss, self).__init__()
|
super(NLLLoss, self).__init__()
|
||||||
self._init_param_map(pred=pred, target=target)
|
self._init_param_map(pred=pred, target=target)
|
||||||
|
assert reduction in ('mean', 'sum', 'none')
|
||||||
|
self.reduction = reduction
|
||||||
|
self.ignore_idx = ignore_idx
|
||||||
|
|
||||||
def get_loss(self, pred, target):
|
def get_loss(self, pred, target):
|
||||||
return F.nll_loss(input=pred, target=target)
|
return F.nll_loss(input=pred, target=target, ignore_index=self.ignore_idx, reduction=self.reduction)
|
||||||
|
|
||||||
|
|
||||||
class LossInForward(LossBase):
|
class LossInForward(LossBase):
|
||||||
@ -306,7 +313,7 @@ class LossInForward(LossBase):
|
|||||||
:param str loss_key: 在forward函数中loss的键名,默认为loss
|
:param str loss_key: 在forward函数中loss的键名,默认为loss
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, loss_key='loss'):
|
def __init__(self, loss_key=Const.LOSS):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if not isinstance(loss_key, str):
|
if not isinstance(loss_key, str):
|
||||||
raise TypeError(f"Only str allowed for loss_key, got {type(loss_key)}.")
|
raise TypeError(f"Only str allowed for loss_key, got {type(loss_key)}.")
|
||||||
|
@ -6,7 +6,7 @@ __all__ = [
|
|||||||
"MetricBase",
|
"MetricBase",
|
||||||
"AccuracyMetric",
|
"AccuracyMetric",
|
||||||
"SpanFPreRecMetric",
|
"SpanFPreRecMetric",
|
||||||
"SQuADMetric"
|
"ExtractiveQAMetric"
|
||||||
]
|
]
|
||||||
|
|
||||||
import inspect
|
import inspect
|
||||||
@ -22,18 +22,19 @@ from .utils import _check_arg_dict_list
|
|||||||
from .utils import _get_func_signature
|
from .utils import _get_func_signature
|
||||||
from .utils import seq_len_to_mask
|
from .utils import seq_len_to_mask
|
||||||
from .vocabulary import Vocabulary
|
from .vocabulary import Vocabulary
|
||||||
|
from abc import abstractmethod
|
||||||
|
|
||||||
|
|
||||||
class MetricBase(object):
|
class MetricBase(object):
|
||||||
"""
|
"""
|
||||||
所有metrics的基类,,所有的传入到Trainer, Tester的Metric需要继承自该对象,需要覆盖写入evaluate(), get_metric()方法。
|
所有metrics的基类,所有的传入到Trainer, Tester的Metric需要继承自该对象,需要覆盖写入evaluate(), get_metric()方法。
|
||||||
|
|
||||||
evaluate(xxx)中传入的是一个batch的数据。
|
evaluate(xxx)中传入的是一个batch的数据。
|
||||||
|
|
||||||
get_metric(xxx)当所有数据处理完毕,调用该方法得到最终的metric值
|
get_metric(xxx)当所有数据处理完毕,调用该方法得到最终的metric值
|
||||||
|
|
||||||
以分类问题中,Accuracy计算为例
|
以分类问题中,Accuracy计算为例
|
||||||
假设model的forward返回dict中包含'pred'这个key, 并且该key需要用于Accuracy::
|
假设model的forward返回dict中包含 `pred` 这个key, 并且该key需要用于Accuracy::
|
||||||
|
|
||||||
class Model(nn.Module):
|
class Model(nn.Module):
|
||||||
def __init__(xxx):
|
def __init__(xxx):
|
||||||
@ -42,7 +43,7 @@ class MetricBase(object):
|
|||||||
# do something
|
# do something
|
||||||
return {'pred': pred, 'other_keys':xxx} # pred's shape: batch_size x num_classes
|
return {'pred': pred, 'other_keys':xxx} # pred's shape: batch_size x num_classes
|
||||||
|
|
||||||
假设dataset中'label'这个field是需要预测的值,并且该field被设置为了target
|
假设dataset中 `label` 这个field是需要预测的值,并且该field被设置为了target
|
||||||
对应的AccMetric可以按如下的定义, version1, 只使用这一次::
|
对应的AccMetric可以按如下的定义, version1, 只使用这一次::
|
||||||
|
|
||||||
class AccMetric(MetricBase):
|
class AccMetric(MetricBase):
|
||||||
@ -115,17 +116,28 @@ class MetricBase(object):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.param_map = {} # key is param in function, value is input param.
|
self._param_map = {} # key is param in function, value is input param.
|
||||||
self._checked = False
|
self._checked = False
|
||||||
|
|
||||||
|
@property
|
||||||
|
def param_map(self):
|
||||||
|
if len(self._param_map) == 0: # 如果为空说明还没有初始化
|
||||||
|
func_spect = inspect.getfullargspec(self.evaluate)
|
||||||
|
func_args = [arg for arg in func_spect.args if arg != 'self']
|
||||||
|
for arg in func_args:
|
||||||
|
self._param_map[arg] = arg
|
||||||
|
return self._param_map
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
def evaluate(self, *args, **kwargs):
|
def evaluate(self, *args, **kwargs):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
def get_metric(self, reset=True):
|
def get_metric(self, reset=True):
|
||||||
raise NotImplemented
|
raise NotImplemented
|
||||||
|
|
||||||
def _init_param_map(self, key_map=None, **kwargs):
|
def _init_param_map(self, key_map=None, **kwargs):
|
||||||
"""检查key_map和其他参数map,并将这些映射关系添加到self.param_map
|
"""检查key_map和其他参数map,并将这些映射关系添加到self._param_map
|
||||||
|
|
||||||
:param dict key_map: 表示key的映射关系
|
:param dict key_map: 表示key的映射关系
|
||||||
:param kwargs: key word args里面的每一个的键-值对都会被构造成映射关系
|
:param kwargs: key word args里面的每一个的键-值对都会被构造成映射关系
|
||||||
@ -137,30 +149,30 @@ class MetricBase(object):
|
|||||||
raise TypeError("key_map must be `dict`, got {}.".format(type(key_map)))
|
raise TypeError("key_map must be `dict`, got {}.".format(type(key_map)))
|
||||||
for key, value in key_map.items():
|
for key, value in key_map.items():
|
||||||
if value is None:
|
if value is None:
|
||||||
self.param_map[key] = key
|
self._param_map[key] = key
|
||||||
continue
|
continue
|
||||||
if not isinstance(key, str):
|
if not isinstance(key, str):
|
||||||
raise TypeError(f"key in key_map must be `str`, not `{type(key)}`.")
|
raise TypeError(f"key in key_map must be `str`, not `{type(key)}`.")
|
||||||
if not isinstance(value, str):
|
if not isinstance(value, str):
|
||||||
raise TypeError(f"value in key_map must be `str`, not `{type(value)}`.")
|
raise TypeError(f"value in key_map must be `str`, not `{type(value)}`.")
|
||||||
self.param_map[key] = value
|
self._param_map[key] = value
|
||||||
value_counter[value].add(key)
|
value_counter[value].add(key)
|
||||||
for key, value in kwargs.items():
|
for key, value in kwargs.items():
|
||||||
if value is None:
|
if value is None:
|
||||||
self.param_map[key] = key
|
self._param_map[key] = key
|
||||||
continue
|
continue
|
||||||
if not isinstance(value, str):
|
if not isinstance(value, str):
|
||||||
raise TypeError(f"in {key}={value}, value must be `str`, not `{type(value)}`.")
|
raise TypeError(f"in {key}={value}, value must be `str`, not `{type(value)}`.")
|
||||||
self.param_map[key] = value
|
self._param_map[key] = value
|
||||||
value_counter[value].add(key)
|
value_counter[value].add(key)
|
||||||
for value, key_set in value_counter.items():
|
for value, key_set in value_counter.items():
|
||||||
if len(key_set) > 1:
|
if len(key_set) > 1:
|
||||||
raise ValueError(f"Several parameters:{key_set} are provided with one output {value}.")
|
raise ValueError(f"Several parameters:{key_set} are provided with one output {value}.")
|
||||||
|
|
||||||
# check consistence between signature and param_map
|
# check consistence between signature and _param_map
|
||||||
func_spect = inspect.getfullargspec(self.evaluate)
|
func_spect = inspect.getfullargspec(self.evaluate)
|
||||||
func_args = [arg for arg in func_spect.args if arg != 'self']
|
func_args = [arg for arg in func_spect.args if arg != 'self']
|
||||||
for func_param, input_param in self.param_map.items():
|
for func_param, input_param in self._param_map.items():
|
||||||
if func_param not in func_args:
|
if func_param not in func_args:
|
||||||
raise NameError(
|
raise NameError(
|
||||||
f"Parameter `{func_param}` is not in {_get_func_signature(self.evaluate)}. Please check the "
|
f"Parameter `{func_param}` is not in {_get_func_signature(self.evaluate)}. Please check the "
|
||||||
@ -175,7 +187,7 @@ class MetricBase(object):
|
|||||||
:return: dict, if dict is not {}, pass it to self.evaluate. Otherwise do mapping.
|
:return: dict, if dict is not {}, pass it to self.evaluate. Otherwise do mapping.
|
||||||
"""
|
"""
|
||||||
fast_param = {}
|
fast_param = {}
|
||||||
if len(self.param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1:
|
if len(self._param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1:
|
||||||
fast_param['pred'] = list(pred_dict.values())[0]
|
fast_param['pred'] = list(pred_dict.values())[0]
|
||||||
fast_param['target'] = list(target_dict.values())[0]
|
fast_param['target'] = list(target_dict.values())[0]
|
||||||
return fast_param
|
return fast_param
|
||||||
@ -204,42 +216,35 @@ class MetricBase(object):
|
|||||||
if not self._checked:
|
if not self._checked:
|
||||||
if not callable(self.evaluate):
|
if not callable(self.evaluate):
|
||||||
raise TypeError(f"{self.__class__.__name__}.evaluate has to be callable, not {type(self.evaluate)}.")
|
raise TypeError(f"{self.__class__.__name__}.evaluate has to be callable, not {type(self.evaluate)}.")
|
||||||
# 1. check consistence between signature and param_map
|
# 1. check consistence between signature and _param_map
|
||||||
func_spect = inspect.getfullargspec(self.evaluate)
|
func_spect = inspect.getfullargspec(self.evaluate)
|
||||||
func_args = set([arg for arg in func_spect.args if arg != 'self'])
|
func_args = set([arg for arg in func_spect.args if arg != 'self'])
|
||||||
for func_arg, input_arg in self.param_map.items():
|
for func_arg, input_arg in self._param_map.items():
|
||||||
if func_arg not in func_args:
|
if func_arg not in func_args:
|
||||||
raise NameError(f"`{func_arg}` not in {_get_func_signature(self.evaluate)}.")
|
raise NameError(f"`{func_arg}` not in {_get_func_signature(self.evaluate)}.")
|
||||||
|
|
||||||
# 2. only part of the param_map are passed, left are not
|
# 2. only part of the _param_map are passed, left are not
|
||||||
for arg in func_args:
|
for arg in func_args:
|
||||||
if arg not in self.param_map:
|
if arg not in self._param_map:
|
||||||
self.param_map[arg] = arg # This param does not need mapping.
|
self._param_map[arg] = arg # This param does not need mapping.
|
||||||
self._evaluate_args = func_args
|
self._evaluate_args = func_args
|
||||||
self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self.param_map.items()}
|
self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self._param_map.items()}
|
||||||
|
|
||||||
# need to wrap inputs in dict.
|
# need to wrap inputs in dict.
|
||||||
mapped_pred_dict = {}
|
mapped_pred_dict = {}
|
||||||
mapped_target_dict = {}
|
mapped_target_dict = {}
|
||||||
duplicated = []
|
for input_arg, mapped_arg in self._reverse_param_map.items():
|
||||||
for input_arg in set(list(pred_dict.keys()) + list(target_dict.keys())):
|
|
||||||
not_duplicate_flag = 0
|
|
||||||
if input_arg in self._reverse_param_map:
|
|
||||||
mapped_arg = self._reverse_param_map[input_arg]
|
|
||||||
not_duplicate_flag += 1
|
|
||||||
else:
|
|
||||||
mapped_arg = input_arg
|
|
||||||
if input_arg in pred_dict:
|
if input_arg in pred_dict:
|
||||||
mapped_pred_dict[mapped_arg] = pred_dict[input_arg]
|
mapped_pred_dict[mapped_arg] = pred_dict[input_arg]
|
||||||
not_duplicate_flag += 1
|
|
||||||
if input_arg in target_dict:
|
if input_arg in target_dict:
|
||||||
mapped_target_dict[mapped_arg] = target_dict[input_arg]
|
mapped_target_dict[mapped_arg] = target_dict[input_arg]
|
||||||
not_duplicate_flag += 1
|
|
||||||
if not_duplicate_flag == 3:
|
|
||||||
duplicated.append(input_arg)
|
|
||||||
|
|
||||||
# missing
|
# missing
|
||||||
if not self._checked:
|
if not self._checked:
|
||||||
|
duplicated = []
|
||||||
|
for input_arg, mapped_arg in self._reverse_param_map.items():
|
||||||
|
if input_arg in pred_dict and input_arg in target_dict:
|
||||||
|
duplicated.append(input_arg)
|
||||||
check_res = _check_arg_dict_list(self.evaluate, [mapped_pred_dict, mapped_target_dict])
|
check_res = _check_arg_dict_list(self.evaluate, [mapped_pred_dict, mapped_target_dict])
|
||||||
# only check missing.
|
# only check missing.
|
||||||
# replace missing.
|
# replace missing.
|
||||||
@ -247,7 +252,7 @@ class MetricBase(object):
|
|||||||
replaced_missing = list(missing)
|
replaced_missing = list(missing)
|
||||||
for idx, func_arg in enumerate(missing):
|
for idx, func_arg in enumerate(missing):
|
||||||
# Don't delete `` in this information, nor add ``
|
# Don't delete `` in this information, nor add ``
|
||||||
replaced_missing[idx] = f"{self.param_map[func_arg]}" + f"(assign to `{func_arg}` " \
|
replaced_missing[idx] = f"{self._param_map[func_arg]}" + f"(assign to `{func_arg}` " \
|
||||||
f"in `{self.__class__.__name__}`)"
|
f"in `{self.__class__.__name__}`)"
|
||||||
|
|
||||||
check_res = _CheckRes(missing=replaced_missing,
|
check_res = _CheckRes(missing=replaced_missing,
|
||||||
@ -260,10 +265,10 @@ class MetricBase(object):
|
|||||||
if check_res.missing or check_res.duplicated:
|
if check_res.missing or check_res.duplicated:
|
||||||
raise _CheckError(check_res=check_res,
|
raise _CheckError(check_res=check_res,
|
||||||
func_signature=_get_func_signature(self.evaluate))
|
func_signature=_get_func_signature(self.evaluate))
|
||||||
|
self._checked = True
|
||||||
refined_args = _build_args(self.evaluate, **mapped_pred_dict, **mapped_target_dict)
|
refined_args = _build_args(self.evaluate, **mapped_pred_dict, **mapped_target_dict)
|
||||||
|
|
||||||
self.evaluate(**refined_args)
|
self.evaluate(**refined_args)
|
||||||
self._checked = True
|
|
||||||
|
|
||||||
return
|
return
|
||||||
|
|
||||||
@ -409,6 +414,37 @@ def _bmeso_tag_to_spans(tags, ignore_labels=None):
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def _bioes_tag_to_spans(tags, ignore_labels=None):
|
||||||
|
"""
|
||||||
|
给定一个tags的lis,比如['O', 'B-singer', 'I-singer', 'E-singer', 'O', 'O']。
|
||||||
|
返回[('singer', (1, 4))] (左闭右开区间)
|
||||||
|
|
||||||
|
:param tags: List[str],
|
||||||
|
:param ignore_labels: List[str], 在该list中的label将被忽略
|
||||||
|
:return: List[Tuple[str, List[int, int]]]. [(label,[start, end])]
|
||||||
|
"""
|
||||||
|
ignore_labels = set(ignore_labels) if ignore_labels else set()
|
||||||
|
|
||||||
|
spans = []
|
||||||
|
prev_bioes_tag = None
|
||||||
|
for idx, tag in enumerate(tags):
|
||||||
|
tag = tag.lower()
|
||||||
|
bioes_tag, label = tag[:1], tag[2:]
|
||||||
|
if bioes_tag in ('b', 's'):
|
||||||
|
spans.append((label, [idx, idx]))
|
||||||
|
elif bioes_tag in ('i', 'e') and prev_bioes_tag in ('b', 'i') and label == spans[-1][0]:
|
||||||
|
spans[-1][1][1] = idx
|
||||||
|
elif bioes_tag == 'o':
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
spans.append((label, [idx, idx]))
|
||||||
|
prev_bioes_tag = bioes_tag
|
||||||
|
return [(span[0], (span[1][0], span[1][1] + 1))
|
||||||
|
for span in spans
|
||||||
|
if span[0] not in ignore_labels
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
def _bio_tag_to_spans(tags, ignore_labels=None):
|
def _bio_tag_to_spans(tags, ignore_labels=None):
|
||||||
"""
|
"""
|
||||||
给定一个tags的lis,比如['O', 'B-singer', 'I-singer', 'I-singer', 'O', 'O']。
|
给定一个tags的lis,比如['O', 'B-singer', 'I-singer', 'I-singer', 'O', 'O']。
|
||||||
@ -442,7 +478,7 @@ class SpanFPreRecMetric(MetricBase):
|
|||||||
别名::class:`fastNLP.SpanFPreRecMetric` :class:`fastNLP.core.metrics.SpanFPreRecMetric`
|
别名::class:`fastNLP.SpanFPreRecMetric` :class:`fastNLP.core.metrics.SpanFPreRecMetric`
|
||||||
|
|
||||||
在序列标注问题中,以span的方式计算F, pre, rec.
|
在序列标注问题中,以span的方式计算F, pre, rec.
|
||||||
比如中文Part of speech中,会以character的方式进行标注,句子'中国在亚洲'对应的POS可能为(以BMES为例)
|
比如中文Part of speech中,会以character的方式进行标注,句子 `中国在亚洲` 对应的POS可能为(以BMES为例)
|
||||||
['B-NN', 'E-NN', 'S-DET', 'B-NN', 'E-NN']。该metric就是为类似情况下的F1计算。
|
['B-NN', 'E-NN', 'S-DET', 'B-NN', 'E-NN']。该metric就是为类似情况下的F1计算。
|
||||||
最后得到的metric结果为::
|
最后得到的metric结果为::
|
||||||
|
|
||||||
@ -466,15 +502,15 @@ class SpanFPreRecMetric(MetricBase):
|
|||||||
|
|
||||||
:param tag_vocab: 标签的 :class:`~fastNLP.Vocabulary` 。支持的标签为"B"(没有label);或"B-xxx"(xxx为某种label,比如POS中的NN),
|
:param tag_vocab: 标签的 :class:`~fastNLP.Vocabulary` 。支持的标签为"B"(没有label);或"B-xxx"(xxx为某种label,比如POS中的NN),
|
||||||
在解码时,会将相同xxx的认为是同一个label,比如['B-NN', 'E-NN']会被合并为一个'NN'.
|
在解码时,会将相同xxx的认为是同一个label,比如['B-NN', 'E-NN']会被合并为一个'NN'.
|
||||||
:param str pred: 用该key在evaluate()时从传入dict中取出prediction数据。 为None,则使用'pred'取数据
|
:param str pred: 用该key在evaluate()时从传入dict中取出prediction数据。 为None,则使用 `pred` 取数据
|
||||||
:param str target: 用该key在evaluate()时从传入dict中取出target数据。 为None,则使用'target'取数据
|
:param str target: 用该key在evaluate()时从传入dict中取出target数据。 为None,则使用 `target` 取数据
|
||||||
:param str seq_len: 用该key在evaluate()时从传入dict中取出sequence length数据。为None,则使用'seq_len'取数据。
|
:param str seq_len: 用该key在evaluate()时从传入dict中取出sequence length数据。为None,则使用 `seq_len` 取数据。
|
||||||
:param str encoding_type: 目前支持bio, bmes
|
:param str encoding_type: 目前支持bio, bmes, bmeso, bioes
|
||||||
:param list ignore_labels: str 组成的list. 这个list中的class不会被用于计算。例如在POS tagging时传入['NN'],则不会计算'NN'这
|
:param list ignore_labels: str 组成的list. 这个list中的class不会被用于计算。例如在POS tagging时传入['NN'],则不会计算'NN'这
|
||||||
个label
|
个label
|
||||||
:param bool only_gross: 是否只计算总的f1, precision, recall的值;如果为False,不仅返回总的f1, pre, rec, 还会返回每个
|
:param bool only_gross: 是否只计算总的f1, precision, recall的值;如果为False,不仅返回总的f1, pre, rec, 还会返回每个
|
||||||
label的f1, pre, rec
|
label的f1, pre, rec
|
||||||
:param str f_type: 'micro'或'macro'. 'micro':通过先计算总体的TP,FN和FP的数量,再计算f, precision, recall; 'macro':
|
:param str f_type: `micro` 或 `macro` . `micro` :通过先计算总体的TP,FN和FP的数量,再计算f, precision, recall; `macro` :
|
||||||
分布计算每个类别的f, precision, recall,然后做平均(各类别f的权重相同)
|
分布计算每个类别的f, precision, recall,然后做平均(各类别f的权重相同)
|
||||||
:param float beta: f_beta分数, :math:`f_{beta} = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}` .
|
:param float beta: f_beta分数, :math:`f_{beta} = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}` .
|
||||||
常用为beta=0.5, 1, 2. 若为0.5则精确率的权重高于召回率;若为1,则两者平等;若为2,则召回率权重高于精确率。
|
常用为beta=0.5, 1, 2. 若为0.5则精确率的权重高于召回率;若为1,则两者平等;若为2,则召回率权重高于精确率。
|
||||||
@ -497,6 +533,8 @@ class SpanFPreRecMetric(MetricBase):
|
|||||||
self.tag_to_span_func = _bio_tag_to_spans
|
self.tag_to_span_func = _bio_tag_to_spans
|
||||||
elif self.encoding_type == 'bmeso':
|
elif self.encoding_type == 'bmeso':
|
||||||
self.tag_to_span_func = _bmeso_tag_to_spans
|
self.tag_to_span_func = _bmeso_tag_to_spans
|
||||||
|
elif self.encoding_type == 'bioes':
|
||||||
|
self.tag_to_span_func = _bioes_tag_to_spans
|
||||||
else:
|
else:
|
||||||
raise ValueError("Only support 'bio', 'bmes', 'bmeso' type.")
|
raise ValueError("Only support 'bio', 'bmes', 'bmeso' type.")
|
||||||
|
|
||||||
@ -698,11 +736,11 @@ def _pred_topk(y_prob, k=1):
|
|||||||
return y_pred_topk, y_prob_topk
|
return y_pred_topk, y_prob_topk
|
||||||
|
|
||||||
|
|
||||||
class SQuADMetric(MetricBase):
|
class ExtractiveQAMetric(MetricBase):
|
||||||
r"""
|
r"""
|
||||||
别名::class:`fastNLP.SQuADMetric` :class:`fastNLP.core.metrics.SQuADMetric`
|
别名::class:`fastNLP.ExtractiveQAMetric` :class:`fastNLP.core.metrics.ExtractiveQAMetric`
|
||||||
|
|
||||||
SQuAD数据集metric
|
抽取式QA(如SQuAD)的metric.
|
||||||
|
|
||||||
:param pred1: 参数映射表中 `pred1` 的映射关系,None表示映射关系为 `pred1` -> `pred1`
|
:param pred1: 参数映射表中 `pred1` 的映射关系,None表示映射关系为 `pred1` -> `pred1`
|
||||||
:param pred2: 参数映射表中 `pred2` 的映射关系,None表示映射关系为 `pred2` -> `pred2`
|
:param pred2: 参数映射表中 `pred2` 的映射关系,None表示映射关系为 `pred2` -> `pred2`
|
||||||
@ -718,7 +756,7 @@ class SQuADMetric(MetricBase):
|
|||||||
def __init__(self, pred1=None, pred2=None, target1=None, target2=None,
|
def __init__(self, pred1=None, pred2=None, target1=None, target2=None,
|
||||||
beta=1, right_open=True, print_predict_stat=False):
|
beta=1, right_open=True, print_predict_stat=False):
|
||||||
|
|
||||||
super(SQuADMetric, self).__init__()
|
super(ExtractiveQAMetric, self).__init__()
|
||||||
|
|
||||||
self._init_param_map(pred1=pred1, pred2=pred2, target1=target1, target2=target2)
|
self._init_param_map(pred1=pred1, pred2=pred2, target1=target1, target2=target2)
|
||||||
|
|
||||||
|
@ -5,10 +5,14 @@ optimizer 模块定义了 fastNLP 中所需的各种优化器,一般做为 :cl
|
|||||||
__all__ = [
|
__all__ = [
|
||||||
"Optimizer",
|
"Optimizer",
|
||||||
"SGD",
|
"SGD",
|
||||||
"Adam"
|
"Adam",
|
||||||
|
"AdamW"
|
||||||
]
|
]
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from torch.optim.optimizer import Optimizer as TorchOptimizer
|
||||||
|
|
||||||
|
|
||||||
class Optimizer(object):
|
class Optimizer(object):
|
||||||
@ -36,6 +40,23 @@ class Optimizer(object):
|
|||||||
"""
|
"""
|
||||||
return [param for param in params if param.requires_grad]
|
return [param for param in params if param.requires_grad]
|
||||||
|
|
||||||
|
class NullOptimizer(Optimizer):
|
||||||
|
"""
|
||||||
|
当不希望Trainer更新optimizer时,传入本optimizer,但请确保通过callback的方式对参数进行了更新。
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(None)
|
||||||
|
|
||||||
|
def construct_from_pytorch(self, model_params):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __getattr__(self, item):
|
||||||
|
def pass_func(*args, **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
return pass_func
|
||||||
|
|
||||||
|
|
||||||
class SGD(Optimizer):
|
class SGD(Optimizer):
|
||||||
"""
|
"""
|
||||||
@ -80,3 +101,117 @@ class Adam(Optimizer):
|
|||||||
return torch.optim.Adam(self._get_require_grads_param(model_params), **self.settings)
|
return torch.optim.Adam(self._get_require_grads_param(model_params), **self.settings)
|
||||||
else:
|
else:
|
||||||
return torch.optim.Adam(self._get_require_grads_param(self.model_params), **self.settings)
|
return torch.optim.Adam(self._get_require_grads_param(self.model_params), **self.settings)
|
||||||
|
|
||||||
|
|
||||||
|
class AdamW(TorchOptimizer):
|
||||||
|
r"""
|
||||||
|
别名::class:`fastNLP.AdamW` :class:`fastNLP.core.optimizer.AdamW`
|
||||||
|
|
||||||
|
对AdamW的实现,该实现应该会在pytorch更高版本中出现,https://github.com/pytorch/pytorch/pull/21250。这里提前加入
|
||||||
|
|
||||||
|
.. todo::
|
||||||
|
翻译成中文
|
||||||
|
|
||||||
|
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||||
|
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
|
||||||
|
|
||||||
|
:param params (iterable): iterable of parameters to optimize or dicts defining
|
||||||
|
parameter groups
|
||||||
|
:param lr (float, optional): learning rate (default: 1e-3)
|
||||||
|
:param betas (Tuple[float, float], optional): coefficients used for computing
|
||||||
|
running averages of gradient and its square (default: (0.9, 0.99))
|
||||||
|
:param eps (float, optional): term added to the denominator to improve
|
||||||
|
numerical stability (default: 1e-8)
|
||||||
|
:param weight_decay (float, optional): weight decay coefficient (default: 1e-2)
|
||||||
|
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
||||||
|
(default: False)
|
||||||
|
|
||||||
|
.. _Adam\: A Method for Stochastic Optimization:
|
||||||
|
https://arxiv.org/abs/1412.6980
|
||||||
|
.. _Decoupled Weight Decay Regularization:
|
||||||
|
https://arxiv.org/abs/1711.05101
|
||||||
|
.. _On the Convergence of Adam and Beyond:
|
||||||
|
https://openreview.net/forum?id=ryQu7f-RZ
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
||||||
|
weight_decay=1e-2, amsgrad=False):
|
||||||
|
if not 0.0 <= lr:
|
||||||
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||||
|
if not 0.0 <= eps:
|
||||||
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||||
|
if not 0.0 <= betas[0] < 1.0:
|
||||||
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||||
|
if not 0.0 <= betas[1] < 1.0:
|
||||||
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||||
|
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||||
|
weight_decay=weight_decay, amsgrad=amsgrad)
|
||||||
|
super(AdamW, self).__init__(params, defaults)
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
super(AdamW, self).__setstate__(state)
|
||||||
|
for group in self.param_groups:
|
||||||
|
group.setdefault('amsgrad', False)
|
||||||
|
|
||||||
|
def step(self, closure=None):
|
||||||
|
"""Performs a single optimization step.
|
||||||
|
|
||||||
|
:param closure: (callable, optional) A closure that reevaluates the model
|
||||||
|
and returns the loss.
|
||||||
|
"""
|
||||||
|
loss = None
|
||||||
|
if closure is not None:
|
||||||
|
loss = closure()
|
||||||
|
|
||||||
|
for group in self.param_groups:
|
||||||
|
for p in group['params']:
|
||||||
|
if p.grad is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Perform stepweight decay
|
||||||
|
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
||||||
|
|
||||||
|
# Perform optimization step
|
||||||
|
grad = p.grad.data
|
||||||
|
if grad.is_sparse:
|
||||||
|
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
|
||||||
|
amsgrad = group['amsgrad']
|
||||||
|
|
||||||
|
state = self.state[p]
|
||||||
|
|
||||||
|
# State initialization
|
||||||
|
if len(state) == 0:
|
||||||
|
state['step'] = 0
|
||||||
|
# Exponential moving average of gradient values
|
||||||
|
state['exp_avg'] = torch.zeros_like(p.data)
|
||||||
|
# Exponential moving average of squared gradient values
|
||||||
|
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
||||||
|
if amsgrad:
|
||||||
|
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||||
|
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
|
||||||
|
|
||||||
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||||
|
if amsgrad:
|
||||||
|
max_exp_avg_sq = state['max_exp_avg_sq']
|
||||||
|
beta1, beta2 = group['betas']
|
||||||
|
|
||||||
|
state['step'] += 1
|
||||||
|
|
||||||
|
# Decay the first and second moment running average coefficient
|
||||||
|
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||||||
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||||||
|
if amsgrad:
|
||||||
|
# Maintains the maximum of all 2nd moment running avg. till now
|
||||||
|
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
|
||||||
|
# Use the max. for normalizing running avg. of gradient
|
||||||
|
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
|
||||||
|
else:
|
||||||
|
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||||||
|
|
||||||
|
bias_correction1 = 1 - beta1 ** state['step']
|
||||||
|
bias_correction2 = 1 - beta2 ** state['step']
|
||||||
|
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
|
||||||
|
|
||||||
|
p.data.addcdiv_(-step_size, exp_avg, denom)
|
||||||
|
|
||||||
|
return loss
|
||||||
|
@ -6,20 +6,20 @@ from collections import defaultdict
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from . import Batch
|
from . import DataSetIter
|
||||||
from . import DataSet
|
from . import DataSet
|
||||||
from . import SequentialSampler
|
from . import SequentialSampler
|
||||||
from .utils import _build_args
|
from .utils import _build_args, _move_dict_value_to_device, _get_model_device
|
||||||
|
|
||||||
|
|
||||||
class Predictor(object):
|
class Predictor(object):
|
||||||
"""
|
"""
|
||||||
An interface for predicting outputs based on trained models.
|
一个根据训练模型预测输出的预测器(Predictor)
|
||||||
|
|
||||||
It does not care about evaluations of the model, which is different from Tester.
|
与测试器(Tester)不同的是,predictor不关心模型性能的评价指标,只做inference。
|
||||||
This is a high-level model wrapper to be called by FastNLP.
|
这是一个fastNLP调用的高级模型包装器。它与Trainer、Tester不共享任何操作。
|
||||||
This class does not share any operations with Trainer and Tester.
|
|
||||||
Currently, Predictor does not support GPU.
|
:param torch.nn.Module network: 用来完成预测任务的模型
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, network):
|
def __init__(self, network):
|
||||||
@ -30,22 +30,23 @@ class Predictor(object):
|
|||||||
self.batch_size = 1
|
self.batch_size = 1
|
||||||
self.batch_output = []
|
self.batch_output = []
|
||||||
|
|
||||||
def predict(self, data, seq_len_field_name=None):
|
def predict(self, data: DataSet, seq_len_field_name=None):
|
||||||
"""Perform inference using the trained model.
|
"""用已经训练好的模型进行inference.
|
||||||
|
|
||||||
:param data: a DataSet object.
|
:param fastNLP.DataSet data: 待预测的数据集
|
||||||
:param str seq_len_field_name: field name indicating sequence lengths
|
:param str seq_len_field_name: 表示序列长度信息的field名字
|
||||||
:return: list of batch outputs
|
:return: dict dict里面的内容为模型预测的结果
|
||||||
"""
|
"""
|
||||||
if not isinstance(data, DataSet):
|
if not isinstance(data, DataSet):
|
||||||
raise ValueError("Only Dataset class is allowed, not {}.".format(type(data)))
|
raise ValueError("Only Dataset class is allowed, not {}.".format(type(data)))
|
||||||
if seq_len_field_name is not None and seq_len_field_name not in data.field_arrays:
|
if seq_len_field_name is not None and seq_len_field_name not in data.field_arrays:
|
||||||
raise ValueError("Field name {} not found in DataSet {}.".format(seq_len_field_name, data))
|
raise ValueError("Field name {} not found in DataSet {}.".format(seq_len_field_name, data))
|
||||||
|
|
||||||
|
prev_training = self.network.training
|
||||||
self.network.eval()
|
self.network.eval()
|
||||||
|
network_device = _get_model_device(self.network)
|
||||||
batch_output = defaultdict(list)
|
batch_output = defaultdict(list)
|
||||||
data_iterator = Batch(data, batch_size=self.batch_size, sampler=SequentialSampler(), as_numpy=False,
|
data_iterator = DataSetIter(data, batch_size=self.batch_size, sampler=SequentialSampler(), as_numpy=False)
|
||||||
prefetch=False)
|
|
||||||
|
|
||||||
if hasattr(self.network, "predict"):
|
if hasattr(self.network, "predict"):
|
||||||
predict_func = self.network.predict
|
predict_func = self.network.predict
|
||||||
@ -54,6 +55,7 @@ class Predictor(object):
|
|||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for batch_x, _ in data_iterator:
|
for batch_x, _ in data_iterator:
|
||||||
|
_move_dict_value_to_device(batch_x, _, device=network_device)
|
||||||
refined_batch_x = _build_args(predict_func, **batch_x)
|
refined_batch_x = _build_args(predict_func, **batch_x)
|
||||||
prediction = predict_func(**refined_batch_x)
|
prediction = predict_func(**refined_batch_x)
|
||||||
|
|
||||||
@ -73,4 +75,5 @@ class Predictor(object):
|
|||||||
else:
|
else:
|
||||||
batch_output[key].append(value)
|
batch_output[key].append(value)
|
||||||
|
|
||||||
|
self.network.train(prev_training)
|
||||||
return batch_output
|
return batch_output
|
||||||
|
@ -62,16 +62,27 @@ class BucketSampler(Sampler):
|
|||||||
带Bucket的 `Random Sampler`. 可以随机地取出长度相似的元素
|
带Bucket的 `Random Sampler`. 可以随机地取出长度相似的元素
|
||||||
|
|
||||||
:param int num_buckets: bucket的数量
|
:param int num_buckets: bucket的数量
|
||||||
:param int batch_size: batch的大小
|
:param int batch_size: batch的大小. 默认为None,Trainer在调用BucketSampler时,会将该值正确设置,如果是非Trainer场景使用,需
|
||||||
|
要显示传递该值
|
||||||
:param str seq_len_field_name: 对应序列长度的 `field` 的名字
|
:param str seq_len_field_name: 对应序列长度的 `field` 的名字
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, num_buckets=10, batch_size=32, seq_len_field_name='seq_len'):
|
def __init__(self, num_buckets=10, batch_size=None, seq_len_field_name='seq_len'):
|
||||||
self.num_buckets = num_buckets
|
self.num_buckets = num_buckets
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.seq_len_field_name = seq_len_field_name
|
self.seq_len_field_name = seq_len_field_name
|
||||||
|
|
||||||
|
def set_batch_size(self, batch_size):
|
||||||
|
"""
|
||||||
|
|
||||||
|
:param int batch_size: 每个batch的大小
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
self.batch_size = batch_size
|
||||||
|
|
||||||
def __call__(self, data_set):
|
def __call__(self, data_set):
|
||||||
|
if self.batch_size is None:
|
||||||
|
raise RuntimeError("batch_size is None.")
|
||||||
seq_lens = data_set.get_all_fields()[self.seq_len_field_name].content
|
seq_lens = data_set.get_all_fields()[self.seq_len_field_name].content
|
||||||
total_sample_num = len(seq_lens)
|
total_sample_num = len(seq_lens)
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
"""
|
"""
|
||||||
tester模块实现了 fastNLP 所需的Tester类,能在提供数据、模型以及metric的情况下进行性能测试。
|
tester模块实现了 fastNLP 所需的Tester类,能在提供数据、模型以及metric的情况下进行性能测试。
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
@ -32,12 +32,10 @@ Tester在验证进行之前会调用model.eval()提示当前进入了evaluation
|
|||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
import warnings
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
from .batch import Batch
|
from .batch import BatchIter, DataSetIter
|
||||||
from .dataset import DataSet
|
from .dataset import DataSet
|
||||||
from .metrics import _prepare_metrics
|
from .metrics import _prepare_metrics
|
||||||
from .sampler import SequentialSampler
|
from .sampler import SequentialSampler
|
||||||
@ -48,6 +46,8 @@ from .utils import _move_dict_value_to_device
|
|||||||
from .utils import _get_func_signature
|
from .utils import _get_func_signature
|
||||||
from .utils import _get_model_device
|
from .utils import _get_model_device
|
||||||
from .utils import _move_model_to_device
|
from .utils import _move_model_to_device
|
||||||
|
from ._parallel_utils import _data_parallel_wrapper
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"Tester"
|
"Tester"
|
||||||
@ -60,15 +60,14 @@ class Tester(object):
|
|||||||
|
|
||||||
Tester是在提供数据,模型以及metric的情况下进行性能测试的类。需要传入模型,数据以及metric进行验证。
|
Tester是在提供数据,模型以及metric的情况下进行性能测试的类。需要传入模型,数据以及metric进行验证。
|
||||||
|
|
||||||
:param data: 需要测试的数据集, :class:`~fastNLP.DataSet` 类型
|
:param ~fastNLP.DataSet data: 需要测试的数据集
|
||||||
:param torch.nn.module model: 使用的模型
|
:param torch.nn.module model: 使用的模型
|
||||||
:param metrics: :class:`~fastNLP.core.metrics.MetricBase` 或者一个列表的 :class:`~fastNLP.core.metrics.MetricBase`
|
:param ~fastNLP.core.metrics.MetricBase,List[~fastNLP.core.metrics.MetricBase] metrics: 测试时使用的metrics
|
||||||
:param int batch_size: evaluation时使用的batch_size有多大。
|
:param int batch_size: evaluation时使用的batch_size有多大。
|
||||||
:param str,int,torch.device,list(int) device: 将模型load到哪个设备。默认为None,即Trainer不对模型
|
:param str,int,torch.device,list(int) device: 将模型load到哪个设备。默认为None,即Trainer不对模型
|
||||||
的计算位置进行管理。支持以下的输入:
|
的计算位置进行管理。支持以下的输入:
|
||||||
|
|
||||||
1. str: ['cpu', 'cuda', 'cuda:0', 'cuda:1', ...] 依次为'cpu'中, 可见的第一个GPU中, 可见的第一个GPU中,
|
1. str: ['cpu', 'cuda', 'cuda:0', 'cuda:1', ...] 依次为'cpu'中, 可见的第一个GPU中,可见的第一个GPU中,可见的第二个GPU中;
|
||||||
可见的第二个GPU中;
|
|
||||||
|
|
||||||
2. torch.device:将模型装载到torch.device上。
|
2. torch.device:将模型装载到torch.device上。
|
||||||
|
|
||||||
@ -82,7 +81,7 @@ class Tester(object):
|
|||||||
:param int verbose: 如果为0不输出任何信息; 如果为1,打印出验证结果。
|
:param int verbose: 如果为0不输出任何信息; 如果为1,打印出验证结果。
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, data, model, metrics, batch_size=16, device=None, verbose=1):
|
def __init__(self, data, model, metrics, batch_size=16, num_workers=0, device=None, verbose=1):
|
||||||
super(Tester, self).__init__()
|
super(Tester, self).__init__()
|
||||||
|
|
||||||
if not isinstance(data, DataSet):
|
if not isinstance(data, DataSet):
|
||||||
@ -96,23 +95,35 @@ class Tester(object):
|
|||||||
self._model = _move_model_to_device(model, device=device)
|
self._model = _move_model_to_device(model, device=device)
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.verbose = verbose
|
self.verbose = verbose
|
||||||
|
|
||||||
# 如果是DataParallel将没有办法使用predict方法
|
if isinstance(data, DataSet):
|
||||||
if isinstance(self._model, nn.DataParallel):
|
self.data_iterator = DataSetIter(
|
||||||
if hasattr(self._model.module, 'predict') and not hasattr(self._model, 'predict'):
|
dataset=data, batch_size=batch_size, num_workers=num_workers, sampler=SequentialSampler())
|
||||||
warnings.warn("Cannot use DataParallel to test your model, because your model offer predict() function,"
|
elif isinstance(data, BatchIter):
|
||||||
" while DataParallel has no predict() function.")
|
self.data_iterator = data
|
||||||
self._model = self._model.module
|
|
||||||
|
|
||||||
# check predict
|
|
||||||
if hasattr(self._model, 'predict'):
|
|
||||||
self._predict_func = self._model.predict
|
|
||||||
if not callable(self._predict_func):
|
|
||||||
_model_name = model.__class__.__name__
|
|
||||||
raise TypeError(f"`{_model_name}.predict` must be callable to be used "
|
|
||||||
f"for evaluation, not `{type(self._predict_func)}`.")
|
|
||||||
else:
|
else:
|
||||||
self._predict_func = self._model.forward
|
raise TypeError("data type {} not support".format(type(data)))
|
||||||
|
|
||||||
|
# check predict
|
||||||
|
if (hasattr(self._model, 'predict') and callable(self._model.predict)) or \
|
||||||
|
(isinstance(self._model, nn.DataParallel) and hasattr(self._model.module, 'predict') and
|
||||||
|
callable(self._model.module.predict)):
|
||||||
|
if isinstance(self._model, nn.DataParallel):
|
||||||
|
self._predict_func_wrapper = partial(_data_parallel_wrapper('predict',
|
||||||
|
self._model.device_ids,
|
||||||
|
self._model.output_device),
|
||||||
|
network=self._model.module)
|
||||||
|
self._predict_func = self._model.module.predict
|
||||||
|
else:
|
||||||
|
self._predict_func = self._model.predict
|
||||||
|
self._predict_func_wrapper = self._model.predict
|
||||||
|
else:
|
||||||
|
if isinstance(self._model, nn.DataParallel):
|
||||||
|
self._predict_func_wrapper = self._model.forward
|
||||||
|
self._predict_func = self._model.module.forward
|
||||||
|
else:
|
||||||
|
self._predict_func = self._model.forward
|
||||||
|
self._predict_func_wrapper = self._model.forward
|
||||||
|
|
||||||
def test(self):
|
def test(self):
|
||||||
"""开始进行验证,并返回验证结果。
|
"""开始进行验证,并返回验证结果。
|
||||||
@ -124,7 +135,7 @@ class Tester(object):
|
|||||||
self._model_device = _get_model_device(self._model)
|
self._model_device = _get_model_device(self._model)
|
||||||
network = self._model
|
network = self._model
|
||||||
self._mode(network, is_test=True)
|
self._mode(network, is_test=True)
|
||||||
data_iterator = Batch(self.data, self.batch_size, sampler=SequentialSampler(), as_numpy=False)
|
data_iterator = self.data_iterator
|
||||||
eval_results = {}
|
eval_results = {}
|
||||||
try:
|
try:
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
@ -169,7 +180,7 @@ class Tester(object):
|
|||||||
def _data_forward(self, func, x):
|
def _data_forward(self, func, x):
|
||||||
"""A forward pass of the model. """
|
"""A forward pass of the model. """
|
||||||
x = _build_args(func, **x)
|
x = _build_args(func, **x)
|
||||||
y = func(**x)
|
y = self._predict_func_wrapper(**x)
|
||||||
return y
|
return y
|
||||||
|
|
||||||
def _format_eval_results(self, results):
|
def _format_eval_results(self, results):
|
||||||
|
@ -11,288 +11,310 @@ Trainer在fastNLP中用于组织单任务的训练过程,可以避免用户在
|
|||||||
|
|
||||||
(5) 保存获得更好验证性能的模型。
|
(5) 保存获得更好验证性能的模型。
|
||||||
|
|
||||||
1 Trainer的基本使用
|
|
||||||
下面的例子是使用神经网络来进行预测一个序列中是否有偶数个1。
|
|
||||||
|
|
||||||
Example::
|
----------------------------
|
||||||
|
1. Trainer的基本使用
|
||||||
|
----------------------------
|
||||||
|
|
||||||
import numpy as np
|
下面的例子是使用神经网络来进行预测一个序列中是否有偶数个1。
|
||||||
from torch import nn
|
|
||||||
import torch
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torch.optim import SGD
|
|
||||||
|
|
||||||
from fastNLP import DataSet
|
.. code-block:: python
|
||||||
from fastNLP import Trainer
|
|
||||||
from fastNLP import CrossEntropyLoss
|
|
||||||
from fastNLP import AccuracyMetric
|
|
||||||
from fastNLP.modules.decoder import MLP
|
|
||||||
|
|
||||||
# 模型
|
import numpy as np
|
||||||
class Model(nn.Module):
|
from torch import nn
|
||||||
def __init__(self, input_num):
|
import torch
|
||||||
super().__init__()
|
import torch.nn.functional as F
|
||||||
self.fcs = MLP([input_num, 40, 40, 2], 'relu')
|
from torch.optim import SGD
|
||||||
|
|
||||||
def forward(self, x):
|
from fastNLP import DataSet
|
||||||
x = self.fcs(x)
|
from fastNLP import Trainer
|
||||||
return {'pred': x}
|
from fastNLP import CrossEntropyLoss
|
||||||
model = Model(10)
|
from fastNLP import AccuracyMetric
|
||||||
|
from fastNLP.modules.decoder import MLP
|
||||||
|
|
||||||
# 生成数据
|
# 模型
|
||||||
def generate_psedo_dataset(num_samples):
|
class Model(nn.Module):
|
||||||
dataset = DataSet()
|
def __init__(self, input_num):
|
||||||
data = np.random.randint(2, size=(num_samples, 10))
|
super().__init__()
|
||||||
label = np.sum(data, axis=1)%2
|
self.fcs = MLP([input_num, 40, 40, 2], 'relu')
|
||||||
dataset = DataSet({'x':data.astype(float), 'label': label})
|
|
||||||
dataset.set_input('x')
|
|
||||||
dataset.set_target('label')
|
|
||||||
return dataset
|
|
||||||
tr_dataset = generate_psedo_dataset(1000)
|
|
||||||
dev_data = generate_psedo_dataset(100)
|
|
||||||
|
|
||||||
# 训练
|
def forward(self, x):
|
||||||
trainer = Trainer(tr_dataset, model, loss=CrossEntropyLoss(target='label'),
|
x = self.fcs(x)
|
||||||
optimizer=SGD(model.parameters(), lr=0.1),n_epochs=1000,
|
return {'pred': x}
|
||||||
dev_data = dev_data, metrics=AccuracyMetric(target='label'))
|
model = Model(10)
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
由上面的例子可以看出通过使用Trainer,可以使得训练部分的代码大幅减少。
|
# 生成数据
|
||||||
使用Trainer需要满足以下几个条件:
|
def generate_psedo_dataset(num_samples):
|
||||||
|
dataset = DataSet()
|
||||||
|
data = np.random.randint(2, size=(num_samples, 10))
|
||||||
|
label = np.sum(data, axis=1)%2
|
||||||
|
dataset = DataSet({'x':data.astype(float), 'label': label})
|
||||||
|
dataset.set_input('x')
|
||||||
|
dataset.set_target('label')
|
||||||
|
return dataset
|
||||||
|
tr_dataset = generate_psedo_dataset(1000)
|
||||||
|
dev_data = generate_psedo_dataset(100)
|
||||||
|
|
||||||
|
# 训练
|
||||||
|
trainer = Trainer(tr_dataset, model, loss=CrossEntropyLoss(target='label'),
|
||||||
|
optimizer=SGD(model.parameters(), lr=0.1),n_epochs=1000,
|
||||||
|
dev_data = dev_data, metrics=AccuracyMetric(target='label'))
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
由上面的例子可以看出通过使用Trainer,可以使得训练部分的代码大幅减少。
|
||||||
|
使用Trainer需要满足以下几个条件:
|
||||||
|
|
||||||
1.1 模型
|
1.1 模型
|
||||||
1 模型的forward()的参数名需要与DataSet中的名字对应。实际上fastNLP在将DataSet中的数据传递给模型forward()时,是
|
----------------------------
|
||||||
通过匹配名称实现的。所以上例中,如果Model的forward函数修改为forward(self, data), 则DataSet中的'x'这个field就应该
|
|
||||||
改名为'data'。
|
|
||||||
|
|
||||||
2 传递给forward()的参数是DataSet中被设置为input的那些field。但如果forward()中没有对应的参数,则不会将数据传递
|
1 模型的forward()的参数名需要与DataSet中的名字对应。实际上fastNLP在将DataSet中的数据传递给模型forward()时,是
|
||||||
给forward()。例如,DataSet中'x1', 'x2'都是input,但是模型的函数为forward(self, x1), 那么'x2'不会传递给forward()。
|
通过匹配名称实现的。所以上例中,如果Model的forward函数修改为forward(self, data), 则DataSet中的'x'这个field就应该
|
||||||
|
改名为'data'。
|
||||||
|
|
||||||
3 模型的forward()返回值需要为一个dict。
|
2 传递给forward()的参数是DataSet中被设置为input的那些field。但如果forward()中没有对应的参数,则不会将数据传递
|
||||||
|
给forward()。例如,DataSet中'x1', 'x2'都是input,但是模型的函数为forward(self, x1), 那么'x2'不会传递给forward()。
|
||||||
|
|
||||||
|
3 模型的forward()返回值需要为一个dict。
|
||||||
|
|
||||||
1.2 Loss
|
1.2 Loss
|
||||||
fastNLP中的为了不限制forward函数的返回内容数量(比如一些复杂任务需要返回多个内容,如Dependency Parsing,
|
----------------------------
|
||||||
:mod:`Loss<fastNLP.core.losses>` 与 :mod:`Metric<fastNLP.core.metrics>` 都使用了通过名称来匹配相应内容的策略。如上面的例子中
|
|
||||||
|
|
||||||
Example::
|
fastNLP中的为了不限制forward函数的返回内容数量(比如一些复杂任务需要返回多个内容,如Dependency Parsing,
|
||||||
|
:mod:`Loss<fastNLP.core.losses>` 与 :mod:`Metric<fastNLP.core.metrics>` 都使用了通过名称来匹配相应内容的策略。如上面的例子中
|
||||||
|
|
||||||
trainer = Trainer(tr_dataset, model, loss=CrossEntropyLoss(target='label'),
|
.. code-block:: python
|
||||||
optimizer=SGD(model.parameters(), lr=0.1),n_epochs=1000,
|
|
||||||
dev_data = dev_data, metrics=AccuracyMetric(target='label'))
|
|
||||||
|
|
||||||
loss被设置为了 :class:`~fastNLP.CrossEntropyLoss` , 但在初始化的时候传入了target='label'这个参数,
|
trainer = Trainer(tr_dataset, model, loss=CrossEntropyLoss(target='label'),
|
||||||
:class:`~fastNLP.CrossEntropyLoss` 的初始化参数为(pred=None, target=None, padding_idx=-100)。
|
optimizer=SGD(model.parameters(), lr=0.1),n_epochs=1000,
|
||||||
|
dev_data = dev_data, metrics=AccuracyMetric(target='label'))
|
||||||
这里的两个参数分别为计算CrossEntropy时需要使用到的模型的预测值与真实值。
|
|
||||||
其中 `pred` 一般来自于模型forward()的返回结果,`target` 一般是来自于DataSet中被设置为target的field。
|
|
||||||
由于每个人对真实值或者model的返回值取名并不一样,所以fastNLP的 :mod:`Loss<fastNLP.core.losses>` 提供一种类似于映射的机制来匹配对应的值,
|
|
||||||
比如这里 :class:`~fastNLP.CrossEntropyLoss` 将尝试找到名为'label'的内容来作为真实值得到loss;
|
|
||||||
而pred=None, 则 :class:`~fastNLP.CrossEntropyLoss` 使用'pred'作为名称匹配预测值,
|
|
||||||
正好forward的返回值也叫pred,所以这里不需要申明pred。
|
|
||||||
|
|
||||||
尽管fastNLP使用了映射机制来使得loss的计算变得比较灵活,但有些情况下loss必须在模型中进行计算,比如使用了CRF的模型。
|
loss被设置为了 :class:`~fastNLP.CrossEntropyLoss` , 但在初始化的时候传入了target='label'这个参数,
|
||||||
fastNLP中提供了 :class:`~fastNLP.LossInForward` 这个loss。
|
:class:`~fastNLP.CrossEntropyLoss` 的初始化参数为(pred=None, target=None, padding_idx=-100)。
|
||||||
这个loss的原理是直接在forward()的返回结果中找到loss_key(默认寻找'loss')指定的那个tensor,并使用它作为loss。
|
|
||||||
如果Trainer初始化没有提供loss则默认使用 :class:`~fastNLP.LossInForward` 。
|
这里的两个参数分别为计算CrossEntropy时需要使用到的模型的预测值与真实值。
|
||||||
|
其中 `pred` 一般来自于模型forward()的返回结果,`target` 一般是来自于DataSet中被设置为target的field。
|
||||||
.. todo::
|
由于每个人对真实值或者model的返回值取名并不一样,所以fastNLP的 :mod:`Loss<fastNLP.core.losses>` 提供一种类似于映射的机制来匹配对应的值,
|
||||||
补充一个例子 详细例子可以参照
|
比如这里 :class:`~fastNLP.CrossEntropyLoss` 将尝试找到名为'label'的内容来作为真实值得到loss;
|
||||||
|
而pred=None, 则 :class:`~fastNLP.CrossEntropyLoss` 使用'pred'作为名称匹配预测值,
|
||||||
|
正好forward的返回值也叫pred,所以这里不需要申明pred。
|
||||||
|
|
||||||
|
尽管fastNLP使用了映射机制来使得loss的计算变得比较灵活,但有些情况下loss必须在模型中进行计算,比如使用了CRF的模型。
|
||||||
|
fastNLP中提供了 :class:`~fastNLP.LossInForward` 这个loss。
|
||||||
|
这个loss的原理是直接在forward()的返回结果中找到loss_key(默认寻找'loss')指定的那个tensor,并使用它作为loss。
|
||||||
|
如果Trainer初始化没有提供loss则默认使用 :class:`~fastNLP.LossInForward` 。
|
||||||
|
|
||||||
|
.. todo::
|
||||||
|
补充一个例子 详细例子可以参照
|
||||||
|
|
||||||
1.3 Metric
|
1.3 Metric
|
||||||
:mod:`Metric<fastNLP.core.metrics>` 使用了与上述Loss一样的策略,即使用名称进行匹配。
|
----------------------------
|
||||||
AccuracyMetric(target='label')的情况与CrossEntropyLoss 是同理的。
|
|
||||||
|
|
||||||
在进行验证时,可能用到的计算与forward()中不太一致,没有办法直接从forward()的结果中得到预测值,这时模型可以提供一个predict()方法,
|
|
||||||
如果提供的模型具有predict方法,则在模型验证时将调用predict()方法获取预测结果,
|
|
||||||
传入到predict()的参数也是从DataSet中被设置为input的field中选择出来的;
|
|
||||||
与forward()一样,返回值需要为一个dict。
|
|
||||||
|
|
||||||
.. todo::
|
|
||||||
补充一个例子 具体例子可以参考
|
|
||||||
|
|
||||||
2 Trainer的代码检查
|
:mod:`Metric<fastNLP.core.metrics>` 使用了与上述Loss一样的策略,即使用名称进行匹配。
|
||||||
由于在fastNLP中采取了映射的机制,所以难免可能存在对应出错的情况。Trainer提供一种映射检查机制,可以通过check_code_level来进行控制
|
AccuracyMetric(target='label')的情况与CrossEntropyLoss 是同理的。
|
||||||
比如下面的例子中,由于各种原因产生的报错
|
|
||||||
|
在进行验证时,可能用到的计算与forward()中不太一致,没有办法直接从forward()的结果中得到预测值,这时模型可以提供一个predict()方法,
|
||||||
|
如果提供的模型具有predict方法,则在模型验证时将调用predict()方法获取预测结果,
|
||||||
|
传入到predict()的参数也是从DataSet中被设置为input的field中选择出来的;
|
||||||
|
与forward()一样,返回值需要为一个dict。
|
||||||
|
|
||||||
|
.. todo::
|
||||||
|
补充一个例子 具体例子可以参考
|
||||||
|
|
||||||
|
----------------------------
|
||||||
|
2. Trainer的代码检查
|
||||||
|
----------------------------
|
||||||
|
|
||||||
|
由于在fastNLP中采取了映射的机制,所以难免可能存在对应出错的情况。Trainer提供一种映射检查机制,可以通过check_code_level来进行控制
|
||||||
|
比如下面的例子中,由于各种原因产生的报错
|
||||||
|
|
||||||
Example2.1
|
Example2.1
|
||||||
::
|
----------------------------
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from torch import nn
|
|
||||||
import torch
|
|
||||||
from torch.optim import SGD
|
|
||||||
from fastNLP import Trainer
|
|
||||||
from fastNLP import DataSet
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
.. code-block:: python
|
||||||
def __init__(self):
|
|
||||||
super().__init__()
|
|
||||||
self.fc = nn.Linear(1, 1)
|
|
||||||
def forward(self, x, b):
|
|
||||||
loss = torch.mean((self.fc(x)-b)**2)
|
|
||||||
return {'loss': loss}
|
|
||||||
model = Model()
|
|
||||||
|
|
||||||
dataset = DataSet({'a': np.arange(10), 'b':np.arange(10)*2})
|
import numpy as np
|
||||||
dataset.set_input('a', 'b')
|
from torch import nn
|
||||||
|
import torch
|
||||||
|
from torch.optim import SGD
|
||||||
|
from fastNLP import Trainer
|
||||||
|
from fastNLP import DataSet
|
||||||
|
|
||||||
trainer = Trainer(dataset, model, loss=None, optimizer=SGD(model.parameters(), lr=0.001))
|
class Model(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.fc = nn.Linear(1, 1)
|
||||||
|
def forward(self, x, b):
|
||||||
|
loss = torch.mean((self.fc(x)-b)**2)
|
||||||
|
return {'loss': loss}
|
||||||
|
model = Model()
|
||||||
|
|
||||||
trainer = Trainer(dataset, model, SGD(model.parameters()))
|
dataset = DataSet({'a': np.arange(10), 'b':np.arange(10)*2})
|
||||||
# 会报以下的错误
|
dataset.set_input('a', 'b')
|
||||||
# input fields after batch(if batch size is 2):
|
|
||||||
# a: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
|
||||||
# b: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
|
||||||
# There is no target field.
|
|
||||||
# ....
|
|
||||||
# NameError:
|
|
||||||
# Problems occurred when calling Model.forward(self, x, b)
|
|
||||||
# missing param: ['x']
|
|
||||||
# unused field: ['a']
|
|
||||||
# Suggestion: You need to provide ['x'] in DataSet and set it as input.
|
|
||||||
|
|
||||||
这里就是由于在Trainer初始化的时候,fastNLP会尝试使用一个batch_size=2的batch去运行一遍forward()以及backward()。这里有两类
|
trainer = Trainer(dataset, model, loss=None, optimizer=SGD(model.parameters(), lr=0.001))
|
||||||
信息可以为你提供参考
|
|
||||||
|
|
||||||
1 'input fields after batch...'这部分显示的是train dataset经过Batch操作后,每个field对应的类型以及进行shape。这里
|
trainer = Trainer(dataset, model, SGD(model.parameters()))
|
||||||
因为train dataset没有target所以没有显示。根据这里可以看出是否正确将需要的内容设置为了input或target。
|
# 会报以下的错误
|
||||||
|
# input fields after batch(if batch size is 2):
|
||||||
|
# a: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
||||||
|
# b: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
|
||||||
|
# There is no target field.
|
||||||
|
# ....
|
||||||
|
# NameError:
|
||||||
|
# Problems occurred when calling Model.forward(self, x, b)
|
||||||
|
# missing param: ['x']
|
||||||
|
# unused field: ['a']
|
||||||
|
# Suggestion: You need to provide ['x'] in DataSet and set it as input.
|
||||||
|
|
||||||
2 NameError,NameError发生在映射出错的情况。这里报错的原因是由于尝试进行forward计算时(可以通过Model.forward(self, x, b)判断
|
这里就是由于在Trainer初始化的时候,fastNLP会尝试使用一个batch_size=2的batch去运行一遍forward()以及backward()。这里有两类
|
||||||
出当前是在调取forward),却没有获取到forward()函数中需要的'x';在报错信息中同时指出了缺'x',而'a'没有被使用,那么可能
|
信息可以为你提供参考
|
||||||
就是由于field的名称不对。这里将dataset中'a'这个field的名称改为'x',或者model的参数从'x'修改为'a'都可以解决问题。
|
|
||||||
|
|
||||||
下面的例子是由于loss计算的时候找不到需要的值
|
1 'input fields after batch...'这部分显示的是train dataset经过Batch操作后,每个field对应的类型以及进行shape。这里
|
||||||
|
因为train dataset没有target所以没有显示。根据这里可以看出是否正确将需要的内容设置为了input或target。
|
||||||
|
|
||||||
|
2 NameError,NameError发生在映射出错的情况。这里报错的原因是由于尝试进行forward计算时(可以通过Model.forward(self, x, b)判断
|
||||||
|
出当前是在调取forward),却没有获取到forward()函数中需要的'x';在报错信息中同时指出了缺'x',而'a'没有被使用,那么可能
|
||||||
|
就是由于field的名称不对。这里将dataset中'a'这个field的名称改为'x',或者model的参数从'x'修改为'a'都可以解决问题。
|
||||||
|
|
||||||
|
下面的例子是由于loss计算的时候找不到需要的值
|
||||||
|
|
||||||
Example2.2
|
Example2.2
|
||||||
::
|
----------------------------
|
||||||
|
|
||||||
import numpy as np
|
.. code-block:: python
|
||||||
from torch import nn
|
|
||||||
from torch.optim import SGD
|
|
||||||
from fastNLP import Trainer
|
|
||||||
from fastNLP import DataSet
|
|
||||||
from fastNLP import L1Loss
|
|
||||||
import torch
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
import numpy as np
|
||||||
def __init__(self):
|
from torch import nn
|
||||||
super().__init__()
|
from torch.optim import SGD
|
||||||
self.fc = nn.Linear(1, 1)
|
from fastNLP import Trainer
|
||||||
def forward(self, a):
|
from fastNLP import DataSet
|
||||||
return {'pred_b': self.fc(a.unsqueeze(1)).squeeze(1), 'No use':1}
|
from fastNLP import L1Loss
|
||||||
|
import torch
|
||||||
|
|
||||||
model = Model()
|
class Model(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.fc = nn.Linear(1, 1)
|
||||||
|
def forward(self, a):
|
||||||
|
return {'pred_b': self.fc(a.unsqueeze(1)).squeeze(1), 'No use':1}
|
||||||
|
|
||||||
dataset = DataSet({'a': np.arange(10, dtype=float), 'b':np.arange(10, dtype=float)*2})
|
model = Model()
|
||||||
|
|
||||||
dataset.set_input('a')
|
dataset = DataSet({'a': np.arange(10, dtype=float), 'b':np.arange(10, dtype=float)*2})
|
||||||
dataset.set_target('b')
|
|
||||||
|
|
||||||
trainer = Trainer(dataset, model, loss=L1Loss(target='label'), optimizer=SGD(model.parameters(), lr=0.001))
|
dataset.set_input('a')
|
||||||
# 报错信息如下
|
dataset.set_target('b')
|
||||||
# input fields after batch(if batch size is 2):
|
|
||||||
# a: (1)type:torch.Tensor (2)dtype:torch.float32, (3)shape:torch.Size([2])
|
|
||||||
# target fields after batch(if batch size is 2):
|
|
||||||
# b: (1)type:torch.Tensor (2)dtype:torch.float32, (3)shape:torch.Size([2])
|
|
||||||
# ....
|
|
||||||
# NameError:
|
|
||||||
# Problems occurred when calling L1Loss.get_loss(self, pred, target)
|
|
||||||
# missing param: ['pred(assign to `pred` in `L1Loss`)', 'label(assign to `target` in `L1Loss`)']
|
|
||||||
# unused field: ['b']
|
|
||||||
# unused param: ['pred_b', 'No use']
|
|
||||||
# target field: ['b']
|
|
||||||
# param from Model.forward(self, a): ['pred_b', 'No use']
|
|
||||||
# Suggestion: (1). Check key assignment for `target` when initialize L1Loss. Or provide `label` in DataSet or output of Model.forward(self, a).
|
|
||||||
# (2). Check key assignment for `pred` when initialize L1Loss. Or provide `pred` in DataSet or output of Model.forward(self, a).
|
|
||||||
|
|
||||||
报错信息也包含两部分:
|
trainer = Trainer(dataset, model, loss=L1Loss(target='label'), optimizer=SGD(model.parameters(), lr=0.001))
|
||||||
|
# 报错信息如下
|
||||||
|
# input fields after batch(if batch size is 2):
|
||||||
|
# a: (1)type:torch.Tensor (2)dtype:torch.float32, (3)shape:torch.Size([2])
|
||||||
|
# target fields after batch(if batch size is 2):
|
||||||
|
# b: (1)type:torch.Tensor (2)dtype:torch.float32, (3)shape:torch.Size([2])
|
||||||
|
# ....
|
||||||
|
# NameError:
|
||||||
|
# Problems occurred when calling L1Loss.get_loss(self, pred, target)
|
||||||
|
# missing param: ['pred(assign to `pred` in `L1Loss`)', 'label(assign to `target` in `L1Loss`)']
|
||||||
|
# unused field: ['b']
|
||||||
|
# unused param: ['pred_b', 'No use']
|
||||||
|
# target field: ['b']
|
||||||
|
# param from Model.forward(self, a): ['pred_b', 'No use']
|
||||||
|
# Suggestion: (1). Check key assignment for `target` when initialize L1Loss. Or provide `label` in DataSet or output of Model.forward(self, a).
|
||||||
|
# (2). Check key assignment for `pred` when initialize L1Loss. Or provide `pred` in DataSet or output of Model.forward(self, a).
|
||||||
|
|
||||||
1 第一部分与上面是一样的
|
报错信息也包含两部分:
|
||||||
|
|
||||||
2 这里报错的原因是由于计算loss的时候找不到相应的值(通过L1Loss.get_loss(self, pred, target)判断出来的);
|
1 第一部分与上面是一样的
|
||||||
报错的原因是因为 `pred` 和 `label` (我们在初始化L1Loss时将target指定为了label)都没有找到。
|
|
||||||
这里'unused field'是DataSet中出现了,但却没有被设置为input或者target的field;
|
|
||||||
'unused param'是forward()中返回且没有被使用到的内容;'target field'是被设置为了target的field;
|
|
||||||
'param from Model.forward(self, a)'是forward()返回的所有key。"Suggestion"是关于当前错误处理的建议。
|
|
||||||
|
|
||||||
但是在一些情况下,比如forward()返回值只有一个,target也只有一个,fastNLP不会进行匹配,而直接将forward()的结果作为pred,
|
2 这里报错的原因是由于计算loss的时候找不到相应的值(通过L1Loss.get_loss(self, pred, target)判断出来的);
|
||||||
将DataSet中的target设置为target。上面的例子在返回值中加入了一个'No use'则只是为了使得Loss去匹配结果。
|
报错的原因是因为 `pred` 和 `label` (我们在初始化L1Loss时将target指定为了label)都没有找到。
|
||||||
|
这里'unused field'是DataSet中出现了,但却没有被设置为input或者target的field;
|
||||||
|
'unused param'是forward()中返回且没有被使用到的内容;'target field'是被设置为了target的field;
|
||||||
|
'param from Model.forward(self, a)'是forward()返回的所有key。"Suggestion"是关于当前错误处理的建议。
|
||||||
|
|
||||||
|
但是在一些情况下,比如forward()返回值只有一个,target也只有一个,fastNLP不会进行匹配,而直接将forward()的结果作为pred,
|
||||||
|
将DataSet中的target设置为target。上面的例子在返回值中加入了一个'No use'则只是为了使得Loss去匹配结果。
|
||||||
|
|
||||||
|
|
||||||
下面是带有dev dataset时如果出现错误会发生的报错,
|
下面是带有dev dataset时如果出现错误会发生的报错,
|
||||||
|
|
||||||
Example2.3
|
Example2.3
|
||||||
::
|
----------------------------
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from torch import nn
|
||||||
|
from torch.optim import SGD
|
||||||
|
from fastNLP import Trainer
|
||||||
|
from fastNLP import DataSet
|
||||||
|
from fastNLP import AccuracyMetric
|
||||||
|
import torch
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.fc = nn.Linear(1, 1)
|
||||||
|
def forward(self, a, b):
|
||||||
|
loss = torch.mean((self.fc(a.float().unsqueeze(1))-b.float())**2)
|
||||||
|
return {'loss': loss}
|
||||||
|
def predict(self, a): # 使用predict()进行验证
|
||||||
|
return {'output':self.fc(a.float().unsqueeze(1))} #这里return的值不包含'pred'这个key
|
||||||
|
model = Model()
|
||||||
|
|
||||||
|
dataset = DataSet({'a': np.arange(10), 'b':np.arange(10)*2})
|
||||||
|
dev_data = DataSet({'a': np.arange(10, 20), 'b':np.arange(10, 20)*2})
|
||||||
|
|
||||||
|
dataset.set_input('a', 'b')
|
||||||
|
dev_data.set_input('a') # 这里没有设置target
|
||||||
|
|
||||||
|
trainer = Trainer(dataset, model, loss=None, optimizer=SGD(model.parameters(), lr=0.001),
|
||||||
|
dev_data=dev_data, metrics=AccuracyMetric())
|
||||||
|
|
||||||
|
# 报错信息
|
||||||
|
# ...
|
||||||
|
# NameError:
|
||||||
|
# Problems occurred when calling AccuracyMetric.evaluate(self, pred, target, seq_len=None)
|
||||||
|
# missing param: ['pred(assign to `pred` in `AccuracyMetric`)', 'target(assign to `target` in `AccuracyMetric`)']
|
||||||
|
# unused param: ['output']
|
||||||
|
# target field: []
|
||||||
|
# param from Model.predict(self, a): ['output']
|
||||||
|
# Suggestion: (1). Check key assignment for `pred` when initialize AccuracyMetric. Or provide `pred` in DataSet or output of Model.predict(self, a).
|
||||||
|
# (2). Check key assignment for `target` when initialize AccuracyMetric. Or provide `target` in DataSet or output of Model.predict(self, a).
|
||||||
|
|
||||||
|
报错信息和前面都是类似的,但是可以通过'AccuracyMetric.evaluate(self, pred, target, seq_len=None)'看出这里是evaluation
|
||||||
|
的时候发生了错误。这样避免了需要在完成一整个epoch的训练才能发现evaluation弄错的情况。这里的修改是通过在初始化metric的时候
|
||||||
|
指明通过'output'获取`pred`, 即AccuracyMetric(pred='output')。
|
||||||
|
|
||||||
|
可以通过check_code_level调节检查的强度。默认为0,即进行检查。
|
||||||
|
|
||||||
|
----------------------------
|
||||||
|
3. Trainer与callback
|
||||||
|
----------------------------
|
||||||
|
|
||||||
|
虽然Trainer本身已经集成了一些功能,但仍然不足以囊括训练过程中可能需要到的功能,比如负采样,learning rate decay, Early Stop等。
|
||||||
|
为了解决这个问题fastNLP引入了callback的机制,:class:`~fastNLP.Callback` 是一种在Trainer训练过程中特定阶段会运行的函数集合,
|
||||||
|
所有的 :class:`~fastNLP.Callback` 都具有on_*(比如on_train_start, on_backward_begin)等函数。
|
||||||
|
如果 Callback 实现了该函数,则Trainer运行至对应阶段,会进行调用,例如::
|
||||||
|
|
||||||
|
from fastNLP import Callback, EarlyStopCallback, Trainer, CrossEntropyLoss, AccuracyMetric
|
||||||
|
from fastNLP.models import CNNText
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
import numpy as np
|
class MyCallback(Callback):
|
||||||
from torch import nn
|
def on_epoch_end(self):
|
||||||
from torch.optim import SGD
|
print('{:d}ms\n\n'.format(round((time.time()-start_time)*1000)))
|
||||||
from fastNLP import Trainer
|
|
||||||
from fastNLP import DataSet
|
|
||||||
from fastNLP import AccuracyMetric
|
|
||||||
import torch
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__()
|
|
||||||
self.fc = nn.Linear(1, 1)
|
|
||||||
def forward(self, a, b):
|
|
||||||
loss = torch.mean((self.fc(a.float().unsqueeze(1))-b.float())**2)
|
|
||||||
return {'loss': loss}
|
|
||||||
def predict(self, a): # 使用predict()进行验证
|
|
||||||
return {'output':self.fc(a.float().unsqueeze(1))} #这里return的值不包含'pred'这个key
|
|
||||||
model = Model()
|
|
||||||
|
|
||||||
dataset = DataSet({'a': np.arange(10), 'b':np.arange(10)*2})
|
|
||||||
dev_data = DataSet({'a': np.arange(10, 20), 'b':np.arange(10, 20)*2})
|
|
||||||
|
|
||||||
dataset.set_input('a', 'b')
|
|
||||||
dev_data.set_input('a') # 这里没有设置target
|
|
||||||
|
|
||||||
trainer = Trainer(dataset, model, loss=None, optimizer=SGD(model.parameters(), lr=0.001),
|
|
||||||
dev_data=dev_data, metrics=AccuracyMetric())
|
|
||||||
|
|
||||||
# 报错信息
|
|
||||||
# ...
|
|
||||||
# NameError:
|
|
||||||
# Problems occurred when calling AccuracyMetric.evaluate(self, pred, target, seq_len=None)
|
|
||||||
# missing param: ['pred(assign to `pred` in `AccuracyMetric`)', 'target(assign to `target` in `AccuracyMetric`)']
|
|
||||||
# unused param: ['output']
|
|
||||||
# target field: []
|
|
||||||
# param from Model.predict(self, a): ['output']
|
|
||||||
# Suggestion: (1). Check key assignment for `pred` when initialize AccuracyMetric. Or provide `pred` in DataSet or output of Model.predict(self, a).
|
|
||||||
# (2). Check key assignment for `target` when initialize AccuracyMetric. Or provide `target` in DataSet or output of Model.predict(self, a).
|
|
||||||
|
|
||||||
报错信息和前面都是类似的,但是可以通过'AccuracyMetric.evaluate(self, pred, target, seq_len=None)'看出这里是evaluation
|
|
||||||
的时候发生了错误。这样避免了需要在完成一整个epoch的训练才能发现evaluation弄错的情况。这里的修改是通过在初始化metric的时候
|
|
||||||
指明通过'output'获取`pred`, 即AccuracyMetric(pred='output')。
|
|
||||||
|
|
||||||
可以通过check_code_level调节检查的强度。默认为0,即进行检查。
|
|
||||||
|
|
||||||
3 Trainer与callback
|
|
||||||
虽然Trainer本身已经集成了一些功能,但仍然不足以囊括训练过程中可能需要到的功能,比如负采样,learning rate decay, Early Stop等。
|
|
||||||
为了解决这个问题fastNLP引入了callback的机制,:class:`~fastNLP.Callback` 是一种在Trainer训练过程中特定阶段会运行的函数集合,
|
|
||||||
所有的 :class:`~fastNLP.Callback` 都具有on_*(比如on_train_start, on_backward_begin)等函数。
|
|
||||||
如果 Callback 实现了该函数,则Trainer运行至对应阶段,会进行调用,例如::
|
|
||||||
|
|
||||||
from fastNLP import Callback, EarlyStopCallback, Trainer, CrossEntropyLoss, AccuracyMetric
|
model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)
|
||||||
from fastNLP.models import CNNText
|
trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data, loss=CrossEntropyLoss(),
|
||||||
|
metrics=AccuracyMetric(), callbacks=[MyCallback(),EarlyStopCallback(10)])
|
||||||
start_time = time.time()
|
trainer.train()
|
||||||
|
|
||||||
class MyCallback(Callback):
|
|
||||||
def on_epoch_end(self):
|
|
||||||
print('{:d}ms\n\n'.format(round((time.time()-start_time)*1000)))
|
|
||||||
|
|
||||||
model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)
|
|
||||||
trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data, loss=CrossEntropyLoss(),
|
|
||||||
metrics=AccuracyMetric(), callbacks=[MyCallback(),EarlyStopCallback(10)])
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
这里,我们通过继承 :class:`~fastNLP.Callback` 类定义了自己的 callback 的,并和内置的 :class:`~fastNLP.EarlyStopCallback`
|
|
||||||
一起传给了 :class:`~fastNLP.Trainer` ,增强了 :class:`~fastNLP.Trainer` 的功能
|
|
||||||
|
|
||||||
fastNLP已经自带了很多callback函数供使用,可以参考 :doc:`fastNLP.core.callback` 。
|
这里,我们通过继承 :class:`~fastNLP.Callback` 类定义了自己的 callback 的,并和内置的 :class:`~fastNLP.EarlyStopCallback`
|
||||||
|
一起传给了 :class:`~fastNLP.Trainer` ,增强了 :class:`~fastNLP.Trainer` 的功能
|
||||||
|
|
||||||
|
fastNLP已经自带了很多callback函数供使用,可以参考 :doc:`fastNLP.core.callback` 。
|
||||||
|
|
||||||
"""
|
"""
|
||||||
__all__ = [
|
__all__ = [
|
||||||
@ -311,8 +333,9 @@ try:
|
|||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
except:
|
except:
|
||||||
from .utils import _pseudo_tqdm as tqdm
|
from .utils import _pseudo_tqdm as tqdm
|
||||||
|
import warnings
|
||||||
|
|
||||||
from .batch import Batch
|
from .batch import DataSetIter, BatchIter
|
||||||
from .callback import CallbackManager, CallbackException
|
from .callback import CallbackManager, CallbackException
|
||||||
from .dataset import DataSet
|
from .dataset import DataSet
|
||||||
from .losses import _prepare_losser
|
from .losses import _prepare_losser
|
||||||
@ -320,7 +343,6 @@ from .metrics import _prepare_metrics
|
|||||||
from .optimizer import Optimizer
|
from .optimizer import Optimizer
|
||||||
from .sampler import Sampler
|
from .sampler import Sampler
|
||||||
from .sampler import RandomSampler
|
from .sampler import RandomSampler
|
||||||
from .sampler import SequentialSampler
|
|
||||||
from .tester import Tester
|
from .tester import Tester
|
||||||
from .utils import _CheckError
|
from .utils import _CheckError
|
||||||
from .utils import _build_args
|
from .utils import _build_args
|
||||||
@ -351,6 +373,8 @@ class Trainer(object):
|
|||||||
:param int batch_size: 训练和验证的时候的batch大小。
|
:param int batch_size: 训练和验证的时候的batch大小。
|
||||||
:param loss: 使用的 :class:`~fastNLP.core.losses.LossBase` 对象。当为None时,默认使用 :class:`~fastNLP.LossInForward`
|
:param loss: 使用的 :class:`~fastNLP.core.losses.LossBase` 对象。当为None时,默认使用 :class:`~fastNLP.LossInForward`
|
||||||
:param sampler: Batch数据生成的顺序, :class:`~fastNLP.Sampler` 类型。如果为None,默认使用 :class:`~fastNLP.RandomSampler`
|
:param sampler: Batch数据生成的顺序, :class:`~fastNLP.Sampler` 类型。如果为None,默认使用 :class:`~fastNLP.RandomSampler`
|
||||||
|
:param drop_last: 如果最后一个batch没有正好为batch_size这么多数据,就扔掉最后一个batch
|
||||||
|
:param num_workers: int, 有多少个线程来进行数据pad处理。
|
||||||
:param update_every: int, 多少步更新一次梯度。用于希望累计梯度的场景,比如需要128的batch_size, 但是直接设为128
|
:param update_every: int, 多少步更新一次梯度。用于希望累计梯度的场景,比如需要128的batch_size, 但是直接设为128
|
||||||
会导致内存不足,通过设置batch_size=32, update_every=4达到目的。当optimizer为None时,该参数无效。
|
会导致内存不足,通过设置batch_size=32, update_every=4达到目的。当optimizer为None时,该参数无效。
|
||||||
:param int n_epochs: 需要优化迭代多少次。
|
:param int n_epochs: 需要优化迭代多少次。
|
||||||
@ -367,7 +391,6 @@ class Trainer(object):
|
|||||||
:param int validate_every: 多少个step在验证集上验证一次; 如果为-1,则每个epoch结束验证一次。仅在传入dev_data时有效。
|
:param int validate_every: 多少个step在验证集上验证一次; 如果为-1,则每个epoch结束验证一次。仅在传入dev_data时有效。
|
||||||
:param str,None save_path: 将模型保存路径。如果为None,则不保存模型。如果dev_data为None,则保存最后一次迭代的模型。
|
:param str,None save_path: 将模型保存路径。如果为None,则不保存模型。如果dev_data为None,则保存最后一次迭代的模型。
|
||||||
保存的时候不仅保存了参数,还保存了模型结构。即便使用DataParallel,这里也只保存模型。
|
保存的时候不仅保存了参数,还保存了模型结构。即便使用DataParallel,这里也只保存模型。
|
||||||
:param prefetch: bool, 是否使用额外的进程对产生batch数据。理论上会使得Batch迭代更快。
|
|
||||||
:param bool use_tqdm: 是否使用tqdm来显示训练进度; 如果为False,则将loss打印在终端中。
|
:param bool use_tqdm: 是否使用tqdm来显示训练进度; 如果为False,则将loss打印在终端中。
|
||||||
:param str,int,torch.device,list(int) device: 将模型load到哪个设备。默认为None,即Trainer不对模型
|
:param str,int,torch.device,list(int) device: 将模型load到哪个设备。默认为None,即Trainer不对模型
|
||||||
的计算位置进行管理。支持以下的输入:
|
的计算位置进行管理。支持以下的输入:
|
||||||
@ -394,16 +417,17 @@ class Trainer(object):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, train_data, model, optimizer=None, loss=None,
|
def __init__(self, train_data, model, optimizer=None, loss=None,
|
||||||
batch_size=32, sampler=None, update_every=1,
|
batch_size=32, sampler=None, drop_last=False, update_every=1,
|
||||||
n_epochs=10, print_every=5,
|
num_workers=0, n_epochs=10, print_every=5,
|
||||||
dev_data=None, metrics=None, metric_key=None,
|
dev_data=None, metrics=None, metric_key=None,
|
||||||
validate_every=-1, save_path=None,
|
validate_every=-1, save_path=None, use_tqdm=True, device=None, prefetch=False,
|
||||||
prefetch=False, use_tqdm=True, device=None,
|
callbacks=None, check_code_level=0):
|
||||||
callbacks=None,
|
if prefetch and num_workers==0:
|
||||||
check_code_level=0):
|
num_workers = 1
|
||||||
|
if prefetch:
|
||||||
|
warnings.warn("prefetch is deprecated, will be removed in version 0.5.0, please use num_workers instead.")
|
||||||
|
|
||||||
super(Trainer, self).__init__()
|
super(Trainer, self).__init__()
|
||||||
if not isinstance(train_data, DataSet):
|
|
||||||
raise TypeError(f"The type of train_data must be fastNLP.DataSet, got {type(train_data)}.")
|
|
||||||
if not isinstance(model, nn.Module):
|
if not isinstance(model, nn.Module):
|
||||||
raise TypeError(f"The type of model must be torch.nn.Module, got {type(model)}.")
|
raise TypeError(f"The type of model must be torch.nn.Module, got {type(model)}.")
|
||||||
|
|
||||||
@ -430,25 +454,37 @@ class Trainer(object):
|
|||||||
if metric_key is not None:
|
if metric_key is not None:
|
||||||
self.increase_better = False if metric_key[0] == "-" else True
|
self.increase_better = False if metric_key[0] == "-" else True
|
||||||
self.metric_key = metric_key[1:] if metric_key[0] == "+" or metric_key[0] == "-" else metric_key
|
self.metric_key = metric_key[1:] if metric_key[0] == "+" or metric_key[0] == "-" else metric_key
|
||||||
elif len(metrics) > 0:
|
else:
|
||||||
self.metric_key = metrics[0].__class__.__name__.lower().strip('metric')
|
self.metric_key = None
|
||||||
|
|
||||||
# prepare loss
|
# prepare loss
|
||||||
losser = _prepare_losser(loss)
|
losser = _prepare_losser(loss)
|
||||||
|
|
||||||
# sampler check
|
# sampler check
|
||||||
if sampler is not None and not isinstance(sampler, Sampler):
|
if sampler is not None and not isinstance(sampler, Sampler):
|
||||||
raise ValueError("The type of sampler should be fastNLP.BaseSampler, got {}.".format(type(sampler)))
|
raise ValueError("The type of sampler should be fastNLP.BaseSampler, got {}.".format(type(sampler)))
|
||||||
|
|
||||||
if check_code_level > -1:
|
if sampler is None:
|
||||||
|
sampler = RandomSampler()
|
||||||
|
elif hasattr(sampler, 'set_batch_size'):
|
||||||
|
sampler.set_batch_size(batch_size)
|
||||||
|
|
||||||
|
if isinstance(train_data, DataSet):
|
||||||
|
self.data_iterator = DataSetIter(
|
||||||
|
dataset=train_data, batch_size=batch_size, num_workers=num_workers, sampler=sampler, drop_last=drop_last)
|
||||||
|
elif isinstance(train_data, BatchIter):
|
||||||
|
self.data_iterator = train_data
|
||||||
|
else:
|
||||||
|
raise TypeError("train_data type {} not support".format(type(train_data)))
|
||||||
|
|
||||||
|
if check_code_level > -1 and isinstance(self.data_iterator, DataSetIter):
|
||||||
_check_code(dataset=train_data, model=model, losser=losser, metrics=metrics, dev_data=dev_data,
|
_check_code(dataset=train_data, model=model, losser=losser, metrics=metrics, dev_data=dev_data,
|
||||||
metric_key=metric_key, check_level=check_code_level,
|
metric_key=self.metric_key, check_level=check_code_level,
|
||||||
batch_size=min(batch_size, DEFAULT_CHECK_BATCH_SIZE))
|
batch_size=min(batch_size, DEFAULT_CHECK_BATCH_SIZE))
|
||||||
# _check_code 是 fastNLP 帮助你检查代码是否正确的方法 。如果你在错误栈中看到这行注释,请认真检查你的代码
|
# _check_code 是 fastNLP 帮助你检查代码是否正确的方法 。如果你在错误栈中看到这行注释,请认真检查你的代码
|
||||||
|
self.model = _move_model_to_device(model, device=device)
|
||||||
|
|
||||||
self.train_data = train_data
|
self.train_data = train_data
|
||||||
self.dev_data = dev_data # If None, No validation.
|
self.dev_data = dev_data # If None, No validation.
|
||||||
self.model = model
|
|
||||||
self.losser = losser
|
self.losser = losser
|
||||||
self.metrics = metrics
|
self.metrics = metrics
|
||||||
self.n_epochs = int(n_epochs)
|
self.n_epochs = int(n_epochs)
|
||||||
@ -460,26 +496,22 @@ class Trainer(object):
|
|||||||
self.best_dev_epoch = None
|
self.best_dev_epoch = None
|
||||||
self.best_dev_step = None
|
self.best_dev_step = None
|
||||||
self.best_dev_perf = None
|
self.best_dev_perf = None
|
||||||
self.sampler = sampler if sampler is not None else RandomSampler()
|
|
||||||
self.prefetch = prefetch
|
|
||||||
self.n_steps = (len(self.train_data) // self.batch_size + int(
|
self.n_steps = (len(self.train_data) // self.batch_size + int(
|
||||||
len(self.train_data) % self.batch_size != 0)) * self.n_epochs
|
len(self.train_data) % self.batch_size != 0)) * int(drop_last==0) * self.n_epochs
|
||||||
|
|
||||||
self.model = _move_model_to_device(self.model, device=device)
|
|
||||||
|
|
||||||
if isinstance(optimizer, torch.optim.Optimizer):
|
if isinstance(optimizer, torch.optim.Optimizer):
|
||||||
self.optimizer = optimizer
|
self.optimizer = optimizer
|
||||||
elif isinstance(optimizer, Optimizer):
|
elif isinstance(optimizer, Optimizer):
|
||||||
self.optimizer = optimizer.construct_from_pytorch(model.parameters())
|
self.optimizer = optimizer.construct_from_pytorch(self.model.parameters())
|
||||||
elif optimizer is None:
|
elif optimizer is None:
|
||||||
self.optimizer = torch.optim.Adam(model.parameters(), lr=4e-3)
|
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=4e-3)
|
||||||
else:
|
else:
|
||||||
raise TypeError("optimizer can only be torch.optim.Optimizer type, not {}.".format(type(optimizer)))
|
raise TypeError("optimizer can only be torch.optim.Optimizer type, not {}.".format(type(optimizer)))
|
||||||
|
|
||||||
self.use_tqdm = use_tqdm
|
self.use_tqdm = use_tqdm
|
||||||
self.pbar = None
|
self.pbar = None
|
||||||
self.print_every = abs(self.print_every)
|
self.print_every = abs(self.print_every)
|
||||||
|
|
||||||
if self.dev_data is not None:
|
if self.dev_data is not None:
|
||||||
self.tester = Tester(model=self.model,
|
self.tester = Tester(model=self.model,
|
||||||
data=self.dev_data,
|
data=self.dev_data,
|
||||||
@ -493,15 +525,16 @@ class Trainer(object):
|
|||||||
|
|
||||||
self.callback_manager = CallbackManager(env={"trainer": self},
|
self.callback_manager = CallbackManager(env={"trainer": self},
|
||||||
callbacks=callbacks)
|
callbacks=callbacks)
|
||||||
|
|
||||||
def train(self, load_best_model=True, on_exception='ignore'):
|
def train(self, load_best_model=True, on_exception='auto'):
|
||||||
"""
|
"""
|
||||||
使用该函数使Trainer开始训练。
|
使用该函数使Trainer开始训练。
|
||||||
|
|
||||||
:param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现
|
:param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现
|
||||||
最好的模型参数。
|
最好的模型参数。
|
||||||
:param str on_exception: 在训练过程遭遇exception,并被 :py:class:Callback 的on_exception()处理后,是否继续抛出异常。
|
:param str on_exception: 在训练过程遭遇exception,并被 :py:class:Callback 的on_exception()处理后,是否继续抛出异常。
|
||||||
支持'ignore'与'raise': 'ignore'将捕获异常,写在Trainer.train()后面的代码将继续运行; 'raise'将异常抛出。
|
支持'ignore','raise', 'auto': 'ignore'将捕获异常,写在Trainer.train()后面的代码将继续运行; 'raise'将异常抛出;
|
||||||
|
'auto'将ignore以下两种Exception: CallbackException与KeyboardInterrupt, raise其它exception.
|
||||||
:return dict: 返回一个字典类型的数据,
|
:return dict: 返回一个字典类型的数据,
|
||||||
内含以下内容::
|
内含以下内容::
|
||||||
|
|
||||||
@ -530,12 +563,16 @@ class Trainer(object):
|
|||||||
self.callback_manager.on_train_begin()
|
self.callback_manager.on_train_begin()
|
||||||
self._train()
|
self._train()
|
||||||
self.callback_manager.on_train_end()
|
self.callback_manager.on_train_end()
|
||||||
except (CallbackException, KeyboardInterrupt, Exception) as e:
|
|
||||||
|
except BaseException as e:
|
||||||
self.callback_manager.on_exception(e)
|
self.callback_manager.on_exception(e)
|
||||||
if on_exception=='raise':
|
if on_exception == 'auto':
|
||||||
|
if not isinstance(e, (CallbackException, KeyboardInterrupt)):
|
||||||
|
raise e
|
||||||
|
elif on_exception == 'raise':
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
if self.dev_data is not None and hasattr(self, 'best_dev_perf'):
|
if self.dev_data is not None and self.best_dev_perf is not None:
|
||||||
print(
|
print(
|
||||||
"\nIn Epoch:{}/Step:{}, got best dev performance:".format(self.best_dev_epoch, self.best_dev_step) +
|
"\nIn Epoch:{}/Step:{}, got best dev performance:".format(self.best_dev_epoch, self.best_dev_step) +
|
||||||
self.tester._format_eval_results(self.best_dev_perf), )
|
self.tester._format_eval_results(self.best_dev_perf), )
|
||||||
@ -563,12 +600,14 @@ class Trainer(object):
|
|||||||
self.step = 0
|
self.step = 0
|
||||||
self.epoch = 0
|
self.epoch = 0
|
||||||
start = time.time()
|
start = time.time()
|
||||||
|
if isinstance(self.model, nn.DataParallel):
|
||||||
|
self._forward_func = self.model.module.forward
|
||||||
|
else:
|
||||||
|
self._forward_func = self.model.forward
|
||||||
with inner_tqdm(total=self.n_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar:
|
with inner_tqdm(total=self.n_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar:
|
||||||
self.pbar = pbar
|
self.pbar = pbar
|
||||||
avg_loss = 0
|
avg_loss = 0
|
||||||
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False,
|
data_iterator = self.data_iterator
|
||||||
prefetch=self.prefetch)
|
|
||||||
self.batch_per_epoch = data_iterator.num_batches
|
self.batch_per_epoch = data_iterator.num_batches
|
||||||
for epoch in range(1, self.n_epochs + 1):
|
for epoch in range(1, self.n_epochs + 1):
|
||||||
self.epoch = epoch
|
self.epoch = epoch
|
||||||
@ -600,7 +639,7 @@ class Trainer(object):
|
|||||||
if self.step % self.print_every == 0:
|
if self.step % self.print_every == 0:
|
||||||
avg_loss = float(avg_loss) / self.print_every
|
avg_loss = float(avg_loss) / self.print_every
|
||||||
if self.use_tqdm:
|
if self.use_tqdm:
|
||||||
print_output = "loss:{0:<6.5f}".format(avg_loss)
|
print_output = "loss:{:<6.5f}".format(avg_loss)
|
||||||
pbar.update(self.print_every)
|
pbar.update(self.print_every)
|
||||||
else:
|
else:
|
||||||
end = time.time()
|
end = time.time()
|
||||||
@ -664,15 +703,15 @@ class Trainer(object):
|
|||||||
"""Perform weight update on a model.
|
"""Perform weight update on a model.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if self.optimizer is not None and (self.step + 1) % self.update_every == 0:
|
if self.step % self.update_every == 0:
|
||||||
self.optimizer.step()
|
self.optimizer.step()
|
||||||
|
|
||||||
def _data_forward(self, network, x):
|
def _data_forward(self, network, x):
|
||||||
x = _build_args(network.forward, **x)
|
x = _build_args(self._forward_func, **x)
|
||||||
y = network(**x)
|
y = network(**x)
|
||||||
if not isinstance(y, dict):
|
if not isinstance(y, dict):
|
||||||
raise TypeError(
|
raise TypeError(
|
||||||
f"The return value of {_get_func_signature(network.forward)} should be dict, got {type(y)}.")
|
f"The return value of {_get_func_signature(self._forward_func)} should be dict, got {type(y)}.")
|
||||||
return y
|
return y
|
||||||
|
|
||||||
def _grad_backward(self, loss):
|
def _grad_backward(self, loss):
|
||||||
@ -682,7 +721,7 @@ class Trainer(object):
|
|||||||
|
|
||||||
For PyTorch, just do "loss.backward()"
|
For PyTorch, just do "loss.backward()"
|
||||||
"""
|
"""
|
||||||
if self.step % self.update_every == 0:
|
if (self.step-1) % self.update_every == 0:
|
||||||
self.model.zero_grad()
|
self.model.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
|
||||||
@ -741,7 +780,9 @@ class Trainer(object):
|
|||||||
|
|
||||||
:return bool value: True means current results on dev set is the best.
|
:return bool value: True means current results on dev set is the best.
|
||||||
"""
|
"""
|
||||||
indicator_val = _check_eval_results(metrics, self.metric_key, self.metrics)
|
indicator, indicator_val = _check_eval_results(metrics, self.metric_key, self.metrics)
|
||||||
|
if self.metric_key is None:
|
||||||
|
self.metric_key = indicator
|
||||||
is_better = True
|
is_better = True
|
||||||
if self.best_metric_indicator is None:
|
if self.best_metric_indicator is None:
|
||||||
# first-time validation
|
# first-time validation
|
||||||
@ -780,15 +821,34 @@ def _get_value_info(_dict):
|
|||||||
strs.append(_str)
|
strs.append(_str)
|
||||||
return strs
|
return strs
|
||||||
|
|
||||||
|
from numbers import Number
|
||||||
|
from .batch import _to_tensor
|
||||||
def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_SIZE,
|
def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_SIZE,
|
||||||
dev_data=None, metric_key=None,
|
dev_data=None, metric_key=None,
|
||||||
check_level=0):
|
check_level=0):
|
||||||
# check get_loss 方法
|
# check get_loss 方法
|
||||||
model_devcie = model.parameters().__next__().device
|
model_devcie = _get_model_device(model=model)
|
||||||
|
|
||||||
batch = Batch(dataset=dataset, batch_size=batch_size, sampler=SequentialSampler())
|
def _iter():
|
||||||
for batch_count, (batch_x, batch_y) in enumerate(batch):
|
start_idx = 0
|
||||||
|
while start_idx<len(dataset):
|
||||||
|
batch_x = {}
|
||||||
|
batch_y = {}
|
||||||
|
for field_name, field in dataset.get_all_fields().items():
|
||||||
|
indices = list(range(start_idx, min(start_idx+batch_size, len(dataset))))
|
||||||
|
if field.is_target or field.is_input:
|
||||||
|
batch = field.get(indices)
|
||||||
|
if field.dtype is not None and \
|
||||||
|
issubclass(field.dtype, Number) and not isinstance(batch, torch.Tensor):
|
||||||
|
batch, _ = _to_tensor(batch, field.dtype)
|
||||||
|
if field.is_target:
|
||||||
|
batch_y[field_name] = batch
|
||||||
|
if field.is_input:
|
||||||
|
batch_x[field_name] = batch
|
||||||
|
yield (batch_x, batch_y)
|
||||||
|
start_idx += batch_size
|
||||||
|
|
||||||
|
for batch_count, (batch_x, batch_y) in enumerate(_iter()):
|
||||||
_move_dict_value_to_device(batch_x, batch_y, device=model_devcie)
|
_move_dict_value_to_device(batch_x, batch_y, device=model_devcie)
|
||||||
# forward check
|
# forward check
|
||||||
if batch_count == 0:
|
if batch_count == 0:
|
||||||
@ -810,8 +870,11 @@ def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_
|
|||||||
print(info_str)
|
print(info_str)
|
||||||
_check_forward_error(forward_func=model.forward, dataset=dataset,
|
_check_forward_error(forward_func=model.forward, dataset=dataset,
|
||||||
batch_x=batch_x, check_level=check_level)
|
batch_x=batch_x, check_level=check_level)
|
||||||
|
if isinstance(model, nn.DataParallel):
|
||||||
refined_batch_x = _build_args(model.forward, **batch_x)
|
forward_func = model.module.forward
|
||||||
|
else:
|
||||||
|
forward_func = model.forward
|
||||||
|
refined_batch_x = _build_args(forward_func, **batch_x)
|
||||||
pred_dict = model(**refined_batch_x)
|
pred_dict = model(**refined_batch_x)
|
||||||
func_signature = _get_func_signature(model.forward)
|
func_signature = _get_func_signature(model.forward)
|
||||||
if not isinstance(pred_dict, dict):
|
if not isinstance(pred_dict, dict):
|
||||||
@ -856,26 +919,16 @@ def _check_eval_results(metrics, metric_key, metric_list):
|
|||||||
loss, metrics = metrics
|
loss, metrics = metrics
|
||||||
|
|
||||||
if isinstance(metrics, dict):
|
if isinstance(metrics, dict):
|
||||||
if len(metrics) == 1:
|
metric_dict = list(metrics.values())[0] # 取第一个metric
|
||||||
# only single metric, just use it
|
|
||||||
metric_dict = list(metrics.values())[0]
|
|
||||||
metrics_name = list(metrics.keys())[0]
|
|
||||||
else:
|
|
||||||
metrics_name = metric_list[0].__class__.__name__
|
|
||||||
if metrics_name not in metrics:
|
|
||||||
raise RuntimeError(f"{metrics_name} is chosen to do validation, but got {metrics}")
|
|
||||||
metric_dict = metrics[metrics_name]
|
|
||||||
|
|
||||||
if len(metric_dict) == 1:
|
if metric_key is None:
|
||||||
indicator_val, indicator = list(metric_dict.values())[0], list(metric_dict.keys())[0]
|
indicator_val, indicator = list(metric_dict.values())[0], list(metric_dict.keys())[0]
|
||||||
elif len(metric_dict) > 1 and metric_key is None:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"Got multiple metric keys: {metric_dict}, but metric_key is not set. Which one to use?")
|
|
||||||
else:
|
else:
|
||||||
# metric_key is set
|
# metric_key is set
|
||||||
if metric_key not in metric_dict:
|
if metric_key not in metric_dict:
|
||||||
raise RuntimeError(f"metric key {metric_key} not found in {metric_dict}")
|
raise RuntimeError(f"metric key {metric_key} not found in {metric_dict}")
|
||||||
indicator_val = metric_dict[metric_key]
|
indicator_val = metric_dict[metric_key]
|
||||||
|
indicator = metric_key
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("Invalid metrics type. Expect {}, got {}".format((tuple, dict), type(metrics)))
|
raise RuntimeError("Invalid metrics type. Expect {}, got {}".format((tuple, dict), type(metrics)))
|
||||||
return indicator_val
|
return indicator, indicator_val
|
||||||
|
@ -4,7 +4,6 @@ utils模块实现了 fastNLP 内部和外部所需的很多工具。其中用户
|
|||||||
__all__ = [
|
__all__ = [
|
||||||
"cache_results",
|
"cache_results",
|
||||||
"seq_len_to_mask",
|
"seq_len_to_mask",
|
||||||
"Example",
|
|
||||||
]
|
]
|
||||||
|
|
||||||
import _pickle
|
import _pickle
|
||||||
@ -16,34 +15,35 @@ from collections import Counter, namedtuple
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from typing import List
|
||||||
|
|
||||||
_CheckRes = namedtuple('_CheckRes', ['missing', 'unused', 'duplicated', 'required', 'all_needed',
|
_CheckRes = namedtuple('_CheckRes', ['missing', 'unused', 'duplicated', 'required', 'all_needed',
|
||||||
'varargs'])
|
'varargs'])
|
||||||
|
|
||||||
|
|
||||||
class Example(dict):
|
class Option(dict):
|
||||||
"""a dict can treat keys as attributes"""
|
"""a dict can treat keys as attributes"""
|
||||||
|
|
||||||
def __getattr__(self, item):
|
def __getattr__(self, item):
|
||||||
try:
|
try:
|
||||||
return self.__getitem__(item)
|
return self.__getitem__(item)
|
||||||
except KeyError:
|
except KeyError:
|
||||||
raise AttributeError(item)
|
raise AttributeError(item)
|
||||||
|
|
||||||
def __setattr__(self, key, value):
|
def __setattr__(self, key, value):
|
||||||
if key.startswith('__') and key.endswith('__'):
|
if key.startswith('__') and key.endswith('__'):
|
||||||
raise AttributeError(key)
|
raise AttributeError(key)
|
||||||
self.__setitem__(key, value)
|
self.__setitem__(key, value)
|
||||||
|
|
||||||
def __delattr__(self, item):
|
def __delattr__(self, item):
|
||||||
try:
|
try:
|
||||||
self.pop(item)
|
self.pop(item)
|
||||||
except KeyError:
|
except KeyError:
|
||||||
raise AttributeError(item)
|
raise AttributeError(item)
|
||||||
|
|
||||||
def __getstate__(self):
|
def __getstate__(self):
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __setstate__(self, state):
|
def __setstate__(self, state):
|
||||||
self.update(state)
|
self.update(state)
|
||||||
|
|
||||||
@ -164,6 +164,31 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1):
|
|||||||
return wrapper_
|
return wrapper_
|
||||||
|
|
||||||
|
|
||||||
|
def _save_model(model, model_name, save_dir, only_param=False):
|
||||||
|
""" 存储不含有显卡信息的state_dict或model
|
||||||
|
:param model:
|
||||||
|
:param model_name:
|
||||||
|
:param save_dir: 保存的directory
|
||||||
|
:param only_param:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
model_path = os.path.join(save_dir, model_name)
|
||||||
|
if not os.path.isdir(save_dir):
|
||||||
|
os.makedirs(save_dir, exist_ok=True)
|
||||||
|
if isinstance(model, nn.DataParallel):
|
||||||
|
model = model.module
|
||||||
|
if only_param:
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
for key in state_dict:
|
||||||
|
state_dict[key] = state_dict[key].cpu()
|
||||||
|
torch.save(state_dict, model_path)
|
||||||
|
else:
|
||||||
|
_model_device = _get_model_device(model)
|
||||||
|
model.cpu()
|
||||||
|
torch.save(model, model_path)
|
||||||
|
model.to(_model_device)
|
||||||
|
|
||||||
|
|
||||||
# def save_pickle(obj, pickle_path, file_name):
|
# def save_pickle(obj, pickle_path, file_name):
|
||||||
# """Save an object into a pickle file.
|
# """Save an object into a pickle file.
|
||||||
#
|
#
|
||||||
@ -285,6 +310,7 @@ def _get_model_device(model):
|
|||||||
:param model: nn.Module
|
:param model: nn.Module
|
||||||
:return: torch.device,None 如果返回值为None,说明这个模型没有任何参数。
|
:return: torch.device,None 如果返回值为None,说明这个模型没有任何参数。
|
||||||
"""
|
"""
|
||||||
|
# TODO 这个函数存在一定的风险,因为同一个模型可能存在某些parameter不在显卡中,比如BertEmbedding. 或者跨显卡
|
||||||
assert isinstance(model, nn.Module)
|
assert isinstance(model, nn.Module)
|
||||||
|
|
||||||
parameters = list(model.parameters())
|
parameters = list(model.parameters())
|
||||||
@ -295,6 +321,13 @@ def _get_model_device(model):
|
|||||||
|
|
||||||
|
|
||||||
def _build_args(func, **kwargs):
|
def _build_args(func, **kwargs):
|
||||||
|
"""
|
||||||
|
根据func的初始化参数,从kwargs中选择func需要的参数
|
||||||
|
|
||||||
|
:param func: callable
|
||||||
|
:param kwargs: 参数
|
||||||
|
:return:dict. func中用到的参数
|
||||||
|
"""
|
||||||
spect = inspect.getfullargspec(func)
|
spect = inspect.getfullargspec(func)
|
||||||
if spect.varkw is not None:
|
if spect.varkw is not None:
|
||||||
return kwargs
|
return kwargs
|
||||||
@ -635,13 +668,13 @@ def _check_forward_error(forward_func, batch_x, dataset, check_level):
|
|||||||
warnings.warn(message=_unused_warn)
|
warnings.warn(message=_unused_warn)
|
||||||
|
|
||||||
|
|
||||||
def seq_len_to_mask(seq_len):
|
def seq_len_to_mask(seq_len, max_len=None):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
将一个表示sequence length的一维数组转换为二维的mask,不包含的位置为0。
|
将一个表示sequence length的一维数组转换为二维的mask,不包含的位置为0。
|
||||||
转变 1-d seq_len到2-d mask.
|
转变 1-d seq_len到2-d mask.
|
||||||
|
|
||||||
Example::
|
.. code-block::
|
||||||
|
|
||||||
>>> seq_len = torch.arange(2, 16)
|
>>> seq_len = torch.arange(2, 16)
|
||||||
>>> mask = seq_len_to_mask(seq_len)
|
>>> mask = seq_len_to_mask(seq_len)
|
||||||
@ -651,20 +684,26 @@ def seq_len_to_mask(seq_len):
|
|||||||
>>> mask = seq_len_to_mask(seq_len)
|
>>> mask = seq_len_to_mask(seq_len)
|
||||||
>>> print(mask.shape)
|
>>> print(mask.shape)
|
||||||
(14, 15)
|
(14, 15)
|
||||||
|
>>> seq_len = torch.arange(2, 16)
|
||||||
|
>>> mask = seq_len_to_mask(seq_len, max_len=100)
|
||||||
|
>>>print(mask.size())
|
||||||
|
torch.Size([14, 100])
|
||||||
|
|
||||||
:param np.ndarray,torch.LongTensor seq_len: shape将是(B,)
|
:param np.ndarray,torch.LongTensor seq_len: shape将是(B,)
|
||||||
:return: np.ndarray or torch.Tensor, shape将是(B, max_length)。 元素类似为bool或torch.uint8
|
:param int max_len: 将长度pad到这个长度。默认(None)使用的是seq_len中最长的长度。但在nn.DataParallel的场景下可能不同卡的seq_len会有
|
||||||
|
区别,所以需要传入一个max_len使得mask的长度是pad到该长度。
|
||||||
|
:return: np.ndarray, torch.Tensor 。shape将是(B, max_length), 元素类似为bool或torch.uint8
|
||||||
"""
|
"""
|
||||||
if isinstance(seq_len, np.ndarray):
|
if isinstance(seq_len, np.ndarray):
|
||||||
assert len(np.shape(seq_len)) == 1, f"seq_len can only have one dimension, got {len(np.shape(seq_len))}."
|
assert len(np.shape(seq_len)) == 1, f"seq_len can only have one dimension, got {len(np.shape(seq_len))}."
|
||||||
max_len = int(seq_len.max())
|
max_len = int(max_len) if max_len else int(seq_len.max())
|
||||||
broad_cast_seq_len = np.tile(np.arange(max_len), (len(seq_len), 1))
|
broad_cast_seq_len = np.tile(np.arange(max_len), (len(seq_len), 1))
|
||||||
mask = broad_cast_seq_len < seq_len.reshape(-1, 1)
|
mask = broad_cast_seq_len < seq_len.reshape(-1, 1)
|
||||||
|
|
||||||
elif isinstance(seq_len, torch.Tensor):
|
elif isinstance(seq_len, torch.Tensor):
|
||||||
assert seq_len.dim() == 1, f"seq_len can only have one dimension, got {seq_len.dim() == 1}."
|
assert seq_len.dim() == 1, f"seq_len can only have one dimension, got {seq_len.dim() == 1}."
|
||||||
batch_size = seq_len.size(0)
|
batch_size = seq_len.size(0)
|
||||||
max_len = seq_len.max().long()
|
max_len = int(max_len) if max_len else seq_len.max().long()
|
||||||
broad_cast_seq_len = torch.arange(max_len).expand(batch_size, -1).to(seq_len)
|
broad_cast_seq_len = torch.arange(max_len).expand(batch_size, -1).to(seq_len)
|
||||||
mask = broad_cast_seq_len.lt(seq_len.unsqueeze(1))
|
mask = broad_cast_seq_len.lt(seq_len.unsqueeze(1))
|
||||||
else:
|
else:
|
||||||
@ -698,3 +737,54 @@ class _pseudo_tqdm:
|
|||||||
|
|
||||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
del self
|
del self
|
||||||
|
|
||||||
|
|
||||||
|
def iob2(tags: List[str]) -> List[str]:
|
||||||
|
"""
|
||||||
|
检查数据是否是合法的IOB数据,如果是IOB1会被自动转换为IOB2。两者的差异见
|
||||||
|
https://datascience.stackexchange.com/questions/37824/difference-between-iob-and-iob2-format
|
||||||
|
|
||||||
|
:param tags: 需要转换的tags, 需要为大写的BIO标签。
|
||||||
|
"""
|
||||||
|
for i, tag in enumerate(tags):
|
||||||
|
if tag == "O":
|
||||||
|
continue
|
||||||
|
split = tag.split("-")
|
||||||
|
if len(split) != 2 or split[0] not in ["I", "B"]:
|
||||||
|
raise TypeError("The encoding schema is not a valid IOB type.")
|
||||||
|
if split[0] == "B":
|
||||||
|
continue
|
||||||
|
elif i == 0 or tags[i - 1] == "O": # conversion IOB1 to IOB2
|
||||||
|
tags[i] = "B" + tag[1:]
|
||||||
|
elif tags[i - 1][1:] == tag[1:]:
|
||||||
|
continue
|
||||||
|
else: # conversion IOB1 to IOB2
|
||||||
|
tags[i] = "B" + tag[1:]
|
||||||
|
return tags
|
||||||
|
|
||||||
|
|
||||||
|
def iob2bioes(tags: List[str]) -> List[str]:
|
||||||
|
"""
|
||||||
|
将iob的tag转换为bioes编码
|
||||||
|
:param tags: List[str]. 编码需要是大写的。
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
new_tags = []
|
||||||
|
for i, tag in enumerate(tags):
|
||||||
|
if tag == 'O':
|
||||||
|
new_tags.append(tag)
|
||||||
|
else:
|
||||||
|
split = tag.split('-')[0]
|
||||||
|
if split == 'B':
|
||||||
|
if i + 1 != len(tags) and tags[i + 1].split('-')[0] == 'I':
|
||||||
|
new_tags.append(tag)
|
||||||
|
else:
|
||||||
|
new_tags.append(tag.replace('B-', 'S-'))
|
||||||
|
elif split == 'I':
|
||||||
|
if i + 1 < len(tags) and tags[i + 1].split('-')[0] == 'I':
|
||||||
|
new_tags.append(tag)
|
||||||
|
else:
|
||||||
|
new_tags.append(tag.replace('I-', 'E-'))
|
||||||
|
else:
|
||||||
|
raise TypeError("Invalid IOB format.")
|
||||||
|
return new_tags
|
||||||
|
@ -4,12 +4,14 @@ __all__ = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
from functools import wraps
|
from functools import wraps
|
||||||
from collections import Counter
|
from collections import Counter, defaultdict
|
||||||
from .dataset import DataSet
|
from .dataset import DataSet
|
||||||
from .utils import Example
|
from .utils import Option
|
||||||
|
from functools import partial
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class VocabularyOption(Example):
|
class VocabularyOption(Option):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
max_size=None,
|
max_size=None,
|
||||||
min_freq=None,
|
min_freq=None,
|
||||||
@ -89,41 +91,88 @@ class Vocabulary(object):
|
|||||||
self.word2idx = None
|
self.word2idx = None
|
||||||
self.idx2word = None
|
self.idx2word = None
|
||||||
self.rebuild = True
|
self.rebuild = True
|
||||||
|
# 用于承载不需要单独创建entry的词语,具体见from_dataset()方法
|
||||||
|
self._no_create_word = Counter()
|
||||||
|
|
||||||
@_check_build_status
|
@_check_build_status
|
||||||
def update(self, word_lst):
|
def update(self, word_lst, no_create_entry=False):
|
||||||
"""依次增加序列中词在词典中的出现频率
|
"""依次增加序列中词在词典中的出现频率
|
||||||
|
|
||||||
:param list word_lst: a list of strings
|
:param list word_lst: a list of strings
|
||||||
|
:param bool no_create_entry: 在使用fastNLP.TokenEmbedding加载预训练模型时,没有从预训练词表中找到这个词的处理方式。
|
||||||
|
如果为True,则不会有这个词语创建一个单独的entry,它将一直被指向unk的表示; 如果为False,则为这个词创建一个单独
|
||||||
|
的entry。如果这个word来自于dev或者test,一般设置为True,如果来自与train一般设置为False。以下两种情况: 如果新
|
||||||
|
加入一个word,且no_create_entry为True,但这个词之前已经在Vocabulary中且并不是no_create_entry的,则还是会为这
|
||||||
|
个词创建一个单独的vector; 如果no_create_entry为False,但这个词之前已经在Vocabulary中且并不是no_create_entry的,
|
||||||
|
则这个词将认为是需要创建单独的vector的。
|
||||||
"""
|
"""
|
||||||
|
self._add_no_create_entry(word_lst, no_create_entry)
|
||||||
self.word_count.update(word_lst)
|
self.word_count.update(word_lst)
|
||||||
|
return self
|
||||||
|
|
||||||
@_check_build_status
|
@_check_build_status
|
||||||
def add(self, word):
|
def add(self, word, no_create_entry=False):
|
||||||
"""
|
"""
|
||||||
增加一个新词在词典中的出现频率
|
增加一个新词在词典中的出现频率
|
||||||
|
|
||||||
:param str word: 新词
|
:param str word: 新词
|
||||||
|
:param bool no_create_entry: 在使用fastNLP.TokenEmbedding加载预训练模型时,没有从预训练词表中找到这个词的处理方式。
|
||||||
|
如果为True,则不会有这个词语创建一个单独的entry,它将一直被指向unk的表示; 如果为False,则为这个词创建一个单独
|
||||||
|
的entry。如果这个word来自于dev或者test,一般设置为True,如果来自与train一般设置为False。以下两种情况: 如果新
|
||||||
|
加入一个word,且no_create_entry为True,但这个词之前已经在Vocabulary中且并不是no_create_entry的,则还是会为这
|
||||||
|
个词创建一个单独的vector; 如果no_create_entry为False,但这个词之前已经在Vocabulary中且并不是no_create_entry的,
|
||||||
|
则这个词将认为是需要创建单独的vector的。
|
||||||
"""
|
"""
|
||||||
|
self._add_no_create_entry(word, no_create_entry)
|
||||||
self.word_count[word] += 1
|
self.word_count[word] += 1
|
||||||
|
return self
|
||||||
|
|
||||||
|
def _add_no_create_entry(self, word, no_create_entry):
|
||||||
|
"""
|
||||||
|
在新加入word时,检查_no_create_word的设置。
|
||||||
|
|
||||||
|
:param str, List[str] word:
|
||||||
|
:param bool no_create_entry:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
if isinstance(word, str):
|
||||||
|
word = [word]
|
||||||
|
for w in word:
|
||||||
|
if no_create_entry and self.word_count.get(w, 0) == self._no_create_word.get(w, 0):
|
||||||
|
self._no_create_word[w] += 1
|
||||||
|
elif not no_create_entry and w in self._no_create_word:
|
||||||
|
self._no_create_word.pop(w)
|
||||||
|
|
||||||
@_check_build_status
|
@_check_build_status
|
||||||
def add_word(self, word):
|
def add_word(self, word, no_create_entry=False):
|
||||||
"""
|
"""
|
||||||
增加一个新词在词典中的出现频率
|
增加一个新词在词典中的出现频率
|
||||||
|
|
||||||
:param str word: 新词
|
:param str word: 新词
|
||||||
|
:param bool no_create_entry: 在使用fastNLP.TokenEmbedding加载预训练模型时,没有从预训练词表中找到这个词的处理方式。
|
||||||
|
如果为True,则不会有这个词语创建一个单独的entry,它将一直被指向unk的表示; 如果为False,则为这个词创建一个单独
|
||||||
|
的entry。如果这个word来自于dev或者test,一般设置为True,如果来自与train一般设置为False。以下两种情况: 如果新
|
||||||
|
加入一个word,且no_create_entry为True,但这个词之前已经在Vocabulary中且并不是no_create_entry的,则还是会为这
|
||||||
|
个词创建一个单独的vector; 如果no_create_entry为False,但这个词之前已经在Vocabulary中且并不是no_create_entry的,
|
||||||
|
则这个词将认为是需要创建单独的vector的。
|
||||||
"""
|
"""
|
||||||
self.add(word)
|
self.add(word, no_create_entry=no_create_entry)
|
||||||
|
|
||||||
@_check_build_status
|
@_check_build_status
|
||||||
def add_word_lst(self, word_lst):
|
def add_word_lst(self, word_lst, no_create_entry=False):
|
||||||
"""
|
"""
|
||||||
依次增加序列中词在词典中的出现频率
|
依次增加序列中词在词典中的出现频率
|
||||||
|
|
||||||
:param list[str] word_lst: 词的序列
|
:param list[str] word_lst: 词的序列
|
||||||
|
:param bool no_create_entry: 在使用fastNLP.TokenEmbedding加载预训练模型时,没有从预训练词表中找到这个词的处理方式。
|
||||||
|
如果为True,则不会有这个词语创建一个单独的entry,它将一直被指向unk的表示; 如果为False,则为这个词创建一个单独
|
||||||
|
的entry。如果这个word来自于dev或者test,一般设置为True,如果来自与train一般设置为False。以下两种情况: 如果新
|
||||||
|
加入一个word,且no_create_entry为True,但这个词之前已经在Vocabulary中且并不是no_create_entry的,则还是会为这
|
||||||
|
个词创建一个单独的vector; 如果no_create_entry为False,但这个词之前已经在Vocabulary中且并不是no_create_entry的,
|
||||||
|
则这个词将认为是需要创建单独的vector的。
|
||||||
"""
|
"""
|
||||||
self.update(word_lst)
|
self.update(word_lst, no_create_entry=no_create_entry)
|
||||||
|
return self
|
||||||
|
|
||||||
def build_vocab(self):
|
def build_vocab(self):
|
||||||
"""
|
"""
|
||||||
@ -133,10 +182,10 @@ class Vocabulary(object):
|
|||||||
"""
|
"""
|
||||||
if self.word2idx is None:
|
if self.word2idx is None:
|
||||||
self.word2idx = {}
|
self.word2idx = {}
|
||||||
if self.padding is not None:
|
if self.padding is not None:
|
||||||
self.word2idx[self.padding] = len(self.word2idx)
|
self.word2idx[self.padding] = len(self.word2idx)
|
||||||
if self.unknown is not None:
|
if self.unknown is not None:
|
||||||
self.word2idx[self.unknown] = len(self.word2idx)
|
self.word2idx[self.unknown] = len(self.word2idx)
|
||||||
|
|
||||||
max_size = min(self.max_size, len(self.word_count)) if self.max_size else None
|
max_size = min(self.max_size, len(self.word_count)) if self.max_size else None
|
||||||
words = self.word_count.most_common(max_size)
|
words = self.word_count.most_common(max_size)
|
||||||
@ -148,13 +197,15 @@ class Vocabulary(object):
|
|||||||
self.word2idx.update({w: i + start_idx for i, (w, _) in enumerate(words)})
|
self.word2idx.update({w: i + start_idx for i, (w, _) in enumerate(words)})
|
||||||
self.build_reverse_vocab()
|
self.build_reverse_vocab()
|
||||||
self.rebuild = False
|
self.rebuild = False
|
||||||
|
return self
|
||||||
|
|
||||||
def build_reverse_vocab(self):
|
def build_reverse_vocab(self):
|
||||||
"""
|
"""
|
||||||
基于 "word to index" dict, 构建 "index to word" dict.
|
基于 `word to index` dict, 构建 `index to word` dict.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
self.idx2word = {i: w for w, i in self.word2idx.items()}
|
self.idx2word = {i: w for w, i in self.word2idx.items()}
|
||||||
|
return self
|
||||||
|
|
||||||
@_check_build_vocab
|
@_check_build_vocab
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
@ -205,9 +256,9 @@ class Vocabulary(object):
|
|||||||
# remember to use `field_name`
|
# remember to use `field_name`
|
||||||
vocab.index_dataset(train_data, dev_data, test_data, field_name='words')
|
vocab.index_dataset(train_data, dev_data, test_data, field_name='words')
|
||||||
|
|
||||||
:param datasets: 需要转index的 class:`~fastNLP.DataSet` , 支持一个或多个(list)
|
:param ~fastNLP.DataSet,List[~fastNLP.DataSet] datasets: 需要转index的一个或多个数据集
|
||||||
:param str field_name: 需要转index的field, 若有多个 DataSet, 每个DataSet都必须有此 field.
|
:param str field_name: 需要转index的field, 若有多个 DataSet, 每个DataSet都必须有此 field.
|
||||||
目前仅支持 ``str`` , ``list(str)`` , ``list(list(str))``
|
目前仅支持 ``str`` , ``List[str]`` , ``List[List[str]]``
|
||||||
:param str new_field_name: 保存结果的field_name. 若为 ``None`` , 将覆盖原field.
|
:param str new_field_name: 保存结果的field_name. 若为 ``None`` , 将覆盖原field.
|
||||||
Default: ``None``
|
Default: ``None``
|
||||||
"""
|
"""
|
||||||
@ -240,19 +291,31 @@ class Vocabulary(object):
|
|||||||
raise e
|
raise e
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("Only DataSet type is allowed.")
|
raise RuntimeError("Only DataSet type is allowed.")
|
||||||
|
return self
|
||||||
|
|
||||||
def from_dataset(self, *datasets, field_name):
|
@property
|
||||||
|
def _no_create_word_length(self):
|
||||||
|
return len(self._no_create_word)
|
||||||
|
|
||||||
|
def from_dataset(self, *datasets, field_name, no_create_entry_dataset=None):
|
||||||
"""
|
"""
|
||||||
使用dataset的对应field中词构建词典::
|
使用dataset的对应field中词构建词典::
|
||||||
|
|
||||||
# remember to use `field_name`
|
# remember to use `field_name`
|
||||||
vocab.from_dataset(train_data1, train_data2, field_name='words')
|
vocab.from_dataset(train_data1, train_data2, field_name='words')
|
||||||
|
|
||||||
:param datasets: 需要转index的 class:`~fastNLP.DataSet` , 支持一个或多个(list)
|
:param ~fastNLP.DataSet,List[~fastNLP.DataSet] datasets: 需要转index的一个或多个数据集
|
||||||
:param field_name: 可为 ``str`` 或 ``list(str)`` .
|
:param str,List[str] field_name: 可为 ``str`` 或 ``List[str]`` .
|
||||||
构建词典所使用的 field(s), 支持一个或多个field
|
构建词典所使用的 field(s), 支持一个或多个field
|
||||||
若有多个 DataSet, 每个DataSet都必须有这些field.
|
若有多个 DataSet, 每个DataSet都必须有这些field.
|
||||||
目前仅支持的field结构: ``str`` , ``list(str)`` , ``list(list(str))``
|
目前仅支持的field结构: ``str`` , ``List[str]`` , ``list[List[str]]``
|
||||||
|
:param no_create_entry_dataset: 可以传入DataSet, List[DataSet]或者None(默认),该选项用在接下来的模型会使用pretrain
|
||||||
|
的embedding(包括glove, word2vec, elmo与bert)且会finetune的情况。如果仅使用来自于train的数据建立vocabulary,会导致test与dev
|
||||||
|
中的数据无法充分利用到来自于预训练embedding的信息,所以在建立词表的时候将test与dev考虑进来会使得最终的结果更好。
|
||||||
|
如果一个词出现在了train中,但是没在预训练模型中,embedding会为它用unk初始化,但它是单独的一个vector,如果
|
||||||
|
finetune embedding的话,这个词在更新之后可能会有更好的表示; 而如果这个词仅出现在了dev或test中,那么就不能为它们单独建立vector,
|
||||||
|
而应该让它指向unk这个vector的值。所以只位于no_create_entry_dataset中的token,将首先从预训练的词表中寻找它的表示,
|
||||||
|
如果找到了,就使用该表示; 如果没有找到,则认为该词的表示应该为unk的表示。
|
||||||
:return self:
|
:return self:
|
||||||
"""
|
"""
|
||||||
if isinstance(field_name, str):
|
if isinstance(field_name, str):
|
||||||
@ -260,18 +323,21 @@ class Vocabulary(object):
|
|||||||
elif not isinstance(field_name, list):
|
elif not isinstance(field_name, list):
|
||||||
raise TypeError('invalid argument field_name: {}'.format(field_name))
|
raise TypeError('invalid argument field_name: {}'.format(field_name))
|
||||||
|
|
||||||
def construct_vocab(ins):
|
def construct_vocab(ins, no_create_entry=False):
|
||||||
for fn in field_name:
|
for fn in field_name:
|
||||||
field = ins[fn]
|
field = ins[fn]
|
||||||
if isinstance(field, str):
|
if isinstance(field, str):
|
||||||
self.add_word(field)
|
self.add_word(field, no_create_entry=no_create_entry)
|
||||||
elif isinstance(field, list):
|
elif isinstance(field, (list, np.ndarray)):
|
||||||
if not isinstance(field[0], list):
|
if not isinstance(field[0], (list, np.ndarray)):
|
||||||
self.add_word_lst(field)
|
for word in field:
|
||||||
|
self.add_word(word, no_create_entry=no_create_entry)
|
||||||
else:
|
else:
|
||||||
if isinstance(field[0][0], list):
|
if isinstance(field[0][0], (list, np.ndarray)):
|
||||||
raise RuntimeError("Only support field with 2 dimensions.")
|
raise RuntimeError("Only support field with 2 dimensions.")
|
||||||
[self.add_word_lst(w) for w in field]
|
for words in field:
|
||||||
|
for word in words:
|
||||||
|
self.add_word(word, no_create_entry=no_create_entry)
|
||||||
|
|
||||||
for idx, dataset in enumerate(datasets):
|
for idx, dataset in enumerate(datasets):
|
||||||
if isinstance(dataset, DataSet):
|
if isinstance(dataset, DataSet):
|
||||||
@ -281,13 +347,30 @@ class Vocabulary(object):
|
|||||||
print("When processing the `{}` dataset, the following error occurred.".format(idx))
|
print("When processing the `{}` dataset, the following error occurred.".format(idx))
|
||||||
raise e
|
raise e
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("Only DataSet type is allowed.")
|
raise TypeError("Only DataSet type is allowed.")
|
||||||
|
|
||||||
|
if no_create_entry_dataset is not None:
|
||||||
|
partial_construct_vocab = partial(construct_vocab, no_create_entry=True)
|
||||||
|
if isinstance(no_create_entry_dataset, DataSet):
|
||||||
|
no_create_entry_dataset.apply(partial_construct_vocab)
|
||||||
|
elif isinstance(no_create_entry_dataset, list):
|
||||||
|
for dataset in no_create_entry_dataset:
|
||||||
|
if not isinstance(dataset, DataSet):
|
||||||
|
raise TypeError("Only DataSet type is allowed.")
|
||||||
|
dataset.apply(partial_construct_vocab)
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def _is_word_no_create_entry(self, word):
|
||||||
|
"""
|
||||||
|
判断当前的word是否是不需要创建entry的,具体参见from_dataset的说明
|
||||||
|
:param word: str
|
||||||
|
:return: bool
|
||||||
|
"""
|
||||||
|
return word in self._no_create_word
|
||||||
|
|
||||||
def to_index(self, w):
|
def to_index(self, w):
|
||||||
"""
|
"""
|
||||||
将词转为数字. 若词不再词典中被记录, 将视为 unknown, 若 ``unknown=None`` , 将抛出
|
将词转为数字. 若词不再词典中被记录, 将视为 unknown, 若 ``unknown=None`` , 将抛出``ValueError``::
|
||||||
``ValueError``::
|
|
||||||
|
|
||||||
index = vocab.to_index('abc')
|
index = vocab.to_index('abc')
|
||||||
# equals to
|
# equals to
|
||||||
@ -338,6 +421,8 @@ class Vocabulary(object):
|
|||||||
self.word2idx = None
|
self.word2idx = None
|
||||||
self.idx2word = None
|
self.idx2word = None
|
||||||
self.rebuild = True
|
self.rebuild = True
|
||||||
|
self._no_create_word.clear()
|
||||||
|
return self
|
||||||
|
|
||||||
def __getstate__(self):
|
def __getstate__(self):
|
||||||
"""Use to prepare data for pickle.
|
"""Use to prepare data for pickle.
|
||||||
@ -359,5 +444,7 @@ class Vocabulary(object):
|
|||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return "Vocabulary({}...)".format(list(self.word_count.keys())[:5])
|
return "Vocabulary({}...)".format(list(self.word_count.keys())[:5])
|
||||||
|
|
||||||
|
@_check_build_vocab
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
return iter(list(self.word_count.keys()))
|
for word, index in self.word2idx.items():
|
||||||
|
yield word, index
|
||||||
|
26
fastNLP/embeddings/__init__.py
Normal file
26
fastNLP/embeddings/__init__.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
"""
|
||||||
|
embeddings 模块主要用于从各种预训练的模型中获取词语的分布式表示,目前支持的预训练模型包括word2vec, glove, ELMO, BERT等。这里所有
|
||||||
|
embedding的forward输入都是形状为 ``(batch_size, max_len)`` 的torch.LongTensor,输出都是 ``(batch_size, max_len, embedding_dim)`` 的
|
||||||
|
torch.FloatTensor。所有的embedding都可以使用 `self.num_embedding` 获取最大的输入index范围, 用 `self.embeddig_dim` 或 `self.embed_size` 获取embedding的
|
||||||
|
输出维度。
|
||||||
|
"""
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"Embedding",
|
||||||
|
"StaticEmbedding",
|
||||||
|
"ElmoEmbedding",
|
||||||
|
"BertEmbedding",
|
||||||
|
"StackEmbedding",
|
||||||
|
"LSTMCharEmbedding",
|
||||||
|
"CNNCharEmbedding",
|
||||||
|
"get_embeddings"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
from .embedding import Embedding
|
||||||
|
from .static_embedding import StaticEmbedding
|
||||||
|
from .elmo_embedding import ElmoEmbedding
|
||||||
|
from .bert_embedding import BertEmbedding
|
||||||
|
from .char_embedding import CNNCharEmbedding, LSTMCharEmbedding
|
||||||
|
from .stack_embedding import StackEmbedding
|
||||||
|
from .utils import get_embeddings
|
334
fastNLP/embeddings/bert_embedding.py
Normal file
334
fastNLP/embeddings/bert_embedding.py
Normal file
@ -0,0 +1,334 @@
|
|||||||
|
|
||||||
|
import os
|
||||||
|
import collections
|
||||||
|
|
||||||
|
from torch import nn
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from itertools import chain
|
||||||
|
|
||||||
|
from ..core.vocabulary import Vocabulary
|
||||||
|
from ..io.file_utils import _get_base_url, cached_path, PRETRAINED_BERT_MODEL_DIR
|
||||||
|
from ..modules.encoder.bert import _WordPieceBertModel, BertModel, BertTokenizer
|
||||||
|
from .contextual_embedding import ContextualEmbedding
|
||||||
|
|
||||||
|
|
||||||
|
class BertEmbedding(ContextualEmbedding):
|
||||||
|
"""
|
||||||
|
别名::class:`fastNLP.embeddings.BertEmbedding` :class:`fastNLP.embeddings.bert_embedding.BertEmbedding`
|
||||||
|
|
||||||
|
使用BERT对words进行编码的Embedding。建议将输入的words长度限制在430以内,而不要使用512(根据预训练模型参数,可能有变化)。这是由于
|
||||||
|
预训练的bert模型长度限制为512个token,而因为输入的word是未进行word piece分割的(word piece的分割有BertEmbedding在输入word
|
||||||
|
时切分),在分割之后长度可能会超过最大长度限制。
|
||||||
|
|
||||||
|
BertEmbedding可以支持自动下载权重,当前支持的模型有以下的几种(待补充):
|
||||||
|
|
||||||
|
Example::
|
||||||
|
|
||||||
|
>>> import torch
|
||||||
|
>>> from fastNLP import Vocabulary
|
||||||
|
>>> vocab = Vocabulary().add_word_lst("The whether is good .".split())
|
||||||
|
>>> embed = BertEmbedding(vocab, model_dir_or_name='en-base-uncased', requires_grad=False, layers='4,-2,-1')
|
||||||
|
>>> words = torch.LongTensor([[vocab.to_index(word) for word in "The whether is good .".split()]])
|
||||||
|
>>> outputs = embed(words)
|
||||||
|
>>> outputs.size()
|
||||||
|
>>> # torch.Size([1, 5, 2304])
|
||||||
|
|
||||||
|
:param ~fastNLP.Vocabulary vocab: 词表
|
||||||
|
:param str model_dir_or_name: 模型所在目录或者模型的名称。当传入模型所在目录时,目录中应该包含一个词表文件(以.txt作为后缀名),
|
||||||
|
权重文件(以.bin作为文件后缀名), 配置文件(以.json作为后缀名)。
|
||||||
|
:param str layers: 输出embedding表示来自于哪些层,不同层的结果按照layers中的顺序在最后一维concat起来。以','隔开层数,可以以负数
|
||||||
|
去索引倒数几层。
|
||||||
|
:param str pool_method: 因为在bert中,每个word会被表示为多个word pieces, 当获取一个word的表示的时候,怎样从它的word pieces
|
||||||
|
中计算得到它对应的表示。支持 ``last`` , ``first`` , ``avg`` , ``max``。
|
||||||
|
:param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。
|
||||||
|
:param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。
|
||||||
|
:param bool include_cls_sep: bool,在bert计算句子的表示的时候,需要在前面加上[CLS]和[SEP], 是否在结果中保留这两个内容。 这样
|
||||||
|
会使得word embedding的结果比输入的结果长两个token。如果该值为True,则在使用 :class::StackEmbedding 可能会与其它类型的
|
||||||
|
embedding长度不匹配。
|
||||||
|
:param bool requires_grad: 是否需要gradient以更新Bert的权重。
|
||||||
|
"""
|
||||||
|
def __init__(self, vocab: Vocabulary, model_dir_or_name: str='en-base-uncased', layers: str='-1',
|
||||||
|
pool_method: str='first', word_dropout=0, dropout=0, requires_grad: bool=False,
|
||||||
|
include_cls_sep: bool=False):
|
||||||
|
super(BertEmbedding, self).__init__(vocab, word_dropout=word_dropout, dropout=dropout)
|
||||||
|
|
||||||
|
# 根据model_dir_or_name检查是否存在并下载
|
||||||
|
if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR:
|
||||||
|
PRETRAIN_URL = _get_base_url('bert')
|
||||||
|
model_name = PRETRAINED_BERT_MODEL_DIR[model_dir_or_name]
|
||||||
|
model_url = PRETRAIN_URL + model_name
|
||||||
|
model_dir = cached_path(model_url)
|
||||||
|
# 检查是否存在
|
||||||
|
elif os.path.isdir(os.path.expanduser(os.path.abspath(model_dir_or_name))):
|
||||||
|
model_dir = model_dir_or_name
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Cannot recognize {model_dir_or_name}.")
|
||||||
|
|
||||||
|
self.model = _WordBertModel(model_dir=model_dir, vocab=vocab, layers=layers,
|
||||||
|
pool_method=pool_method, include_cls_sep=include_cls_sep)
|
||||||
|
|
||||||
|
self.requires_grad = requires_grad
|
||||||
|
self._embed_size = len(self.model.layers)*self.model.encoder.hidden_size
|
||||||
|
|
||||||
|
def _delete_model_weights(self):
|
||||||
|
del self.model
|
||||||
|
|
||||||
|
def forward(self, words):
|
||||||
|
"""
|
||||||
|
计算words的bert embedding表示。计算之前会在每句话的开始增加[CLS]在结束增加[SEP], 并根据include_cls_sep判断要不要
|
||||||
|
删除这两个token的表示。
|
||||||
|
|
||||||
|
:param torch.LongTensor words: [batch_size, max_len]
|
||||||
|
:return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers))
|
||||||
|
"""
|
||||||
|
words = self.drop_word(words)
|
||||||
|
outputs = self._get_sent_reprs(words)
|
||||||
|
if outputs is not None:
|
||||||
|
return self.dropout(words)
|
||||||
|
outputs = self.model(words)
|
||||||
|
outputs = torch.cat([*outputs], dim=-1)
|
||||||
|
|
||||||
|
return self.dropout(outputs)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def requires_grad(self):
|
||||||
|
"""
|
||||||
|
Embedding的参数是否允许优化。True: 所有参数运行优化; False: 所有参数不允许优化; None: 部分允许优化、部分不允许
|
||||||
|
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
requires_grads = set([param.requires_grad for name, param in self.named_parameters()
|
||||||
|
if 'word_pieces_lengths' not in name])
|
||||||
|
if len(requires_grads) == 1:
|
||||||
|
return requires_grads.pop()
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
@requires_grad.setter
|
||||||
|
def requires_grad(self, value):
|
||||||
|
for name, param in self.named_parameters():
|
||||||
|
if 'word_pieces_lengths' in name: # 这个不能加入到requires_grad中
|
||||||
|
continue
|
||||||
|
param.requires_grad = value
|
||||||
|
|
||||||
|
|
||||||
|
class BertWordPieceEncoder(nn.Module):
|
||||||
|
"""
|
||||||
|
读取bert模型,读取之后调用index_dataset方法在dataset中生成word_pieces这一列。
|
||||||
|
|
||||||
|
:param str model_dir_or_name: 模型所在目录或者模型的名称。默认值为 ``en-base-uncased``
|
||||||
|
:param str layers: 最终结果中的表示。以','隔开层数,可以以负数去索引倒数几层
|
||||||
|
:param bool requires_grad: 是否需要gradient。
|
||||||
|
"""
|
||||||
|
def __init__(self, model_dir_or_name: str='en-base-uncased', layers: str='-1',
|
||||||
|
requires_grad: bool=False):
|
||||||
|
super().__init__()
|
||||||
|
PRETRAIN_URL = _get_base_url('bert')
|
||||||
|
|
||||||
|
if model_dir_or_name in PRETRAINED_BERT_MODEL_DIR:
|
||||||
|
model_name = PRETRAINED_BERT_MODEL_DIR[model_dir_or_name]
|
||||||
|
model_url = PRETRAIN_URL + model_name
|
||||||
|
model_dir = cached_path(model_url)
|
||||||
|
# 检查是否存在
|
||||||
|
elif os.path.isdir(model_dir_or_name):
|
||||||
|
model_dir = model_dir_or_name
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Cannot recognize {model_dir_or_name}.")
|
||||||
|
|
||||||
|
self.model = _WordPieceBertModel(model_dir=model_dir, layers=layers)
|
||||||
|
self._embed_size = len(self.model.layers) * self.model.encoder.hidden_size
|
||||||
|
self.requires_grad = requires_grad
|
||||||
|
|
||||||
|
@property
|
||||||
|
def requires_grad(self):
|
||||||
|
"""
|
||||||
|
Embedding的参数是否允许优化。True: 所有参数运行优化; False: 所有参数不允许优化; None: 部分允许优化、部分不允许
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
requires_grads = set([param.requires_grad for name, param in self.named_parameters()])
|
||||||
|
if len(requires_grads) == 1:
|
||||||
|
return requires_grads.pop()
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
@requires_grad.setter
|
||||||
|
def requires_grad(self, value):
|
||||||
|
for name, param in self.named_parameters():
|
||||||
|
param.requires_grad = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def embed_size(self):
|
||||||
|
return self._embed_size
|
||||||
|
|
||||||
|
def index_datasets(self, *datasets, field_name):
|
||||||
|
"""
|
||||||
|
使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果首尾不是
|
||||||
|
[CLS]与[SEP]会在首尾额外加入[CLS]与[SEP], 且将word_pieces这一列的pad value设置为了bert的pad value。
|
||||||
|
|
||||||
|
:param datasets: DataSet对象
|
||||||
|
:param field_name: 基于哪一列的内容生成word_pieces列。这一列中每个数据应该是List[str]的形式。
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
self.model.index_dataset(*datasets, field_name=field_name)
|
||||||
|
|
||||||
|
def forward(self, word_pieces, token_type_ids=None):
|
||||||
|
"""
|
||||||
|
计算words的bert embedding表示。传入的words中应该自行包含[CLS]与[SEP]的tag。
|
||||||
|
|
||||||
|
:param words: batch_size x max_len
|
||||||
|
:param token_type_ids: batch_size x max_len, 用于区分前一句和后一句话
|
||||||
|
:return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers))
|
||||||
|
"""
|
||||||
|
outputs = self.model(word_pieces, token_type_ids)
|
||||||
|
outputs = torch.cat([*outputs], dim=-1)
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
|
||||||
|
class _WordBertModel(nn.Module):
|
||||||
|
def __init__(self, model_dir:str, vocab:Vocabulary, layers:str='-1', pool_method:str='first', include_cls_sep:bool=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.tokenzier = BertTokenizer.from_pretrained(model_dir)
|
||||||
|
self.encoder = BertModel.from_pretrained(model_dir)
|
||||||
|
# 检查encoder_layer_number是否合理
|
||||||
|
encoder_layer_number = len(self.encoder.encoder.layer)
|
||||||
|
self.layers = list(map(int, layers.split(',')))
|
||||||
|
for layer in self.layers:
|
||||||
|
if layer<0:
|
||||||
|
assert -layer<=encoder_layer_number, f"The layer index:{layer} is out of scope for " \
|
||||||
|
f"a bert model with {encoder_layer_number} layers."
|
||||||
|
else:
|
||||||
|
assert layer<encoder_layer_number, f"The layer index:{layer} is out of scope for " \
|
||||||
|
f"a bert model with {encoder_layer_number} layers."
|
||||||
|
|
||||||
|
assert pool_method in ('avg', 'max', 'first', 'last')
|
||||||
|
self.pool_method = pool_method
|
||||||
|
self.include_cls_sep = include_cls_sep
|
||||||
|
|
||||||
|
# 将所有vocab中word的wordpiece计算出来, 需要额外考虑[CLS]和[SEP]
|
||||||
|
print("Start to generating word pieces for word.")
|
||||||
|
# 第一步统计出需要的word_piece, 然后创建新的embed和word_piece_vocab, 然后填入值
|
||||||
|
word_piece_dict = {'[CLS]':1, '[SEP]':1} # 用到的word_piece以及新增的
|
||||||
|
found_count = 0
|
||||||
|
for word, index in vocab:
|
||||||
|
if index == vocab.padding_idx: # pad是个特殊的符号
|
||||||
|
word = '[PAD]'
|
||||||
|
elif index == vocab.unknown_idx:
|
||||||
|
word = '[UNK]'
|
||||||
|
word_pieces = self.tokenzier.wordpiece_tokenizer.tokenize(word)
|
||||||
|
if len(word_pieces)==1:
|
||||||
|
if not vocab._is_word_no_create_entry(word): # 如果是train中的值, 但是却没有找到
|
||||||
|
if index!=vocab.unknown_idx and word_pieces[0]=='[UNK]': # 说明这个词不在原始的word里面
|
||||||
|
word_piece_dict[word] = 1 # 新增一个值
|
||||||
|
continue
|
||||||
|
for word_piece in word_pieces:
|
||||||
|
word_piece_dict[word_piece] = 1
|
||||||
|
found_count += 1
|
||||||
|
original_embed = self.encoder.embeddings.word_embeddings.weight.data
|
||||||
|
# 特殊词汇要特殊处理
|
||||||
|
embed = nn.Embedding(len(word_piece_dict), original_embed.size(1)) # 新的embed
|
||||||
|
new_word_piece_vocab = collections.OrderedDict()
|
||||||
|
for index, token in enumerate(['[PAD]', '[UNK]']):
|
||||||
|
word_piece_dict.pop(token, None)
|
||||||
|
embed.weight.data[index] = original_embed[self.tokenzier.vocab[token]]
|
||||||
|
new_word_piece_vocab[token] = index
|
||||||
|
for token in word_piece_dict.keys():
|
||||||
|
if token in self.tokenzier.vocab:
|
||||||
|
embed.weight.data[len(new_word_piece_vocab)] = original_embed[self.tokenzier.vocab[token]]
|
||||||
|
else:
|
||||||
|
embed.weight.data[len(new_word_piece_vocab)] = original_embed[self.tokenzier.vocab['[UNK]']]
|
||||||
|
new_word_piece_vocab[token] = len(new_word_piece_vocab)
|
||||||
|
self.tokenzier._reinit_on_new_vocab(new_word_piece_vocab)
|
||||||
|
self.encoder.embeddings.word_embeddings = embed
|
||||||
|
|
||||||
|
word_to_wordpieces = []
|
||||||
|
word_pieces_lengths = []
|
||||||
|
for word, index in vocab:
|
||||||
|
if index == vocab.padding_idx: # pad是个特殊的符号
|
||||||
|
word = '[PAD]'
|
||||||
|
elif index == vocab.unknown_idx:
|
||||||
|
word = '[UNK]'
|
||||||
|
word_pieces = self.tokenzier.wordpiece_tokenizer.tokenize(word)
|
||||||
|
word_pieces = self.tokenzier.convert_tokens_to_ids(word_pieces)
|
||||||
|
word_to_wordpieces.append(word_pieces)
|
||||||
|
word_pieces_lengths.append(len(word_pieces))
|
||||||
|
print("Found(Or seg into word pieces) {} words out of {}.".format(found_count, len(vocab)))
|
||||||
|
self._cls_index = self.tokenzier.vocab['[CLS]']
|
||||||
|
self._sep_index = self.tokenzier.vocab['[SEP]']
|
||||||
|
self._pad_index = vocab.padding_idx
|
||||||
|
self._wordpiece_pad_index = self.tokenzier.vocab['[PAD]'] # 需要用于生成word_piece
|
||||||
|
self.word_to_wordpieces = np.array(word_to_wordpieces)
|
||||||
|
self.word_pieces_lengths = nn.Parameter(torch.LongTensor(word_pieces_lengths), requires_grad=False)
|
||||||
|
print("Successfully generate word pieces.")
|
||||||
|
|
||||||
|
def forward(self, words):
|
||||||
|
"""
|
||||||
|
|
||||||
|
:param words: torch.LongTensor, batch_size x max_len
|
||||||
|
:return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size
|
||||||
|
"""
|
||||||
|
batch_size, max_word_len = words.size()
|
||||||
|
seq_len = words.ne(self._pad_index).sum(dim=-1)
|
||||||
|
batch_word_pieces_length = self.word_pieces_lengths[words] # batch_size x max_len
|
||||||
|
word_pieces_lengths = batch_word_pieces_length.sum(dim=-1)
|
||||||
|
max_word_piece_length = word_pieces_lengths.max().item()
|
||||||
|
# +2是由于需要加入[CLS]与[SEP]
|
||||||
|
word_pieces = words.new_full((batch_size, max_word_piece_length+2), fill_value=self._wordpiece_pad_index)
|
||||||
|
word_pieces[:, 0].fill_(self._cls_index)
|
||||||
|
batch_indexes = torch.arange(batch_size).to(words)
|
||||||
|
word_pieces[batch_indexes, word_pieces_lengths+1] = self._sep_index
|
||||||
|
attn_masks = torch.zeros_like(word_pieces)
|
||||||
|
# 1. 获取words的word_pieces的id,以及对应的span范围
|
||||||
|
word_indexes = words.tolist()
|
||||||
|
for i in range(batch_size):
|
||||||
|
word_pieces_i = list(chain(*self.word_to_wordpieces[word_indexes[i]]))
|
||||||
|
word_pieces[i, 1:len(word_pieces_i)+1] = torch.LongTensor(word_pieces_i)
|
||||||
|
attn_masks[i, :len(word_pieces_i)+2].fill_(1)
|
||||||
|
# TODO 截掉长度超过的部分。
|
||||||
|
# 2. 获取hidden的结果,根据word_pieces进行对应的pool计算
|
||||||
|
# all_outputs: [batch_size x max_len x hidden_size, batch_size x max_len x hidden_size, ...]
|
||||||
|
bert_outputs, _ = self.encoder(word_pieces, token_type_ids=None, attention_mask=attn_masks,
|
||||||
|
output_all_encoded_layers=True)
|
||||||
|
# output_layers = [self.layers] # len(self.layers) x batch_size x max_word_piece_length x hidden_size
|
||||||
|
|
||||||
|
if self.include_cls_sep:
|
||||||
|
outputs = bert_outputs[-1].new_zeros(len(self.layers), batch_size, max_word_len + 2,
|
||||||
|
bert_outputs[-1].size(-1))
|
||||||
|
s_shift = 1
|
||||||
|
else:
|
||||||
|
outputs = bert_outputs[-1].new_zeros(len(self.layers), batch_size, max_word_len,
|
||||||
|
bert_outputs[-1].size(-1))
|
||||||
|
s_shift = 0
|
||||||
|
batch_word_pieces_cum_length = batch_word_pieces_length.new_zeros(batch_size, max_word_len + 1)
|
||||||
|
batch_word_pieces_cum_length[:, 1:] = batch_word_pieces_length.cumsum(dim=-1) # batch_size x max_len
|
||||||
|
for l_index, l in enumerate(self.layers):
|
||||||
|
output_layer = bert_outputs[l]
|
||||||
|
# 从word_piece collapse到word的表示
|
||||||
|
truncate_output_layer = output_layer[:, 1:-1] # 删除[CLS]与[SEP] batch_size x len x hidden_size
|
||||||
|
outputs_seq_len = seq_len + s_shift
|
||||||
|
if self.pool_method == 'first':
|
||||||
|
for i in range(batch_size):
|
||||||
|
i_word_pieces_cum_length = batch_word_pieces_cum_length[i, :seq_len[i]] # 每个word的start位置
|
||||||
|
outputs[l_index, i, s_shift:outputs_seq_len[i]] = truncate_output_layer[i, i_word_pieces_cum_length] # num_layer x batch_size x len x hidden_size
|
||||||
|
elif self.pool_method == 'last':
|
||||||
|
for i in range(batch_size):
|
||||||
|
i_word_pieces_cum_length = batch_word_pieces_cum_length[i, 1:seq_len[i]+1] - 1 # 每个word的end
|
||||||
|
outputs[l_index, i, s_shift:outputs_seq_len[i]] = truncate_output_layer[i, i_word_pieces_cum_length]
|
||||||
|
elif self.pool_method == 'max':
|
||||||
|
for i in range(batch_size):
|
||||||
|
for j in range(seq_len[i]):
|
||||||
|
start, end = batch_word_pieces_cum_length[i, j], batch_word_pieces_cum_length[i, j+1]
|
||||||
|
outputs[l_index, i, j+s_shift], _ = torch.max(truncate_output_layer[i, start:end], dim=-2)
|
||||||
|
else:
|
||||||
|
for i in range(batch_size):
|
||||||
|
for j in range(seq_len[i]):
|
||||||
|
start, end = batch_word_pieces_cum_length[i, j], batch_word_pieces_cum_length[i, j+1]
|
||||||
|
outputs[l_index, i, j+s_shift] = torch.mean(truncate_output_layer[i, start:end], dim=-2)
|
||||||
|
if self.include_cls_sep:
|
||||||
|
outputs[l_index, :, 0] = output_layer[:, 0]
|
||||||
|
outputs[l_index, batch_indexes, seq_len+s_shift] = output_layer[batch_indexes, seq_len+s_shift]
|
||||||
|
# 3. 最终的embedding结果
|
||||||
|
return outputs
|
||||||
|
|
295
fastNLP/embeddings/char_embedding.py
Normal file
295
fastNLP/embeddings/char_embedding.py
Normal file
@ -0,0 +1,295 @@
|
|||||||
|
"""
|
||||||
|
该文件中主要包含的是character的Embedding,包括基于CNN与LSTM的character Embedding。与其它Embedding一样,这里的Embedding输入也是
|
||||||
|
词的index而不需要使用词语中的char的index来获取表达。
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from ..modules.encoder.lstm import LSTM
|
||||||
|
from ..core.vocabulary import Vocabulary
|
||||||
|
from .embedding import TokenEmbedding
|
||||||
|
from .utils import _construct_char_vocab_from_vocab
|
||||||
|
|
||||||
|
|
||||||
|
class CNNCharEmbedding(TokenEmbedding):
|
||||||
|
"""
|
||||||
|
别名::class:`fastNLP.embeddings.CNNCharEmbedding` :class:`fastNLP.embeddings.char_embedding.CNNCharEmbedding`
|
||||||
|
|
||||||
|
使用CNN生成character embedding。CNN的结构为, embed(x) -> Dropout(x) -> CNN(x) -> activation(x) -> pool -> fc -> Dropout.
|
||||||
|
不同的kernel大小的fitler结果是concat起来然后通过一层fully connected layer, 然后输出word的表示。
|
||||||
|
|
||||||
|
Example::
|
||||||
|
|
||||||
|
>>> vocab = Vocabulary().add_word_lst("The whether is good .".split())
|
||||||
|
>>> embed = CNNCharEmbedding(vocab, embed_size=50)
|
||||||
|
>>> words = torch.LongTensor([[vocab.to_index(word) for word in "The whether is good .".split()]])
|
||||||
|
>>> outputs = embed(words)
|
||||||
|
>>> outputs.size()
|
||||||
|
>>> # torch.Size([1, 5,50])
|
||||||
|
|
||||||
|
:param vocab: 词表
|
||||||
|
:param embed_size: 该word embedding的大小,默认值为50.
|
||||||
|
:param char_emb_size: character的embed的大小。character是从vocab中生成的。默认值为50.
|
||||||
|
:param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。
|
||||||
|
:param float dropout: 以多大的概率drop分布式表示与char embedding的输出。
|
||||||
|
:param filter_nums: filter的数量. 长度需要和kernels一致。默认值为[40, 30, 20].
|
||||||
|
:param kernel_sizes: kernel的大小. 默认值为[5, 3, 1].
|
||||||
|
:param pool_method: character的表示在合成一个表示时所使用的pool方法,支持'avg', 'max'.
|
||||||
|
:param activation: CNN之后使用的激活方法,支持'relu', 'sigmoid', 'tanh' 或者自定义函数.
|
||||||
|
:param min_char_freq: character的最少出现次数。默认值为2.
|
||||||
|
"""
|
||||||
|
def __init__(self, vocab: Vocabulary, embed_size: int=50, char_emb_size: int=50, word_dropout:float=0,
|
||||||
|
dropout:float=0.5, filter_nums: List[int]=(40, 30, 20), kernel_sizes: List[int]=(5, 3, 1),
|
||||||
|
pool_method: str='max', activation='relu', min_char_freq: int=2):
|
||||||
|
super(CNNCharEmbedding, self).__init__(vocab, word_dropout=word_dropout, dropout=dropout)
|
||||||
|
|
||||||
|
for kernel in kernel_sizes:
|
||||||
|
assert kernel % 2 == 1, "Only odd kernel is allowed."
|
||||||
|
|
||||||
|
assert pool_method in ('max', 'avg')
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.pool_method = pool_method
|
||||||
|
# activation function
|
||||||
|
if isinstance(activation, str):
|
||||||
|
if activation.lower() == 'relu':
|
||||||
|
self.activation = F.relu
|
||||||
|
elif activation.lower() == 'sigmoid':
|
||||||
|
self.activation = F.sigmoid
|
||||||
|
elif activation.lower() == 'tanh':
|
||||||
|
self.activation = F.tanh
|
||||||
|
elif activation is None:
|
||||||
|
self.activation = lambda x: x
|
||||||
|
elif callable(activation):
|
||||||
|
self.activation = activation
|
||||||
|
else:
|
||||||
|
raise Exception(
|
||||||
|
"Undefined activation function: choose from: [relu, tanh, sigmoid, or a callable function]")
|
||||||
|
|
||||||
|
print("Start constructing character vocabulary.")
|
||||||
|
# 建立char的词表
|
||||||
|
self.char_vocab = _construct_char_vocab_from_vocab(vocab, min_freq=min_char_freq)
|
||||||
|
self.char_pad_index = self.char_vocab.padding_idx
|
||||||
|
print(f"In total, there are {len(self.char_vocab)} distinct characters.")
|
||||||
|
# 对vocab进行index
|
||||||
|
max_word_len = max(map(lambda x: len(x[0]), vocab))
|
||||||
|
self.words_to_chars_embedding = nn.Parameter(torch.full((len(vocab), max_word_len),
|
||||||
|
fill_value=self.char_pad_index, dtype=torch.long),
|
||||||
|
requires_grad=False)
|
||||||
|
self.word_lengths = nn.Parameter(torch.zeros(len(vocab)).long(), requires_grad=False)
|
||||||
|
for word, index in vocab:
|
||||||
|
# if index!=vocab.padding_idx: # 如果是pad的话,直接就为pad_value了。修改为不区分pad, 这样所有的<pad>也是同一个embed
|
||||||
|
self.words_to_chars_embedding[index, :len(word)] = \
|
||||||
|
torch.LongTensor([self.char_vocab.to_index(c) for c in word])
|
||||||
|
self.word_lengths[index] = len(word)
|
||||||
|
self.char_embedding = nn.Embedding(len(self.char_vocab), char_emb_size)
|
||||||
|
|
||||||
|
self.convs = nn.ModuleList([nn.Conv1d(
|
||||||
|
char_emb_size, filter_nums[i], kernel_size=kernel_sizes[i], bias=True, padding=kernel_sizes[i] // 2)
|
||||||
|
for i in range(len(kernel_sizes))])
|
||||||
|
self._embed_size = embed_size
|
||||||
|
self.fc = nn.Linear(sum(filter_nums), embed_size)
|
||||||
|
self.init_param()
|
||||||
|
|
||||||
|
def forward(self, words):
|
||||||
|
"""
|
||||||
|
输入words的index后,生成对应的words的表示。
|
||||||
|
|
||||||
|
:param words: [batch_size, max_len]
|
||||||
|
:return: [batch_size, max_len, embed_size]
|
||||||
|
"""
|
||||||
|
words = self.drop_word(words)
|
||||||
|
batch_size, max_len = words.size()
|
||||||
|
chars = self.words_to_chars_embedding[words] # batch_size x max_len x max_word_len
|
||||||
|
word_lengths = self.word_lengths[words] # batch_size x max_len
|
||||||
|
max_word_len = word_lengths.max()
|
||||||
|
chars = chars[:, :, :max_word_len]
|
||||||
|
# 为1的地方为mask
|
||||||
|
chars_masks = chars.eq(self.char_pad_index) # batch_size x max_len x max_word_len 如果为0, 说明是padding的位置了
|
||||||
|
chars = self.char_embedding(chars) # batch_size x max_len x max_word_len x embed_size
|
||||||
|
chars = self.dropout(chars)
|
||||||
|
reshaped_chars = chars.reshape(batch_size*max_len, max_word_len, -1)
|
||||||
|
reshaped_chars = reshaped_chars.transpose(1, 2) # B' x E x M
|
||||||
|
conv_chars = [conv(reshaped_chars).transpose(1, 2).reshape(batch_size, max_len, max_word_len, -1)
|
||||||
|
for conv in self.convs]
|
||||||
|
conv_chars = torch.cat(conv_chars, dim=-1).contiguous() # B x max_len x max_word_len x sum(filters)
|
||||||
|
conv_chars = self.activation(conv_chars)
|
||||||
|
if self.pool_method == 'max':
|
||||||
|
conv_chars = conv_chars.masked_fill(chars_masks.unsqueeze(-1), float('-inf'))
|
||||||
|
chars, _ = torch.max(conv_chars, dim=-2) # batch_size x max_len x sum(filters)
|
||||||
|
else:
|
||||||
|
conv_chars = conv_chars.masked_fill(chars_masks.unsqueeze(-1), 0)
|
||||||
|
chars = torch.sum(conv_chars, dim=-2)/chars_masks.eq(0).sum(dim=-1, keepdim=True).float()
|
||||||
|
chars = self.fc(chars)
|
||||||
|
return self.dropout(chars)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def requires_grad(self):
|
||||||
|
"""
|
||||||
|
Embedding的参数是否允许优化。True: 所有参数运行优化; False: 所有参数不允许优化; None: 部分允许优化、部分不允许
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
params = []
|
||||||
|
for name, param in self.named_parameters():
|
||||||
|
if 'words_to_chars_embedding' not in name and 'word_lengths' not in name:
|
||||||
|
params.append(param.requires_grad)
|
||||||
|
requires_grads = set(params)
|
||||||
|
if len(requires_grads) == 1:
|
||||||
|
return requires_grads.pop()
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
@requires_grad.setter
|
||||||
|
def requires_grad(self, value):
|
||||||
|
for name, param in self.named_parameters():
|
||||||
|
if 'words_to_chars_embedding' in name or 'word_lengths' in name: # 这个不能加入到requires_grad中
|
||||||
|
continue
|
||||||
|
param.requires_grad = value
|
||||||
|
|
||||||
|
def init_param(self):
|
||||||
|
for name, param in self.named_parameters():
|
||||||
|
if 'words_to_chars_embedding' in name or 'word_lengths' in name: # 这个不能reset
|
||||||
|
continue
|
||||||
|
if param.data.dim()>1:
|
||||||
|
nn.init.xavier_uniform_(param, 1)
|
||||||
|
else:
|
||||||
|
nn.init.uniform_(param, -1, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class LSTMCharEmbedding(TokenEmbedding):
|
||||||
|
"""
|
||||||
|
别名::class:`fastNLP.embeddings.LSTMCharEmbedding` :class:`fastNLP.embeddings.char_embedding.LSTMCharEmbedding`
|
||||||
|
|
||||||
|
使用LSTM的方式对character进行encode. embed(x) -> Dropout(x) -> LSTM(x) -> activation(x) -> pool -> Dropout
|
||||||
|
|
||||||
|
Example::
|
||||||
|
|
||||||
|
>>> vocab = Vocabulary().add_word_lst("The whether is good .".split())
|
||||||
|
>>> embed = LSTMCharEmbedding(vocab, embed_size=50)
|
||||||
|
>>> words = torch.LongTensor([[vocab.to_index(word) for word in "The whether is good .".split()]])
|
||||||
|
>>> outputs = embed(words)
|
||||||
|
>>> outputs.size()
|
||||||
|
>>> # torch.Size([1, 5,50])
|
||||||
|
|
||||||
|
:param vocab: 词表
|
||||||
|
:param embed_size: embedding的大小。默认值为50.
|
||||||
|
:param char_emb_size: character的embedding的大小。默认值为50.
|
||||||
|
:param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。
|
||||||
|
:param dropout: 以多大概率drop character embedding的输出以及最终的word的输出。
|
||||||
|
:param hidden_size: LSTM的中间hidden的大小,如果为bidirectional的,hidden会除二,默认为50.
|
||||||
|
:param pool_method: 支持'max', 'avg'。
|
||||||
|
:param activation: 激活函数,支持'relu', 'sigmoid', 'tanh', 或者自定义函数.
|
||||||
|
:param min_char_freq: character的最小出现次数。默认值为2.
|
||||||
|
:param bidirectional: 是否使用双向的LSTM进行encode。默认值为True。
|
||||||
|
"""
|
||||||
|
def __init__(self, vocab: Vocabulary, embed_size: int=50, char_emb_size: int=50, word_dropout:float=0,
|
||||||
|
dropout:float=0.5, hidden_size=50,pool_method: str='max', activation='relu', min_char_freq: int=2,
|
||||||
|
bidirectional=True):
|
||||||
|
super(LSTMCharEmbedding, self).__init__(vocab)
|
||||||
|
|
||||||
|
assert hidden_size % 2 == 0, "Only even kernel is allowed."
|
||||||
|
|
||||||
|
assert pool_method in ('max', 'avg')
|
||||||
|
self.pool_method = pool_method
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
# activation function
|
||||||
|
if isinstance(activation, str):
|
||||||
|
if activation.lower() == 'relu':
|
||||||
|
self.activation = F.relu
|
||||||
|
elif activation.lower() == 'sigmoid':
|
||||||
|
self.activation = F.sigmoid
|
||||||
|
elif activation.lower() == 'tanh':
|
||||||
|
self.activation = F.tanh
|
||||||
|
elif activation is None:
|
||||||
|
self.activation = lambda x: x
|
||||||
|
elif callable(activation):
|
||||||
|
self.activation = activation
|
||||||
|
else:
|
||||||
|
raise Exception(
|
||||||
|
"Undefined activation function: choose from: [relu, tanh, sigmoid, or a callable function]")
|
||||||
|
|
||||||
|
print("Start constructing character vocabulary.")
|
||||||
|
# 建立char的词表
|
||||||
|
self.char_vocab = _construct_char_vocab_from_vocab(vocab, min_freq=min_char_freq)
|
||||||
|
self.char_pad_index = self.char_vocab.padding_idx
|
||||||
|
print(f"In total, there are {len(self.char_vocab)} distinct characters.")
|
||||||
|
# 对vocab进行index
|
||||||
|
self.max_word_len = max(map(lambda x: len(x[0]), vocab))
|
||||||
|
self.words_to_chars_embedding = nn.Parameter(torch.full((len(vocab), self.max_word_len),
|
||||||
|
fill_value=self.char_pad_index, dtype=torch.long),
|
||||||
|
requires_grad=False)
|
||||||
|
self.word_lengths = nn.Parameter(torch.zeros(len(vocab)).long(), requires_grad=False)
|
||||||
|
for word, index in vocab:
|
||||||
|
# if index!=vocab.padding_idx: # 如果是pad的话,直接就为pad_value了. 修改为不区分pad与否
|
||||||
|
self.words_to_chars_embedding[index, :len(word)] = \
|
||||||
|
torch.LongTensor([self.char_vocab.to_index(c) for c in word])
|
||||||
|
self.word_lengths[index] = len(word)
|
||||||
|
self.char_embedding = nn.Embedding(len(self.char_vocab), char_emb_size)
|
||||||
|
|
||||||
|
self.fc = nn.Linear(hidden_size, embed_size)
|
||||||
|
hidden_size = hidden_size // 2 if bidirectional else hidden_size
|
||||||
|
|
||||||
|
self.lstm = LSTM(char_emb_size, hidden_size, bidirectional=bidirectional, batch_first=True)
|
||||||
|
self._embed_size = embed_size
|
||||||
|
self.bidirectional = bidirectional
|
||||||
|
|
||||||
|
def forward(self, words):
|
||||||
|
"""
|
||||||
|
输入words的index后,生成对应的words的表示。
|
||||||
|
|
||||||
|
:param words: [batch_size, max_len]
|
||||||
|
:return: [batch_size, max_len, embed_size]
|
||||||
|
"""
|
||||||
|
words = self.drop_word(words)
|
||||||
|
batch_size, max_len = words.size()
|
||||||
|
chars = self.words_to_chars_embedding[words] # batch_size x max_len x max_word_len
|
||||||
|
word_lengths = self.word_lengths[words] # batch_size x max_len
|
||||||
|
max_word_len = word_lengths.max()
|
||||||
|
chars = chars[:, :, :max_word_len]
|
||||||
|
# 为mask的地方为1
|
||||||
|
chars_masks = chars.eq(self.char_pad_index) # batch_size x max_len x max_word_len 如果为0, 说明是padding的位置了
|
||||||
|
chars = self.char_embedding(chars) # batch_size x max_len x max_word_len x embed_size
|
||||||
|
chars = self.dropout(chars)
|
||||||
|
reshaped_chars = chars.reshape(batch_size * max_len, max_word_len, -1)
|
||||||
|
char_seq_len = chars_masks.eq(0).sum(dim=-1).reshape(batch_size * max_len)
|
||||||
|
lstm_chars = self.lstm(reshaped_chars, char_seq_len)[0].reshape(batch_size, max_len, max_word_len, -1)
|
||||||
|
# B x M x M x H
|
||||||
|
|
||||||
|
lstm_chars = self.activation(lstm_chars)
|
||||||
|
if self.pool_method == 'max':
|
||||||
|
lstm_chars = lstm_chars.masked_fill(chars_masks.unsqueeze(-1), float('-inf'))
|
||||||
|
chars, _ = torch.max(lstm_chars, dim=-2) # batch_size x max_len x H
|
||||||
|
else:
|
||||||
|
lstm_chars = lstm_chars.masked_fill(chars_masks.unsqueeze(-1), 0)
|
||||||
|
chars = torch.sum(lstm_chars, dim=-2) / chars_masks.eq(0).sum(dim=-1, keepdim=True).float()
|
||||||
|
|
||||||
|
chars = self.fc(chars)
|
||||||
|
|
||||||
|
return self.dropout(chars)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def requires_grad(self):
|
||||||
|
"""
|
||||||
|
Embedding的参数是否允许优化。True: 所有参数运行优化; False: 所有参数不允许优化; None: 部分允许优化、部分不允许
|
||||||
|
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
params = []
|
||||||
|
for name, param in self.named_parameters():
|
||||||
|
if 'words_to_chars_embedding' not in name and 'word_lengths' not in name:
|
||||||
|
params.append(param)
|
||||||
|
requires_grads = set(params)
|
||||||
|
if len(requires_grads) == 1:
|
||||||
|
return requires_grads.pop()
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
@requires_grad.setter
|
||||||
|
def requires_grad(self, value):
|
||||||
|
for name, param in self.named_parameters():
|
||||||
|
if 'words_to_chars_embedding' in name or 'word_lengths' in name: # 这个不能加入到requires_grad中
|
||||||
|
continue
|
||||||
|
param.requires_grad = value
|
100
fastNLP/embeddings/contextual_embedding.py
Normal file
100
fastNLP/embeddings/contextual_embedding.py
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
|
||||||
|
from abc import abstractmethod
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ..core.vocabulary import Vocabulary
|
||||||
|
from ..core.dataset import DataSet
|
||||||
|
from ..core.batch import DataSetIter
|
||||||
|
from ..core.sampler import SequentialSampler
|
||||||
|
from ..core.utils import _move_model_to_device, _get_model_device
|
||||||
|
from .embedding import TokenEmbedding
|
||||||
|
|
||||||
|
|
||||||
|
class ContextualEmbedding(TokenEmbedding):
|
||||||
|
def __init__(self, vocab: Vocabulary, word_dropout:float=0.0, dropout:float=0.0):
|
||||||
|
super(ContextualEmbedding, self).__init__(vocab, word_dropout=word_dropout, dropout=dropout)
|
||||||
|
|
||||||
|
def add_sentence_cache(self, *datasets, batch_size=32, device='cpu', delete_weights: bool=True):
|
||||||
|
"""
|
||||||
|
由于动态embedding生成比较耗时,所以可以把每句话embedding缓存下来,这样就不需要每次都运行生成过程。
|
||||||
|
|
||||||
|
:param datasets: DataSet对象
|
||||||
|
:param batch_size: int, 生成cache的sentence表示时使用的batch的大小
|
||||||
|
:param device: 参考 :class::fastNLP.Trainer 的device
|
||||||
|
:param delete_weights: 似乎在生成了cache之后删除权重,在不需要finetune动态模型的情况下,删除权重会大量减少内存占用。
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
for index, dataset in enumerate(datasets):
|
||||||
|
try:
|
||||||
|
assert isinstance(dataset, DataSet), "Only fastNLP.DataSet object is allowed."
|
||||||
|
assert 'words' in dataset.get_input_name(), "`words` field has to be set as input."
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception happens at {index} dataset.")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
sent_embeds = {}
|
||||||
|
_move_model_to_device(self, device=device)
|
||||||
|
device = _get_model_device(self)
|
||||||
|
pad_index = self._word_vocab.padding_idx
|
||||||
|
print("Start to calculate sentence representations.")
|
||||||
|
with torch.no_grad():
|
||||||
|
for index, dataset in enumerate(datasets):
|
||||||
|
try:
|
||||||
|
batch = DataSetIter(dataset, batch_size=batch_size, sampler=SequentialSampler())
|
||||||
|
for batch_x, batch_y in batch:
|
||||||
|
words = batch_x['words'].to(device)
|
||||||
|
words_list = words.tolist()
|
||||||
|
seq_len = words.ne(pad_index).sum(dim=-1)
|
||||||
|
max_len = words.size(1)
|
||||||
|
# 因为有些情况可能包含CLS, SEP, 从后面往前计算比较安全。
|
||||||
|
seq_len_from_behind = (max_len - seq_len).tolist()
|
||||||
|
word_embeds = self(words).detach().cpu().numpy()
|
||||||
|
for b in range(words.size(0)):
|
||||||
|
length = seq_len_from_behind[b]
|
||||||
|
if length==0:
|
||||||
|
sent_embeds[tuple(words_list[b][:seq_len[b]])] = word_embeds[b]
|
||||||
|
else:
|
||||||
|
sent_embeds[tuple(words_list[b][:seq_len[b]])] = word_embeds[b, :-length]
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception happens at {index} dataset.")
|
||||||
|
raise e
|
||||||
|
print("Finish calculating sentence representations.")
|
||||||
|
self.sent_embeds = sent_embeds
|
||||||
|
if delete_weights:
|
||||||
|
self._delete_model_weights()
|
||||||
|
|
||||||
|
def _get_sent_reprs(self, words):
|
||||||
|
"""
|
||||||
|
获取sentence的表示,如果有缓存,则返回缓存的值; 没有缓存则返回None
|
||||||
|
|
||||||
|
:param words: torch.LongTensor
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
if hasattr(self, 'sent_embeds'):
|
||||||
|
words_list = words.tolist()
|
||||||
|
seq_len = words.ne(self._word_pad_index).sum(dim=-1)
|
||||||
|
_embeds = []
|
||||||
|
for b in range(len(words)):
|
||||||
|
words_i = tuple(words_list[b][:seq_len[b]])
|
||||||
|
embed = self.sent_embeds[words_i]
|
||||||
|
_embeds.append(embed)
|
||||||
|
max_sent_len = max(map(len, _embeds))
|
||||||
|
embeds = words.new_zeros(len(_embeds), max_sent_len, self.embed_size, dtype=torch.float,
|
||||||
|
device=words.device)
|
||||||
|
for i, embed in enumerate(_embeds):
|
||||||
|
embeds[i, :len(embed)] = torch.FloatTensor(embed).to(words.device)
|
||||||
|
return embeds
|
||||||
|
return None
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def _delete_model_weights(self):
|
||||||
|
"""删除计算表示的模型以节省资源"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def remove_sentence_cache(self):
|
||||||
|
"""
|
||||||
|
删除缓存的句子表示. 删除之后如果模型权重没有被删除,将开始使用动态计算权重。
|
||||||
|
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
del self.sent_embeds
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user