迁移transformers ver.4.11.3的bert bart roberta gpt2和cpt模型

This commit is contained in:
x54-729 2022-04-29 16:53:02 +00:00
parent 2dc1199402
commit df1db2535a
41 changed files with 23914 additions and 2 deletions

View File

@ -1,4 +1,5 @@
import functools
class DummyClass:
pass
def __call__(self, *args, **kwargs):
return

View File

@ -0,0 +1 @@
"""基于 transformers-4.11.3 版本迁移"""

View File

@ -0,0 +1,9 @@
"""
为了防止因 https://github.com/huggingface/transformers 版本变化导致代码不兼容当前 folder 以及子 folder
都复制自 https://github.com/huggingface/transformers 的4.11.3版本
In order to avoid the code change of https://github.com/huggingface/transformers to cause version
mismatch, we copy code from https://github.com/huggingface/transformers(version:4.11.3) in this
folder and its subfolder.
"""
__version__ = "4.11.3"
from .models import *

View File

@ -0,0 +1,125 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from packaging import version
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
from fastNLP.core.log import logger
if _NEED_IMPORT_TORCH:
import torch
from torch import nn, tanh, sigmoid
from torch.nn.functional import relu
else:
from fastNLP.core.utils.dummy_class import (
DummyClass as relu,
DummyClass as tanh,
DummyClass as sigmoid,
)
def _gelu_python(x):
"""
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def gelu_new(x):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
if _NEED_IMPORT_TORCH:
if version.parse(torch.__version__) < version.parse("1.4"):
gelu = _gelu_python
else:
gelu = nn.functional.gelu
else:
from fastNLP.core.utils.dummy_class import DummyClass as gelu
def gelu_fast(x):
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x)))
def quick_gelu(x):
return x * torch.sigmoid(1.702 * x)
def _silu_python(x):
"""
See Gaussian Error Linear Units (Hendrycks et al., https://arxiv.org/abs/1606.08415) where the SiLU (Sigmoid Linear
Unit) was originally introduced and coined, and see Sigmoid-Weighted Linear Units for Neural Network Function
Approximation in Reinforcement Learning (Elfwing et al., https://arxiv.org/abs/1702.03118) and Swish: a Self-Gated
Activation Function (Ramachandran et al., https://arxiv.org/abs/1710.05941v1) where the SiLU was experimented with
later.
"""
return x * torch.sigmoid(x)
if _NEED_IMPORT_TORCH:
if version.parse(torch.__version__) < version.parse("1.7"):
silu = _silu_python
else:
silu = nn.functional.silu
else:
from fastNLP.core.utils.dummy_class import DummyClass as silu
def _mish_python(x):
"""
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
visit the official repository for the paper: https://github.com/digantamisra98/Mish
"""
return x * torch.tanh(nn.functional.softplus(x))
if _NEED_IMPORT_TORCH:
if version.parse(torch.__version__) < version.parse("1.9"):
mish = _mish_python
else:
mish = nn.functional.mish
else:
from fastNLP.core.utils.dummy_class import DummyClass as mish
def linear_act(x):
return x
ACT2FN = {
"relu": relu,
"silu": silu,
"swish": silu,
"gelu": gelu,
"tanh": tanh,
"gelu_new": gelu_new,
"gelu_fast": gelu_fast,
"quick_gelu": quick_gelu,
"mish": mish,
"linear": linear_act,
"sigmoid": sigmoid,
}
def get_activation(activation_string):
if activation_string in ACT2FN:
return ACT2FN[activation_string]
else:
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")

View File

@ -0,0 +1,777 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""
import copy
import json
import os
from typing import Any, Dict, Tuple, Union
from . import __version__
from .file_utils import (
CONFIG_NAME,
cached_path,
hf_bucket_url,
is_offline_mode,
is_remote_url,
)
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
from fastNLP.core.log import logger
class PretrainedConfig:
r"""
Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
methods for loading/downloading/saving configurations.
Note:
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to
initialize a model does **not** load the model weights. It only affects the model's configuration.
Class attributes (overridden by derived classes)
- **model_type** (:obj:`str`) -- An identifier for the model type, serialized into the JSON file, and used to
recreate the correct object in :class:`~transformers.AutoConfig`.
- **is_composition** (:obj:`bool`) -- Whether the config class is composed of multiple sub-configs. In this
case the config has to be initialized from two or more configs of type
:class:`~transformers.PretrainedConfig` like: :class:`~transformers.EncoderDecoderConfig` or
:class:`~RagConfig`.
- **keys_to_ignore_at_inference** (:obj:`List[str]`) -- A list of keys to ignore by default when looking at
dictionary outputs of the model during inference.
- **attribute_map** (:obj:`Dict[str, str]`) -- A dict that maps model specific attribute names to the
standardized naming of attributes.
Common attributes (present in all subclasses)
- **vocab_size** (:obj:`int`) -- The number of tokens in the vocabulary, which is also the first dimension of
the embeddings matrix (this attribute may be missing for models that don't have a text modality like ViT).
- **hidden_size** (:obj:`int`) -- The hidden size of the model.
- **num_attention_heads** (:obj:`int`) -- The number of attention heads used in the multi-head attention layers
of the model.
- **num_hidden_layers** (:obj:`int`) -- The number of blocks in the model.
Args:
name_or_path (:obj:`str`, `optional`, defaults to :obj:`""`):
Store the string that was passed to :func:`~transformers.PreTrainedModel.from_pretrained` or
:func:`~transformers.TFPreTrainedModel.from_pretrained` as ``pretrained_model_name_or_path`` if the
configuration was created with such a method.
output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the model should return all hidden-states.
output_attentions (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the model should returns all attentions.
return_dict (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return a :class:`~transformers.file_utils.ModelOutput` instead of a plain
tuple.
is_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether the model is used as an encoder/decoder or not.
is_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether the model is used as decoder or not (in which case it's used as an encoder).
add_cross_attention (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether cross-attention layers should be added to the model. Note, this option is only relevant for models
that can be used as decoder models within the `:class:~transformers.EncoderDecoderModel` class, which
consists of all models in ``AUTO_MODELS_FOR_CAUSAL_LM``.
tie_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder
and decoder model to have the exact same parameter names.
prune_heads (:obj:`Dict[int, List[int]]`, `optional`, defaults to :obj:`{}`):
Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of
heads to prune in said layer.
For instance ``{1: [0, 2], 2: [2, 3]}`` will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
chunk_size_feed_forward (:obj:`int`, `optional`, defaults to :obj:`0`):
The chunk size of all feed forward layers in the residual attention blocks. A chunk size of :obj:`0` means
that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes
:obj:`n` < sequence_length embeddings at a time. For more information on feed forward chunking, see `How
does Feed Forward Chunking work? <../glossary.html#feed-forward-chunking>`__ .
Parameters for sequence generation
- **max_length** (:obj:`int`, `optional`, defaults to 20) -- Maximum length that will be used by default in the
:obj:`generate` method of the model.
- **min_length** (:obj:`int`, `optional`, defaults to 10) -- Minimum length that will be used by default in the
:obj:`generate` method of the model.
- **do_sample** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Flag that will be used by default in the
:obj:`generate` method of the model. Whether or not to use sampling ; use greedy decoding otherwise.
- **early_stopping** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Flag that will be used by default
in the :obj:`generate` method of the model. Whether to stop the beam search when at least ``num_beams``
sentences are finished per batch or not.
- **num_beams** (:obj:`int`, `optional`, defaults to 1) -- Number of beams for beam search that will be used by
default in the :obj:`generate` method of the model. 1 means no beam search.
- **num_beam_groups** (:obj:`int`, `optional`, defaults to 1) -- Number of groups to divide :obj:`num_beams`
into in order to ensure diversity among different groups of beams that will be used by default in the
:obj:`generate` method of the model. 1 means no group beam search.
- **diversity_penalty** (:obj:`float`, `optional`, defaults to 0.0) -- Value to control diversity for group
beam search. that will be used by default in the :obj:`generate` method of the model. 0 means no diversity
penalty. The higher the penalty, the more diverse are the outputs.
- **temperature** (:obj:`float`, `optional`, defaults to 1) -- The value used to module the next token
probabilities that will be used by default in the :obj:`generate` method of the model. Must be strictly
positive.
- **top_k** (:obj:`int`, `optional`, defaults to 50) -- Number of highest probability vocabulary tokens to keep
for top-k-filtering that will be used by default in the :obj:`generate` method of the model.
- **top_p** (:obj:`float`, `optional`, defaults to 1) -- Value that will be used by default in the
:obj:`generate` method of the model for ``top_p``. If set to float < 1, only the most probable tokens with
probabilities that add up to ``top_p`` or higher are kept for generation.
- **repetition_penalty** (:obj:`float`, `optional`, defaults to 1) -- Parameter for repetition penalty that
will be used by default in the :obj:`generate` method of the model. 1.0 means no penalty.
- **length_penalty** (:obj:`float`, `optional`, defaults to 1) -- Exponential penalty to the length that will
be used by default in the :obj:`generate` method of the model.
- **no_repeat_ngram_size** (:obj:`int`, `optional`, defaults to 0) -- Value that will be used by default in the
:obj:`generate` method of the model for ``no_repeat_ngram_size``. If set to int > 0, all ngrams of that size
can only occur once.
- **encoder_no_repeat_ngram_size** (:obj:`int`, `optional`, defaults to 0) -- Value that will be used by
default in the :obj:`generate` method of the model for ``encoder_no_repeat_ngram_size``. If set to int > 0,
all ngrams of that size that occur in the ``encoder_input_ids`` cannot occur in the ``decoder_input_ids``.
- **bad_words_ids** (:obj:`List[int]`, `optional`) -- List of token ids that are not allowed to be generated
that will be used by default in the :obj:`generate` method of the model. In order to get the tokens of the
words that should not appear in the generated text, use :obj:`tokenizer.encode(bad_word,
add_prefix_space=True)`.
- **num_return_sequences** (:obj:`int`, `optional`, defaults to 1) -- Number of independently computed returned
sequences for each element in the batch that will be used by default in the :obj:`generate` method of the
model.
- **output_scores** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether the model should return the
logits when used for generation
- **return_dict_in_generate** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether the model should
return a :class:`~transformers.file_utils.ModelOutput` instead of a :obj:`torch.LongTensor`
- **forced_bos_token_id** (:obj:`int`, `optional`) -- The id of the token to force as the first generated token
after the :obj:`decoder_start_token_id`. Useful for multilingual models like :doc:`mBART
<../model_doc/mbart>` where the first generated token needs to be the target language token.
- **forced_eos_token_id** (:obj:`int`, `optional`) -- The id of the token to force as the last generated token
when :obj:`max_length` is reached.
- **remove_invalid_values** (:obj:`bool`, `optional`) -- Whether to remove possible `nan` and `inf` outputs of
the model to prevent the generation method to crash. Note that using ``remove_invalid_values`` can slow down
generation.
Parameters for fine-tuning tasks
- **architectures** (:obj:`List[str]`, `optional`) -- Model architectures that can be used with the model
pretrained weights.
- **finetuning_task** (:obj:`str`, `optional`) -- Name of the task used to fine-tune the model. This can be
used when converting from an original (TensorFlow or PyTorch) checkpoint.
- **id2label** (:obj:`Dict[int, str]`, `optional`) -- A map from index (for instance prediction index, or
target index) to label.
- **label2id** (:obj:`Dict[str, int]`, `optional`) -- A map from label to index for the model.
- **num_labels** (:obj:`int`, `optional`) -- Number of labels to use in the last layer added to the model,
typically for a classification task.
- **task_specific_params** (:obj:`Dict[str, Any]`, `optional`) -- Additional keyword arguments to store for the
current task.
- **problem_type** (:obj:`str`, `optional`) -- Problem type for :obj:`XxxForSequenceClassification` models. Can
be one of (:obj:`"regression"`, :obj:`"single_label_classification"`, :obj:`"multi_label_classification"`).
Please note that this parameter is only available in the following models: `AlbertForSequenceClassification`,
`BertForSequenceClassification`, `BigBirdForSequenceClassification`, `ConvBertForSequenceClassification`,
`DistilBertForSequenceClassification`, `ElectraForSequenceClassification`, `FunnelForSequenceClassification`,
`LongformerForSequenceClassification`, `MobileBertForSequenceClassification`,
`ReformerForSequenceClassification`, `RobertaForSequenceClassification`,
`SqueezeBertForSequenceClassification`, `XLMForSequenceClassification` and `XLNetForSequenceClassification`.
Parameters linked to the tokenizer
- **tokenizer_class** (:obj:`str`, `optional`) -- The name of the associated tokenizer class to use (if none is
set, will use the tokenizer associated to the model by default).
- **prefix** (:obj:`str`, `optional`) -- A specific prompt that should be added at the beginning of each text
before calling the model.
- **bos_token_id** (:obj:`int`, `optional`)) -- The id of the `beginning-of-stream` token.
- **pad_token_id** (:obj:`int`, `optional`)) -- The id of the `padding` token.
- **eos_token_id** (:obj:`int`, `optional`)) -- The id of the `end-of-stream` token.
- **decoder_start_token_id** (:obj:`int`, `optional`)) -- If an encoder-decoder model starts decoding with a
different token than `bos`, the id of that token.
- **sep_token_id** (:obj:`int`, `optional`)) -- The id of the `separation` token.
PyTorch specific parameters
- **torchscript** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether or not the model should be
used with Torchscript.
- **tie_word_embeddings** (:obj:`bool`, `optional`, defaults to :obj:`True`) -- Whether the model's input and
output word embeddings should be tied. Note that this is only relevant if the model has a output word
embedding layer.
- **torch_dtype** (:obj:`str`, `optional`) -- The :obj:`dtype` of the weights. This attribute can be used to
initialize the model to a non-default ``dtype`` (which is normally ``float32``) and thus allow for optimal
storage allocation. For example, if the saved model is ``float16``, ideally we want to load it back using the
minimal amount of memory needed to load ``float16`` weights. Since the config object is stored in plain text,
this attribute contains just the floating type string without the ``torch.`` prefix. For example, for
``torch.float16`` ``torch_dtype`` is the ``"float16"`` string.
This attribute is currently not being used during model loading time, but this may change in the future
versions. But we can already start preparing for the future by saving the dtype with save_pretrained.
TensorFlow specific parameters
- **use_bfloat16** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether or not the model should use
BFloat16 scalars (only used by some TensorFlow models).
"""
model_type: str = ""
is_composition: bool = False
attribute_map: Dict[str, str] = {}
def __setattr__(self, key, value):
if key in super().__getattribute__("attribute_map"):
key = super().__getattribute__("attribute_map")[key]
super().__setattr__(key, value)
def __getattribute__(self, key):
if key != "attribute_map" and key in super().__getattribute__("attribute_map"):
key = super().__getattribute__("attribute_map")[key]
return super().__getattribute__(key)
def __init__(self, **kwargs):
# Attributes with defaults
self.return_dict = kwargs.pop("return_dict", True)
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
self.output_attentions = kwargs.pop("output_attentions", False)
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
self.pruned_heads = kwargs.pop("pruned_heads", {})
self.tie_word_embeddings = kwargs.pop(
"tie_word_embeddings", True
) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models.
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
self.is_decoder = kwargs.pop("is_decoder", False)
self.add_cross_attention = kwargs.pop("add_cross_attention", False)
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False)
# Parameters for sequence generation
self.max_length = kwargs.pop("max_length", 20)
self.min_length = kwargs.pop("min_length", 0)
self.do_sample = kwargs.pop("do_sample", False)
self.early_stopping = kwargs.pop("early_stopping", False)
self.num_beams = kwargs.pop("num_beams", 1)
self.num_beam_groups = kwargs.pop("num_beam_groups", 1)
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0)
self.temperature = kwargs.pop("temperature", 1.0)
self.top_k = kwargs.pop("top_k", 50)
self.top_p = kwargs.pop("top_p", 1.0)
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
self.length_penalty = kwargs.pop("length_penalty", 1.0)
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0)
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
self.output_scores = kwargs.pop("output_scores", False)
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False)
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)
self.remove_invalid_values = kwargs.pop("remove_invalid_values", False)
# Fine-tuning task arguments
self.architectures = kwargs.pop("architectures", None)
self.finetuning_task = kwargs.pop("finetuning_task", None)
self.id2label = kwargs.pop("id2label", None)
self.label2id = kwargs.pop("label2id", None)
if self.id2label is not None:
kwargs.pop("num_labels", None)
self.id2label = dict((int(key), value) for key, value in self.id2label.items())
# Keys are always strings in JSON so convert ids to int here.
else:
self.num_labels = kwargs.pop("num_labels", 2)
if self.torch_dtype is not None and isinstance(self.torch_dtype, str):
# we will start using self.torch_dtype in v5, but to be consistent with
# from_pretrained's torch_dtype arg convert it to an actual torch.dtype object
if _NEED_IMPORT_TORCH:
import torch
self.torch_dtype = getattr(torch, self.torch_dtype)
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config
self.tokenizer_class = kwargs.pop("tokenizer_class", None)
self.prefix = kwargs.pop("prefix", None)
self.bos_token_id = kwargs.pop("bos_token_id", None)
self.pad_token_id = kwargs.pop("pad_token_id", None)
self.eos_token_id = kwargs.pop("eos_token_id", None)
self.sep_token_id = kwargs.pop("sep_token_id", None)
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
# task specific arguments
self.task_specific_params = kwargs.pop("task_specific_params", None)
# regression / multi-label classification
self.problem_type = kwargs.pop("problem_type", None)
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification")
if self.problem_type is not None and self.problem_type not in allowed_problem_types:
raise ValueError(
f"The config parameter `problem_type` was not understood: received {self.problem_type}"
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid."
)
# TPU arguments
if kwargs.pop("xla_device", None) is not None:
logger.warning(
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can "
"safely remove it from your `config.json` file."
)
# Name or path to the pretrained checkpoint
self._name_or_path = str(kwargs.pop("name_or_path", ""))
# Drop the transformers version info
self.transformers_version = kwargs.pop("transformers_version", None)
# Deal with gradient checkpointing
if kwargs.get("gradient_checkpointing", False):
logger.warn(
"Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 "
"Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the "
"`Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`."
)
# Additional attributes without default values
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
logger.error(f"Can't set {key} with value {value} for {self}")
raise err
@property
def name_or_path(self) -> str:
return self._name_or_path
@name_or_path.setter
def name_or_path(self, value):
self._name_or_path = str(value) # Make sure that name_or_path is a string (for JSON encoding)
@property
def use_return_dict(self) -> bool:
"""
:obj:`bool`: Whether or not return :class:`~transformers.file_utils.ModelOutput` instead of tuples.
"""
# If torchscript is set, force `return_dict=False` to avoid jit errors
return self.return_dict and not self.torchscript
@property
def num_labels(self) -> int:
"""
:obj:`int`: The number of labels for classification models.
"""
return len(self.id2label)
@num_labels.setter
def num_labels(self, num_labels: int):
if not hasattr(self, "id2label") or self.id2label is None or len(self.id2label) != num_labels:
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)}
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs):
"""
Save a configuration object to the directory ``save_directory``, so that it can be re-loaded using the
:func:`~transformers.PretrainedConfig.from_pretrained` class method.
Args:
save_directory (:obj:`str` or :obj:`os.PathLike`):
Directory where the configuration JSON file will be saved (will be created if it does not exist).
push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to push your model to the Hugging Face model hub after saving it.
.. warning::
Using :obj:`push_to_hub=True` will synchronize the repository you are pushing to with
:obj:`save_directory`, which requires :obj:`save_directory` to be a local clone of the repo you are
pushing to if it's an existing folder. Pass along :obj:`temp_dir=True` to use a temporary directory
instead.
kwargs:
Additional key word arguments passed along to the
:meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
# If we save using the predefined names, we can load using `from_pretrained`
output_config_file = os.path.join(save_directory, CONFIG_NAME)
self.to_json_file(output_config_file, use_diff=True)
logger.info(f"Configuration saved in {output_config_file}")
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
r"""
Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pretrained model
configuration.
Args:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
This can be either:
- a string, the `model id` of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing a configuration file saved using the
:func:`~transformers.PretrainedConfig.save_pretrained` method, e.g., ``./my_model_directory/``.
- a path or url to a saved configuration JSON `file`, e.g.,
``./my_model_directory/configuration.json``.
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if
they exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
exists.
proxies (:obj:`Dict[str, str]`, `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (:obj:`str` or `bool`, `optional`):
The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`False`, then this function returns just the final configuration object.
If :obj:`True`, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs`
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e.,
the part of ``kwargs`` which has not been used to update ``config`` and is otherwise ignored.
kwargs (:obj:`Dict[str, Any]`, `optional`):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the ``return_unused_kwargs`` keyword parameter.
.. note::
Passing :obj:`use_auth_token=True` is required when you want to use a private model.
Returns:
:class:`PretrainedConfig`: The configuration object instantiated from this pretrained model.
Examples::
# We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
# derived class: BertConfig
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from huggingface.co and cache.
config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
config = BertConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False)
assert config.output_attentions == True
config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attentions=True,
foo=False, return_unused_kwargs=True)
assert config.output_attentions == True
assert unused_kwargs == {'foo': False}
"""
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warn(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
@classmethod
def get_config_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a
:class:`~transformers.PretrainedConfig` using ``from_dict``.
Parameters:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
Returns:
:obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
else:
config_file = hf_bucket_url(
pretrained_model_name_or_path, filename=CONFIG_NAME, revision=revision, mirror=None
)
try:
# Load from URL or cache if already cached
resolved_config_file = cached_path(
config_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
)
# Load config dict
config_dict = cls._dict_from_json_file(resolved_config_file)
except EnvironmentError as err:
logger.error(err)
msg = (
f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
)
if revision is not None:
msg += f"- or '{revision}' is a valid git identifier (branch name, a tag name, or a commit id) that exists for this model name as listed on its model page on 'https://huggingface.co/models'\n\n"
raise EnvironmentError(msg)
except (json.JSONDecodeError, UnicodeDecodeError):
msg = (
f"Couldn't reach server at '{config_file}' to download configuration file or "
"configuration file is not a valid JSON file. "
f"Please check network or file content here: {resolved_config_file}."
)
raise EnvironmentError(msg)
if resolved_config_file == config_file:
logger.info(f"loading configuration file {config_file}")
else:
logger.info(f"loading configuration file {config_file} from cache at {resolved_config_file}")
return config_dict, kwargs
@classmethod
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig":
"""
Instantiates a :class:`~transformers.PretrainedConfig` from a Python dictionary of parameters.
Args:
config_dict (:obj:`Dict[str, Any]`):
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the
:func:`~transformers.PretrainedConfig.get_config_dict` method.
kwargs (:obj:`Dict[str, Any]`):
Additional parameters from which to initialize the configuration object.
Returns:
:class:`PretrainedConfig`: The configuration object instantiated from those parameters.
"""
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
config = cls(**config_dict)
if hasattr(config, "pruned_heads"):
config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items())
# Update config with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
if key != "torch_dtype":
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
logger.info(f"Model config {config}")
if return_unused_kwargs:
return config, kwargs
else:
return config
@classmethod
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig":
"""
Instantiates a :class:`~transformers.PretrainedConfig` from the path to a JSON file of parameters.
Args:
json_file (:obj:`str` or :obj:`os.PathLike`):
Path to the JSON file containing the parameters.
Returns:
:class:`PretrainedConfig`: The configuration object instantiated from that JSON file.
"""
config_dict = cls._dict_from_json_file(json_file)
return cls(**config_dict)
@classmethod
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return json.loads(text)
def __eq__(self, other):
return self.__dict__ == other.__dict__
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
def to_diff_dict(self) -> Dict[str, Any]:
"""
Removes all attributes from config which correspond to the default config attributes for better readability and
serializes to a Python dictionary.
Returns:
:obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
"""
config_dict = self.to_dict()
# get the default config dict
default_config_dict = PretrainedConfig().to_dict()
# get class specific config dict
class_config_dict = self.__class__().to_dict() if not self.is_composition else {}
serializable_config_dict = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if (
key not in default_config_dict
or key == "transformers_version"
or value != default_config_dict[key]
or (key in class_config_dict and value != class_config_dict[key])
):
serializable_config_dict[key] = value
self.dict_torch_dtype_to_str(serializable_config_dict)
return serializable_config_dict
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
:obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
if hasattr(self.__class__, "model_type"):
output["model_type"] = self.__class__.model_type
# Transformers version when serializing the model
output["transformers_version"] = __version__
self.dict_torch_dtype_to_str(output)
return output
def to_json_string(self, use_diff: bool = True) -> str:
"""
Serializes this instance to a JSON string.
Args:
use_diff (:obj:`bool`, `optional`, defaults to :obj:`True`):
If set to ``True``, only the difference between the config instance and the default
``PretrainedConfig()`` is serialized to JSON string.
Returns:
:obj:`str`: String containing all the attributes that make up this configuration instance in JSON format.
"""
if use_diff is True:
config_dict = self.to_diff_dict()
else:
config_dict = self.to_dict()
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
"""
Save this instance to a JSON file.
Args:
json_file_path (:obj:`str` or :obj:`os.PathLike`):
Path to the JSON file in which this configuration instance's parameters will be saved.
use_diff (:obj:`bool`, `optional`, defaults to :obj:`True`):
If set to ``True``, only the difference between the config instance and the default
``PretrainedConfig()`` is serialized to JSON file.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string(use_diff=use_diff))
def update(self, config_dict: Dict[str, Any]):
"""
Updates attributes of this class with attributes from ``config_dict``.
Args:
config_dict (:obj:`Dict[str, Any]`): Dictionary of attributes that should be updated for this class.
"""
for key, value in config_dict.items():
setattr(self, key, value)
def update_from_string(self, update_str: str):
"""
Updates attributes of this class with attributes from ``update_str``.
The expected format is ints, floats and strings as is, and for booleans use ``true`` or ``false``. For example:
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
The keys to change have to already exist in the config object.
Args:
update_str (:obj:`str`): String with attributes that should be updated for this class.
"""
d = dict(x.split("=") for x in update_str.split(","))
for k, v in d.items():
if not hasattr(self, k):
raise ValueError(f"key {k} isn't in the original config dict")
old_v = getattr(self, k)
if isinstance(old_v, bool):
if v.lower() in ["true", "1", "y", "yes"]:
v = True
elif v.lower() in ["false", "0", "n", "no"]:
v = False
else:
raise ValueError(f"can't derive true or false from {v} (key {k})")
elif isinstance(old_v, int):
v = int(v)
elif isinstance(old_v, float):
v = float(v)
elif not isinstance(old_v, str):
raise ValueError(
f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
)
setattr(self, k, v)
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
"""
Checks whether the passed dictionary has a `torch_dtype` key and if it's not None, converts torch.dtype to a
string of just the type. For example, :obj:`torch.float32` get converted into `"float32"` string, which can
then be stored in the json format.
"""
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]

View File

@ -0,0 +1,388 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integration with Deepspeed
"""
import importlib.util
import io
import json
import weakref
from copy import deepcopy
from functools import partialmethod
from .dependency_versions_check import dep_version_check
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
from fastNLP.core.log import logger
if _NEED_IMPORT_TORCH:
import torch
def is_deepspeed_available():
return importlib.util.find_spec("deepspeed") is not None
class HfDeepSpeedConfig:
"""
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
A ``weakref`` of this object is stored in the module's globals to be able to access the config from areas where
things like the Trainer object is not available (e.g. ``from_pretrained`` and ``_get_resized_embeddings``).
Therefore it's important that this object remains alive while the program is still running.
:class:`~transformers.Trainer` uses the ``HfTrainerDeepSpeedConfig`` subclass instead. That subclass has logic to
sync the configuration with values of :class:`~transformers.TrainingArguments` by replacing special placeholder
values: ``"auto"``. Without this special logic the DeepSpeed configuration is not modified in any way.
Args:
config_file_or_dict (:obj:`Union[str, Dict]`): path to DeepSpeed config file or dict.
"""
def __init__(self, config_file_or_dict):
# set global weakref object
set_hf_deepspeed_config(self)
dep_version_check("deepspeed")
if isinstance(config_file_or_dict, dict):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
config = deepcopy(config_file_or_dict)
elif isinstance(config_file_or_dict, str):
with io.open(config_file_or_dict, "r", encoding="utf-8") as f:
config = json.load(f)
else:
raise ValueError("expecting either a path to a DeepSpeed config file or a pre-populated dict")
self.config = config
# zero stage - this is done as early as possible, before model is created, to allow
# ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object
# during ``zero.Init()`` which needs whether fp16 is enabled, dtype, etc.
self._stage = self.get_value("zero_optimization.stage", -1)
# offload
self._offload = False
if self.is_zero2() or self.is_zero3():
offload_devices_valid = set(["cpu", "nvme"])
offload_devices = set(
[
self.get_value("zero_optimization.offload_optimizer.device"),
self.get_value("zero_optimization.offload_param.device"),
]
)
if len(offload_devices & offload_devices_valid) > 0:
self._offload = True
def find_config_node(self, ds_key_long):
config = self.config
# find the config node of interest if it exists
nodes = ds_key_long.split(".")
ds_key = nodes.pop()
for node in nodes:
config = config.get(node)
if config is None:
return None, ds_key
return config, ds_key
def get_value(self, ds_key_long, default=None):
"""
Returns the set value or ``default`` if no value is set
"""
config, ds_key = self.find_config_node(ds_key_long)
if config is None:
return default
return config.get(ds_key, default)
def is_true(self, ds_key_long):
"""
Returns :obj:`True`/:obj:`False` only if the value is set, always :obj:`False` otherwise. So use this method to
ask the very specific question of whether the value is set to :obj:`True` (and it's not set to :obj:`False` or
isn't set).
"""
value = self.get_value(ds_key_long)
return False if value is None else bool(value)
def is_false(self, ds_key_long):
"""
Returns :obj:`True`/:obj:`False` only if the value is set, always :obj:`False` otherwise. So use this method to
ask the very specific question of whether the value is set to :obj:`False` (and it's not set to :obj:`True` or
isn't set).
"""
value = self.get_value(ds_key_long)
return False if value is None else not bool(value)
def is_zero2(self):
return self._stage == 2
def is_zero3(self):
return self._stage == 3
def is_offload(self):
return self._offload
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
"""
The ``HfTrainerDeepSpeedConfig`` object is meant to be created during ``TrainingArguments`` object creation and has
the same lifespan as the latter.
"""
def __init__(self, config_file_or_dict):
super().__init__(config_file_or_dict)
self._dtype = torch.float16
self.mismatches = []
def dtype(self):
return self._dtype
def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
"""
A utility method that massages the config file and can optionally verify that the values match.
1. Replace "auto" values with ``TrainingArguments`` value.
2. If it wasn't "auto" and ``must_match`` is true, then check that DS config matches Trainer
config values and if mismatched add the entry to ``self.mismatched`` - will assert during
``trainer_config_finalize`` for one or more mismatches.
"""
config, ds_key = self.find_config_node(ds_key_long)
if config is None:
return
if config.get(ds_key) == "auto":
config[ds_key] = hf_val
return
if not must_match:
return
ds_val = config.get(ds_key)
if ds_val is not None and ds_val != hf_val:
self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")
fill_only = partialmethod(fill_match, must_match=False)
def trainer_config_process(self, args):
"""
Adjust the config with ``TrainingArguments`` values. This stage is run during ``TrainingArguments`` object
creation.
"""
# DeepSpeed does:
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
self.fill_match(
"train_micro_batch_size_per_gpu", args.per_device_train_batch_size, "per_device_train_batch_size"
)
self.fill_match("gradient_accumulation_steps", args.gradient_accumulation_steps, "gradient_accumulation_steps")
self.fill_match("train_batch_size", train_batch_size, "train_batch_size (calculated)")
self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm")
self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate")
self.fill_match("optimizer.params.betas", [args.adam_beta1, args.adam_beta2], "adam_beta1+adam_beta2")
self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon")
self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay")
self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg
self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate")
# total_num_steps - will get set in trainer_config_finalize
# fp16
if args.fp16:
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
else:
fp16_backend = None
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
# any here unless the user did the work
self.fill_match("fp16.enabled", fp16_backend == "amp", "fp16+fp16_backend(amp)")
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
# ZeRO features
self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")
# only if we have an explicit fp16.enabled = False then it's fp32, if it's True or this
# whole config section is missing then the fallback is fp16
if self.is_false("fp16.enabled"):
self._dtype = torch.float32
# later there will be other dtypes besides just fp16 and fp32
# also not quite sure what dtype should be under apex, defaulting to fp16 for now
def trainer_config_finalize(self, args, model, num_training_steps):
"""
This stage is run after we have the model and know num_training_steps.
Now we we can complete the configuration process.
"""
# zero
if self.is_zero3():
# automatically assign the optimal config values based on model config
hidden_size = model.config.hidden_size
self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
self.fill_only("zero_optimization.stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size)
self.fill_only("zero_optimization.stage3_param_persistence_threshold", 10 * hidden_size)
# scheduler
self.fill_match("scheduler.params.total_num_steps", num_training_steps, "num_training_steps (calculated)")
self.fill_match("scheduler.params.warmup_num_steps", args.get_warmup_steps(num_training_steps), "warmup_steps")
if len(self.mismatches) > 0:
mismatches = "\n".join(self.mismatches)
raise ValueError(
f"Please correct the following DeepSpeed config values that mismatch TrainingArguments values:\n{mismatches}\n"
"The easiest method is to set these DeepSpeed config values to 'auto'."
)
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
_hf_deepspeed_config_weak_ref = None
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
global _hf_deepspeed_config_weak_ref
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
def is_deepspeed_zero3_enabled():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().is_zero3()
else:
return False
def deepspeed_config():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().config
else:
return None
def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None):
"""
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
If ``resume_from_checkpoint`` was passed then an attempt to resume from a previously saved checkpoint will be made.
Args:
trainer: Trainer object
num_training_steps: per single gpu
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
Returns: model, optimizer, lr_scheduler
"""
import deepspeed
from deepspeed.utils import logger as ds_logger
model = trainer.model
args = trainer.args
hf_deepspeed_config = args.hf_deepspeed_config
hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
# resume config update - some bits like `model` and `num_training_steps` only become available during train
config = hf_deepspeed_config.config
# Optimizer + Scheduler
# Currently supported combos:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Yes
# 3. DS scheduler + HF optimizer: Yes
# 4. HF scheduler + DS optimizer: Yes
#
# Unless Offload is enabled in which case it's:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Mostly*
# 3. DS scheduler + HF optimizer: Mostly*
# 4. HF scheduler + DS optimizer: Yes
#
# Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB)
optimizer = None
if "optimizer" in config:
if args.adafactor:
raise ValueError(
"--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
"Only one optimizer can be configured."
)
else:
if hf_deepspeed_config.is_offload():
logger.info(
"Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the custom optimizer has both CPU and GPU implementation (except LAMB)"
)
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
# But trainer uses AdamW by default.
optimizer = trainer.create_optimizer()
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
config["zero_allow_untested_optimizer"] = True
def _lr_scheduler_callable(optimizer):
return trainer.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
lr_scheduler = None
if "scheduler" not in config:
if optimizer is None:
# Optimizer is not available, so use callable to defer lr_scheduler creation to DS init
lr_scheduler = _lr_scheduler_callable
else:
lr_scheduler = trainer.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
# keep for quick debug:
# from pprint import pprint; pprint(config)
# set the Deepspeed log level consistent with the trainer
ds_logger.setLevel(args.get_process_log_level())
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
model_parameters=model_parameters,
config_params=config,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
if resume_from_checkpoint is not None:
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
# path contains what looks like a deepspeed checkpoint
import glob
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{resume_from_checkpoint}/global_step*"))
if len(deepspeed_checkpoint_dirs) > 0:
logger.info(f"Attempting to resume from {resume_from_checkpoint}")
# this magically updates self.optimizer and self.lr_scheduler
load_path, _ = model.load_checkpoint(
resume_from_checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True
)
if load_path is None:
raise ValueError(f"[deepspeed] failed to resume from checkpoint {resume_from_checkpoint}")
else:
logger.info(f"{resume_from_checkpoint} doesn't have deepspeed checkpoints, doing nothing")
return model, optimizer, lr_scheduler

View File

@ -0,0 +1,20 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version
def dep_version_check(pkg, hint=None):
require_version(deps[pkg], hint)

View File

@ -0,0 +1,76 @@
# THIS FILE HAS BEEN AUTOGENERATED. To update:
# 1. modify the `_deps` dict in setup.py
# 2. run `make deps_table_update``
deps = {
"Pillow": "Pillow",
"black": "black==21.4b0",
"codecarbon": "codecarbon==1.2.0",
"cookiecutter": "cookiecutter==1.7.2",
"dataclasses": "dataclasses",
"datasets": "datasets",
"deepspeed": "deepspeed>=0.5.3",
"docutils": "docutils==0.16.0",
"fairscale": "fairscale>0.3",
"faiss-cpu": "faiss-cpu",
"fastapi": "fastapi",
"filelock": "filelock",
"flake8": "flake8>=3.8.3",
"flax": "flax>=0.3.4",
"fugashi": "fugashi>=1.0",
"GitPython": "GitPython<3.1.19",
"huggingface-hub": "huggingface-hub>=0.0.17",
"importlib_metadata": "importlib_metadata",
"ipadic": "ipadic>=1.0.0,<2.0",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8",
"jaxlib": "jaxlib>=0.1.65",
"jieba": "jieba",
"keras2onnx": "keras2onnx",
"nltk": "nltk",
"numpy": "numpy>=1.17",
"onnxconverter-common": "onnxconverter-common",
"onnxruntime-tools": "onnxruntime-tools>=1.4.2",
"onnxruntime": "onnxruntime>=1.4.0",
"optuna": "optuna",
"optax": "optax>=0.0.8",
"packaging": "packaging>=20.0",
"parameterized": "parameterized",
"protobuf": "protobuf",
"psutil": "psutil",
"pyyaml": "pyyaml>=5.1",
"pydantic": "pydantic",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"python": "python>=3.6.0",
"ray[tune]": "ray[tune]",
"recommonmark": "recommonmark",
"regex": "regex!=2019.12.17",
"requests": "requests",
"rouge-score": "rouge-score",
"sacrebleu": "sacrebleu>=1.4.12,<2.0.0",
"sacremoses": "sacremoses",
"sagemaker": "sagemaker>=2.31.0",
"scikit-learn": "scikit-learn",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"sigopt": "sigopt",
"soundfile": "soundfile",
"sphinx-copybutton": "sphinx-copybutton",
"sphinx-markdown-tables": "sphinx-markdown-tables",
"sphinx-rtd-theme": "sphinx-rtd-theme==0.4.3",
"sphinx": "sphinx==3.2.1",
"sphinxext-opengraph": "sphinxext-opengraph==0.4.1",
"sphinx-intl": "sphinx-intl",
"starlette": "starlette",
"tensorflow-cpu": "tensorflow-cpu>=2.3",
"tensorflow": "tensorflow>=2.3",
"timeout-decorator": "timeout-decorator",
"timm": "timm",
"tokenizers": "tokenizers>=0.10.1,<0.11",
"torch": "torch>=1.0",
"torchaudio": "torchaudio",
"tqdm": "tqdm>=4.27",
"unidic": "unidic>=1.0.2",
"unidic_lite": "unidic_lite>=1.0.7",
"uvicorn": "uvicorn",
}

View File

@ -0,0 +1,934 @@
import copy
import fnmatch
import importlib.util
import io
import json
import os
import re
import shutil
import sys
import tarfile
import tempfile
import operator
from collections import OrderedDict, UserDict
from contextlib import contextmanager
from dataclasses import fields
from enum import Enum
from functools import partial
from hashlib import sha256
from pathlib import Path
from typing import Any, BinaryIO, Dict, Optional, Tuple, Union
from urllib.parse import urlparse
from uuid import uuid4
from zipfile import ZipFile, is_zipfile
import numpy as np
# from tqdm.auto import tqdm
import requests
from . import __version__
from .utils.versions import importlib_metadata
from fastNLP.envs.imports import _NEED_IMPORT_TORCH, _TORCH_GREATER_EQUAL_1_8
from fastNLP.envs.utils import _compare_version
from fastNLP.core.log import logger
if _NEED_IMPORT_TORCH:
import torch
_torch_version = importlib_metadata.version("torch")
hf_cache_home = os.path.expanduser(
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
default_cache_path = os.path.join(hf_cache_home, "transformers")
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
SESSION_ID = uuid4().hex
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", False) in ENV_VARS_TRUE_VALUES
WEIGHTS_NAME = "pytorch_model.bin"
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
_staging_mode = os.environ.get("HUGGINGFACE_CO_STAGING", "NO").upper() in ENV_VARS_TRUE_VALUES
_default_endpoint = "https://moon-staging.huggingface.co" if _staging_mode else "https://huggingface.co"
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", _default_endpoint)
HUGGINGFACE_CO_PREFIX = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/{model_id}/resolve/{revision}/{filename}"
CONFIG_NAME = "config.json"
_is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False
@contextmanager
def filelock(path):
try:
import fcntl
open_mode = os.O_RDWR | os.O_CREAT | os.O_TRUNC
fd = os.open(path, open_mode)
fcntl.flock(fd, fcntl.LOCK_EX | fcntl.LOCK_NB)
except:
pass
yield
try:
fcntl.flock(fd, fcntl.LOCK_UN)
os.close(fd)
except:
pass
def is_offline_mode():
return _is_offline_mode
def is_training_run_on_sagemaker():
return "SAGEMAKER_JOB_NAME" in os.environ
def add_start_docstrings(*docstr):
def docstring_decorator(fn):
fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
return fn
return docstring_decorator
def add_start_docstrings_to_model_forward(*docstr):
def docstring_decorator(fn):
class_name = f":class:`~transformers.{fn.__qualname__.split('.')[0]}`"
intro = f" The {class_name} forward method, overrides the :func:`__call__` special method."
note = r"""
.. note::
Although the recipe for forward pass needs to be defined within this function, one should call the
:class:`Module` instance afterwards instead of this since the former takes care of running the pre and post
processing steps while the latter silently ignores them.
"""
fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
return fn
return docstring_decorator
def add_end_docstrings(*docstr):
def docstring_decorator(fn):
fn.__doc__ = fn.__doc__ + "".join(docstr)
return fn
return docstring_decorator
PT_RETURN_INTRODUCTION = r"""
Returns:
:class:`~{full_output_type}` or :obj:`tuple(torch.FloatTensor)`: A :class:`~{full_output_type}` or a tuple of
:obj:`torch.FloatTensor` (if ``return_dict=False`` is passed or when ``config.return_dict=False``) comprising
various elements depending on the configuration (:class:`~transformers.{config_class}`) and inputs.
"""
def _get_indent(t):
"""Returns the indentation in the first line of t"""
search = re.search(r"^(\s*)\S", t)
return "" if search is None else search.groups()[0]
def _convert_output_args_doc(output_args_doc):
"""Convert output_args_doc to display properly."""
# Split output_arg_doc in blocks argument/description
indent = _get_indent(output_args_doc)
blocks = []
current_block = ""
for line in output_args_doc.split("\n"):
# If the indent is the same as the beginning, the line is the name of new arg.
if _get_indent(line) == indent:
if len(current_block) > 0:
blocks.append(current_block[:-1])
current_block = f"{line}\n"
else:
# Otherwise it's part of the description of the current arg.
# We need to remove 2 spaces to the indentation.
current_block += f"{line[2:]}\n"
blocks.append(current_block[:-1])
# Format each block for proper rendering
for i in range(len(blocks)):
blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i])
blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i])
return "\n".join(blocks)
def _prepare_output_docstrings(output_type, config_class):
"""
Prepares the return part of the docstring using `output_type`.
"""
docstrings = output_type.__doc__
# Remove the head of the docstring to keep the list of args only
lines = docstrings.split("\n")
i = 0
while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None:
i += 1
if i < len(lines):
docstrings = "\n".join(lines[(i + 1) :])
docstrings = _convert_output_args_doc(docstrings)
# Add the return introduction
full_output_type = f"{output_type.__module__}.{output_type.__name__}"
intro = PT_RETURN_INTRODUCTION
intro = intro.format(full_output_type=full_output_type, config_class=config_class)
return intro + docstrings
PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
Example::
>>> from transformers import {tokenizer_class}, {model_class}
>>> import torch
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}')
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0) # Batch size 1
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
"""
PT_QUESTION_ANSWERING_SAMPLE = r"""
Example::
>>> from transformers import {tokenizer_class}, {model_class}
>>> import torch
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}')
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors='pt')
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
"""
PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
Example::
>>> from transformers import {tokenizer_class}, {model_class}
>>> import torch
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}')
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
"""
PT_MASKED_LM_SAMPLE = r"""
Example::
>>> from transformers import {tokenizer_class}, {model_class}
>>> import torch
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}')
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
"""
PT_BASE_MODEL_SAMPLE = r"""
Example::
>>> from transformers import {tokenizer_class}, {model_class}
>>> import torch
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}')
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
"""
PT_MULTIPLE_CHOICE_SAMPLE = r"""
Example::
>>> from transformers import {tokenizer_class}, {model_class}
>>> import torch
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}')
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors='pt', padding=True)
>>> outputs = model(**{{k: v.unsqueeze(0) for k,v in encoding.items()}}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
"""
PT_CAUSAL_LM_SAMPLE = r"""
Example::
>>> import torch
>>> from transformers import {tokenizer_class}, {model_class}
>>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}')
>>> model = {model_class}.from_pretrained('{checkpoint}')
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
"""
PT_SAMPLE_DOCSTRINGS = {
"SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE,
"QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE,
"TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE,
"MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE,
"MaskedLM": PT_MASKED_LM_SAMPLE,
"LMHead": PT_CAUSAL_LM_SAMPLE,
"BaseModel": PT_BASE_MODEL_SAMPLE,
}
def add_code_sample_docstrings(
*docstr, tokenizer_class=None, checkpoint=None, output_type=None, config_class=None, mask=None, model_cls=None
):
def docstring_decorator(fn):
# model_class defaults to function's class if not specified otherwise
model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls
sample_docstrings = PT_SAMPLE_DOCSTRINGS
doc_kwargs = dict(model_class=model_class, tokenizer_class=tokenizer_class, checkpoint=checkpoint)
if "SequenceClassification" in model_class:
code_sample = sample_docstrings["SequenceClassification"]
elif "QuestionAnswering" in model_class:
code_sample = sample_docstrings["QuestionAnswering"]
elif "TokenClassification" in model_class:
code_sample = sample_docstrings["TokenClassification"]
elif "MultipleChoice" in model_class:
code_sample = sample_docstrings["MultipleChoice"]
elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]:
doc_kwargs["mask"] = "[MASK]" if mask is None else mask
code_sample = sample_docstrings["MaskedLM"]
elif "LMHead" in model_class or "CausalLM" in model_class:
code_sample = sample_docstrings["LMHead"]
elif "Model" in model_class or "Encoder" in model_class:
code_sample = sample_docstrings["BaseModel"]
else:
raise ValueError(f"Docstring can't be built for model {model_class}")
output_doc = _prepare_output_docstrings(output_type, config_class) if output_type is not None else ""
built_doc = code_sample.format(**doc_kwargs)
fn.__doc__ = (fn.__doc__ or "") + "".join(docstr) + output_doc + built_doc
return fn
return docstring_decorator
def replace_return_docstrings(output_type=None, config_class=None):
def docstring_decorator(fn):
docstrings = fn.__doc__
lines = docstrings.split("\n")
i = 0
while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None:
i += 1
if i < len(lines):
lines[i] = _prepare_output_docstrings(output_type, config_class)
docstrings = "\n".join(lines)
else:
raise ValueError(
f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, current docstring is:\n{docstrings}"
)
fn.__doc__ = docstrings
return fn
return docstring_decorator
def is_remote_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def hf_bucket_url(
model_id: str, filename: str, subfolder: Optional[str] = None, revision: Optional[str] = None, mirror=None
) -> str:
"""
Resolve a model identifier, a file name, and an optional revision id, to a huggingface.co-hosted url, redirecting
to Cloudfront (a Content Delivery Network, or CDN) for large files.
Cloudfront is replicated over the globe so downloads are way faster for the end user (and it also lowers our
bandwidth costs).
Cloudfront aggressively caches files by default (default TTL is 24 hours), however this is not an issue here
because we migrated to a git-based versioning system on huggingface.co, so we now store the files on S3/Cloudfront
in a content-addressable way (i.e., the file name is its hash). Using content-addressable filenames means cache
can't ever be stale.
In terms of client-side caching from this library, we base our caching on the objects' ETag. An object' ETag is:
its sha1 if stored in git, or its sha256 if stored in git-lfs. Files cached locally from transformers before v3.5.0
are not shared with those new files, because the cached file's name contains a hash of the url (which changed).
"""
if subfolder is not None:
filename = f"{subfolder}/{filename}"
if mirror:
if mirror in ["tuna", "bfsu"]:
raise ValueError("The Tuna and BFSU mirrors are no longer available. Try removing the mirror argument.")
legacy_format = "/" not in model_id
if legacy_format:
return f"{mirror}/{model_id}-{filename}"
else:
return f"{mirror}/{model_id}/{filename}"
if revision is None:
revision = "main"
return HUGGINGFACE_CO_PREFIX.format(model_id=model_id, revision=revision, filename=filename)
def url_to_filename(url: str, etag: Optional[str] = None) -> str:
"""
Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's,
delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can
identify it as a HDF5 file (see
https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
"""
url_bytes = url.encode("utf-8")
filename = sha256(url_bytes).hexdigest()
if etag:
etag_bytes = etag.encode("utf-8")
filename += "." + sha256(etag_bytes).hexdigest()
if url.endswith(".h5"):
filename += ".h5"
return filename
def cached_path(
url_or_filename,
cache_dir=None,
force_download=False,
proxies=None,
resume_download=False,
user_agent: Union[Dict, str, None] = None,
extract_compressed_file=False,
force_extract=False,
use_auth_token: Union[bool, str, None] = None,
local_files_only=False,
) -> Optional[str]:
"""
Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file
and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and
then return the path
Args:
cache_dir: specify a cache directory to save the file to (overwrite the default cache dir).
force_download: if True, re-download the file even if it's already cached in the cache dir.
resume_download: if True, resume the download if incompletely received file is found.
user_agent: Optional string or dict that will be appended to the user-agent on remote requests.
use_auth_token: Optional string or boolean to use as Bearer token for remote files. If True,
will get token from ~/.huggingface.
extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed
file in a folder along the archive.
force_extract: if True when extract_compressed_file is True and the archive was already extracted,
re-extract the archive and override the folder where it was extracted.
Return:
Local path (string) of file or if networking is off, last version of file cached on disk.
Raises:
In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
"""
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
if is_remote_url(url_or_filename):
# URL, so get it from the cache (downloading if necessary)
output_path = get_from_cache(
url_or_filename,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
user_agent=user_agent,
use_auth_token=use_auth_token,
local_files_only=local_files_only,
)
elif os.path.exists(url_or_filename):
# File, and it exists.
output_path = url_or_filename
elif urlparse(url_or_filename).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError(f"file {url_or_filename} not found")
else:
# Something unknown
raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path")
if extract_compressed_file:
if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
output_dir, output_file = os.path.split(output_path)
output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
output_path_extracted = os.path.join(output_dir, output_extract_dir_name)
if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lock_path = output_path + ".lock"
with filelock(lock_path):
shutil.rmtree(output_path_extracted, ignore_errors=True)
os.makedirs(output_path_extracted)
if is_zipfile(output_path):
with ZipFile(output_path, "r") as zip_file:
zip_file.extractall(output_path_extracted)
zip_file.close()
elif tarfile.is_tarfile(output_path):
tar_file = tarfile.open(output_path)
tar_file.extractall(output_path_extracted)
tar_file.close()
else:
raise EnvironmentError(f"Archive format of {output_path} could not be identified")
return output_path_extracted
return output_path
def define_sagemaker_information():
try:
instance_data = requests.get(os.environ["ECS_CONTAINER_METADATA_URI"]).json()
dlc_container_used = instance_data["Image"]
dlc_tag = instance_data["Image"].split(":")[1]
except Exception:
dlc_container_used = None
dlc_tag = None
sagemaker_params = json.loads(os.getenv("SM_FRAMEWORK_PARAMS", "{}"))
runs_distributed_training = True if "sagemaker_distributed_dataparallel_enabled" in sagemaker_params else False
account_id = os.getenv("TRAINING_JOB_ARN").split(":")[4] if "TRAINING_JOB_ARN" in os.environ else None
sagemaker_object = {
"sm_framework": os.getenv("SM_FRAMEWORK_MODULE", None),
"sm_region": os.getenv("AWS_REGION", None),
"sm_number_gpu": os.getenv("SM_NUM_GPUS", 0),
"sm_number_cpu": os.getenv("SM_NUM_CPUS", 0),
"sm_distributed_training": runs_distributed_training,
"sm_deep_learning_container": dlc_container_used,
"sm_deep_learning_container_tag": dlc_tag,
"sm_account_id": account_id,
}
return sagemaker_object
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
"""
Formats a user-agent string with basic info about a request.
"""
ua = f"transformers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
if _NEED_IMPORT_TORCH:
ua += f"; torch/{_torch_version}"
if DISABLE_TELEMETRY:
return ua + "; telemetry/off"
if is_training_run_on_sagemaker():
ua += "; " + "; ".join(f"{k}/{v}" for k, v in define_sagemaker_information().items())
# CI will set this value to True
if os.environ.get("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(user_agent, dict):
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
elif isinstance(user_agent, str):
ua += "; " + user_agent
return ua
def http_get(url: str, temp_file: BinaryIO, proxies=None, resume_size=0, headers: Optional[Dict[str, str]] = None):
"""
Download remote file. Do not gobble up errors.
"""
headers = copy.deepcopy(headers)
if resume_size > 0:
headers["Range"] = f"bytes={resume_size}-"
r = requests.get(url, stream=True, proxies=proxies, headers=headers)
r.raise_for_status()
content_length = r.headers.get("Content-Length")
total = resume_size + int(content_length) if content_length is not None else None
# progress = tqdm(
# unit="B",
# unit_scale=True,
# unit_divisor=1024,
# total=total,
# initial=resume_size,
# desc="Downloading",
# disable=bool(logging.get_verbosity() == logging.NOTSET),
# )
for chunk in r.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
# progress.update(len(chunk))
temp_file.write(chunk)
# progress.close()
def get_from_cache(
url: str,
cache_dir=None,
force_download=False,
proxies=None,
etag_timeout=10,
resume_download=False,
user_agent: Union[Dict, str, None] = None,
use_auth_token: Union[bool, str, None] = None,
local_files_only=False,
) -> Optional[str]:
"""
Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the
path to the cached file.
Return:
Local path (string) of file or if networking is off, last version of file cached on disk.
Raises:
In case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
"""
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
headers = {"user-agent": http_user_agent(user_agent)}
if isinstance(use_auth_token, str):
headers["authorization"] = f"Bearer {use_auth_token}"
elif use_auth_token:
raise RuntimeError("`use_auth_token=True` is not supported in FastNLP now")
# token = HfFolder.get_token()
# if token is None:
# raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
# headers["authorization"] = f"Bearer {token}"
url_to_download = url
etag = None
if not local_files_only:
try:
r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=etag_timeout)
r.raise_for_status()
etag = r.headers.get("X-Linked-Etag") or r.headers.get("ETag")
# We favor a custom header indicating the etag of the linked resource, and
# we fallback to the regular etag header.
# If we don't have any of those, raise an error.
if etag is None:
raise OSError(
"Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility."
)
# In case of a redirect,
# save an extra redirect on the request.get call,
# and ensure we download the exact atomic version even if it changed
# between the HEAD and the GET (unlikely, but hey).
if 300 <= r.status_code <= 399:
url_to_download = r.headers["Location"]
except (requests.exceptions.SSLError, requests.exceptions.ProxyError):
# Actually raise for those subclasses of ConnectionError
raise
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
# Otherwise, our Internet connection is down.
# etag is None
pass
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
# etag is None == we don't have a connection or we passed local_files_only.
# try to get the last downloaded one
if etag is None:
if os.path.exists(cache_path):
return cache_path
else:
matching_files = [
file
for file in fnmatch.filter(os.listdir(cache_dir), filename.split(".")[0] + ".*")
if not file.endswith(".json") and not file.endswith(".lock")
]
if len(matching_files) > 0:
return os.path.join(cache_dir, matching_files[-1])
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise FileNotFoundError(
"Cannot find the requested files in the cached path and outgoing traffic has been"
" disabled. To enable model look-ups and downloads online, set 'local_files_only'"
" to False."
)
else:
raise ValueError(
"Connection error, and we cannot find the requested files in the cached path."
" Please try again or make sure your Internet connection is on."
)
# From now on, etag is not None.
if os.path.exists(cache_path) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lock_path = cache_path + ".lock"
with filelock(lock_path):
# If the download just completed while the lock was activated.
if os.path.exists(cache_path) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
incomplete_path = cache_path + ".incomplete"
@contextmanager
def _resumable_file_manager() -> "io.BufferedWriter":
with open(incomplete_path, "ab") as f:
yield f
temp_file_manager = _resumable_file_manager
if os.path.exists(incomplete_path):
resume_size = os.stat(incomplete_path).st_size
else:
resume_size = 0
else:
temp_file_manager = partial(tempfile.NamedTemporaryFile, mode="wb", dir=cache_dir, delete=False)
resume_size = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}")
http_get(url_to_download, temp_file, proxies=proxies, resume_size=resume_size, headers=headers)
logger.info(f"storing {url} in cache at {cache_path}")
os.replace(temp_file.name, cache_path)
# NamedTemporaryFile creates a file with hardwired 0600 perms (ignoring umask), so fixing it.
umask = os.umask(0o666)
os.umask(umask)
os.chmod(cache_path, 0o666 & ~umask)
logger.info(f"creating metadata file for {cache_path}")
meta = {"url": url, "etag": etag}
meta_path = cache_path + ".json"
with open(meta_path, "w") as meta_file:
json.dump(meta, meta_file)
return cache_path
def is_torch_fx_available():
return _TORCH_GREATER_EQUAL_1_8 and _compare_version("torch", operator.lt, "1.9.0")
def is_torch_fx_proxy(x):
if is_torch_fx_available():
import torch.fx
return isinstance(x, torch.fx.Proxy)
return False
def is_sentencepiece_available():
return importlib.util.find_spec("sentencepiece") is not None
def is_tokenizers_available():
return importlib.util.find_spec("tokenizers") is not None
def is_tensor(x):
"""
Tests if ``x`` is a :obj:`torch.Tensor`, :obj:`tf.Tensor`, obj:`jaxlib.xla_extension.DeviceArray` or
:obj:`np.ndarray`.
"""
if is_torch_fx_proxy(x):
return True
if isinstance(x, torch.Tensor):
return True
return isinstance(x, np.ndarray)
def to_py_obj(obj):
"""
Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list.
"""
if isinstance(obj, (dict, UserDict)):
return {k: to_py_obj(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return [to_py_obj(o) for o in obj]
elif _NEED_IMPORT_TORCH and _is_torch(obj):
return obj.detach().cpu().tolist()
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
def _is_numpy(x):
return isinstance(x, np.ndarray)
def _is_torch(x):
import torch
return isinstance(x, torch.Tensor)
def _is_torch_device(x):
import torch
return isinstance(x, torch.device)
class ModelOutput(OrderedDict):
"""
Base class for all model outputs as dataclass. Has a ``__getitem__`` that allows indexing by integer or slice (like
a tuple) or strings (like a dictionary) that will ignore the ``None`` attributes. Otherwise behaves like a regular
python dictionary.
.. warning::
You can't unpack a :obj:`ModelOutput` directly. Use the :meth:`~transformers.file_utils.ModelOutput.to_tuple`
method to convert it to a tuple before.
"""
def __post_init__(self):
class_fields = fields(self)
# Safety and consistency checks
assert len(class_fields), f"{self.__class__.__name__} has no fields."
assert all(
field.default is None for field in class_fields[1:]
), f"{self.__class__.__name__} should not have more than one required field."
first_field = getattr(self, class_fields[0].name)
other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])
if other_fields_are_none and not is_tensor(first_field):
if isinstance(first_field, dict):
iterator = first_field.items()
first_field_iterator = True
else:
try:
iterator = iter(first_field)
first_field_iterator = True
except TypeError:
first_field_iterator = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for element in iterator:
if (
not isinstance(element, (list, tuple))
or not len(element) == 2
or not isinstance(element[0], str)
):
break
setattr(self, element[0], element[1])
if element[1] is not None:
self[element[0]] = element[1]
elif first_field is not None:
self[class_fields[0].name] = first_field
else:
for field in class_fields:
v = getattr(self, field.name)
if v is not None:
self[field.name] = v
def __delitem__(self, *args, **kwargs):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def setdefault(self, *args, **kwargs):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def pop(self, *args, **kwargs):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = {k: v for (k, v) in self.items()}
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
# Will raise a KeyException if needed
super().__setitem__(key, value)
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(key, value)
def to_tuple(self) -> Tuple[Any]:
"""
Convert self to a tuple containing all the attributes/keys that are not ``None``.
"""
return tuple(self[k] for k in self.keys())
class ExplicitEnum(Enum):
"""
Enum with more explicit error message for missing values.
"""
@classmethod
def _missing_(cls, value):
raise ValueError(
f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}"
)
class PaddingStrategy(ExplicitEnum):
"""
Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion
in an IDE.
"""
LONGEST = "longest"
MAX_LENGTH = "max_length"
DO_NOT_PAD = "do_not_pad"
class TensorType(ExplicitEnum):
"""
Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
tab-completion in an IDE.
"""
PYTORCH = "pt"
NUMPY = "np"

View File

@ -0,0 +1,393 @@
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from collections import UserDict
from typing import Optional, Tuple
from .file_utils import add_start_docstrings
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
from fastNLP.core.log import logger
if _NEED_IMPORT_TORCH:
import torch
PROCESS_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from :class:`~transformers.PreTrainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
next_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2 * num_beams)`):
Current scores of the top :obj:`2 * num_beams` non-finished beam hypotheses.
next_tokens (:obj:`torch.LongTensor` of shape :obj:`(batch_size, 2 * num_beams)`):
:obj:`input_ids` of the tokens corresponding to the top :obj:`2 * num_beams` non-finished beam hypotheses.
next_indices (:obj:`torch.LongTensor` of shape :obj:`(batch_size, 2 * num_beams)`):
Beam indices indicating to which beam hypothesis the :obj:`next_tokens` correspond.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
Return:
:obj:`UserDict`: A dictionary composed of the fields as defined above:
- **next_beam_scores** (:obj:`torch.FloatTensor` of shape :obj:`(batch_size * num_beams)`) -- Updated
scores of all non-finished beams.
- **next_beam_tokens** (:obj:`torch.FloatTensor` of shape :obj:`(batch_size * num_beams)`) -- Next tokens
to be added to the non-finished beam_hypotheses.
- **next_beam_indices** (:obj:`torch.FloatTensor` of shape :obj:`(batch_size * num_beams)`) -- Beam indices
indicating to which beam the next tokens shall be added.
"""
FINALIZE_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from :class:`~transformers.PreTrainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
final_beam_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size * num_beams)`):
The final scores of all non-finished beams.
final_beam_tokens (:obj:`torch.FloatTensor` of shape :obj:`(batch_size * num_beams)`):
The last tokens to be added to the non-finished beam_hypotheses.
final_beam_indices (:obj:`torch.FloatTensor` of shape :obj:`(batch_size * num_beams)`):
The beam indices indicating to which beam the :obj:`final_beam_tokens` shall be added.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
Return:
:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_return_sequences, sequence_length)`: The generated
sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or shorter if all
batches finished early due to the :obj:`eos_token_id`.
"""
class BeamScorer(ABC):
"""
Abstract base class for all beam scorers that are used for :meth:`~transformers.PreTrainedModel.beam_search` and
:meth:`~transformers.PreTrainedModel.beam_sample`.
"""
@abstractmethod
@add_start_docstrings(PROCESS_INPUTS_DOCSTRING)
def process(
self,
input_ids: "torch.LongTensor",
next_scores: "torch.FloatTensor",
next_tokens: "torch.LongTensor",
next_indices: "torch.LongTensor",
**kwargs
) -> Tuple["torch.Tensor"]:
raise NotImplementedError("This is an abstract method.")
@abstractmethod
@add_start_docstrings(FINALIZE_INPUTS_DOCSTRING)
def finalize(
self,
input_ids: "torch.LongTensor",
next_scores: "torch.FloatTensor",
next_tokens: "torch.LongTensor",
next_indices: "torch.LongTensor",
max_length: int,
**kwargs
) -> "torch.LongTensor":
raise NotImplementedError("This is an abstract method.")
class BeamSearchScorer(BeamScorer):
r"""
:class:`transformers.BeamScorer` implementing standard beam search decoding.
Adapted in part from `Facebook's XLM beam search code
<https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529>`__.
Reference for the diverse beam search algorithm and implementation `Ashwin Kalyan's DBS implementation
<https://github.com/ashwinkalyan/dbs/blob/master/dbs/beam_utils.lua>`__
Args:
batch_size (:obj:`int`):
Batch Size of :obj:`input_ids` for which standard beam search decoding is run in parallel.
max_length (:obj:`int`):
The maximum length of the sequence to be generated.
num_beams (:obj:`int`):
Number of beams for beam search.
device (:obj:`torch.device`):
Defines the device type (*e.g.*, :obj:`"cpu"` or :obj:`"cuda"`) on which this instance of
:obj:`BeamSearchScorer` will be allocated.
length_penalty (:obj:`float`, `optional`, defaults to 1.0):
Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the
model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer
sequences.
do_early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to stop the beam search when at least ``num_beams`` sentences are finished per batch or not.
num_beam_hyps_to_keep (:obj:`int`, `optional`, defaults to 1):
The number of beam hypotheses that shall be returned upon calling
:meth:`~transformer.BeamSearchScorer.finalize`.
num_beam_groups (:obj:`int`):
Number of groups to divide :obj:`num_beams` into in order to ensure diversity among different groups of
beams. See `this paper <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
"""
def __init__(
self,
batch_size: int,
num_beams: int,
device: "torch.device",
length_penalty: Optional[float] = 1.0,
do_early_stopping: Optional[bool] = False,
num_beam_hyps_to_keep: Optional[int] = 1,
num_beam_groups: Optional[int] = 1,
**kwargs,
):
self.num_beams = num_beams
self.device = device
self.length_penalty = length_penalty
self.do_early_stopping = do_early_stopping
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
self.num_beam_groups = num_beam_groups
self.group_size = self.num_beams // self.num_beam_groups
self._is_init = False
self._beam_hyps = [
BeamHypotheses(
num_beams=self.num_beams,
length_penalty=self.length_penalty,
early_stopping=self.do_early_stopping,
)
for _ in range(batch_size)
]
self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device)
if not isinstance(num_beams, int) or num_beams <= 1:
raise ValueError(
f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1, one should make use of `greedy_search` instead."
)
if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
raise ValueError(
f"`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` "
f"has to be divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
)
if "max_length" in kwargs:
logger.warn(
"Passing `max_length` to BeamSearchScorer is deprecated and has no effect."
"`max_length` should be passed directly to `beam_search(...)`, `beam_sample(...)`"
",or `group_beam_search(...)`."
)
@property
def is_done(self) -> bool:
return self._done.all()
def process(
self,
input_ids: "torch.LongTensor",
next_scores: "torch.FloatTensor",
next_tokens: "torch.LongTensor",
next_indices: "torch.LongTensor",
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
) -> Tuple["torch.Tensor"]:
cur_len = input_ids.shape[-1]
batch_size = len(self._beam_hyps)
assert batch_size == (input_ids.shape[0] // self.group_size)
device = input_ids.device
next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
for batch_idx, beam_hyp in enumerate(self._beam_hyps):
if self._done[batch_idx]:
assert (
len(beam_hyp) >= self.num_beams
), f"Batch can only be done if at least {self.num_beams} beams have been generated"
assert (
eos_token_id is not None and pad_token_id is not None
), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined"
# pad the batch
next_beam_scores[batch_idx, :] = 0
next_beam_tokens[batch_idx, :] = pad_token_id
next_beam_indices[batch_idx, :] = 0
continue
# next tokens for this sentence
beam_idx = 0
for beam_token_rank, (next_token, next_score, next_index) in enumerate(
zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
):
batch_beam_idx = batch_idx * self.group_size + next_index
# add to generated hypotheses if end of sentence
if (eos_token_id is not None) and (next_token.item() == eos_token_id):
# if beam_token does not belong to top num_beams tokens, it should not be added
is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
if is_beam_token_worse_than_top_num_beams:
continue
beam_hyp.add(
input_ids[batch_beam_idx].clone(),
next_score.item(),
)
else:
# add next predicted token since it is not eos_token
next_beam_scores[batch_idx, beam_idx] = next_score
next_beam_tokens[batch_idx, beam_idx] = next_token
next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
beam_idx += 1
# once the beam for next step is full, don't add more tokens to it.
if beam_idx == self.group_size:
break
if beam_idx < self.group_size:
raise ValueError(
f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id: {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
)
# Check if we are done so that we can save a pad step if all(done)
self._done[batch_idx] = self._done[batch_idx] or beam_hyp.is_done(
next_scores[batch_idx].max().item(), cur_len
)
return UserDict(
{
"next_beam_scores": next_beam_scores.view(-1),
"next_beam_tokens": next_beam_tokens.view(-1),
"next_beam_indices": next_beam_indices.view(-1),
}
)
def finalize(
self,
input_ids: "torch.LongTensor",
final_beam_scores: "torch.FloatTensor",
final_beam_tokens: "torch.LongTensor",
final_beam_indices: "torch.LongTensor",
max_length: int,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
) -> Tuple["torch.LongTensor"]:
batch_size = len(self._beam_hyps)
# finalize all open beam hypotheses and add to generated hypotheses
for batch_idx, beam_hyp in enumerate(self._beam_hyps):
if self._done[batch_idx]:
continue
# all open beam hypotheses are added to the beam hypothesis
# beam hypothesis class automatically keeps the best beams
for beam_id in range(self.num_beams):
batch_beam_idx = batch_idx * self.num_beams + beam_id
final_score = final_beam_scores[batch_beam_idx].item()
final_tokens = input_ids[batch_beam_idx]
beam_hyp.add(final_tokens, final_score)
# select the best hypotheses
sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep)
best = []
best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32)
# retrieve best hypotheses
for i, beam_hyp in enumerate(self._beam_hyps):
sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0])
for j in range(self.num_beam_hyps_to_keep):
best_hyp_tuple = sorted_hyps.pop()
best_score = best_hyp_tuple[0]
best_hyp = best_hyp_tuple[1]
sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)
# append to lists
best.append(best_hyp)
best_scores[i * self.num_beam_hyps_to_keep + j] = best_score
# prepare for adding eos
sent_max_len = min(sent_lengths.max().item() + 1, max_length)
decoded: "torch.LongTensor" = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
# shorter batches are padded if needed
if sent_lengths.min().item() != sent_lengths.max().item():
assert pad_token_id is not None, "`pad_token_id` has to be defined"
decoded.fill_(pad_token_id)
# fill with hypotheses and eos_token_id if the latter fits in
for i, hypo in enumerate(best):
decoded[i, : sent_lengths[i]] = hypo
if sent_lengths[i] < max_length:
decoded[i, sent_lengths[i]] = eos_token_id
return UserDict(
{
"sequences": decoded,
"sequence_scores": best_scores,
}
)
class BeamHypotheses:
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool):
"""
Initialize n-best list of hypotheses.
"""
self.length_penalty = length_penalty
self.early_stopping = early_stopping
self.num_beams = num_beams
self.beams = []
self.worst_score = 1e9
def __len__(self):
"""
Number of hypotheses in the list.
"""
return len(self.beams)
def add(self, hyp: "torch.LongTensor", sum_logprobs: float):
"""
Add a new hypothesis to the list.
"""
score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
if len(self) < self.num_beams or score > self.worst_score:
self.beams.append((score, hyp))
if len(self) > self.num_beams:
sorted_next_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)])
del self.beams[sorted_next_scores[0][1]]
self.worst_score = sorted_next_scores[1][0]
else:
self.worst_score = min(score, self.worst_score)
def is_done(self, best_sum_logprobs: float, cur_len: int) -> bool:
"""
If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
one in the heap, then we are done with this sentence.
"""
if len(self) < self.num_beams:
return False
elif self.early_stopping:
return True
else:
cur_score = best_sum_logprobs / cur_len ** self.length_penalty
ret = self.worst_score >= cur_score
return ret

View File

@ -0,0 +1,618 @@
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
from abc import ABC
from typing import Callable, Iterable, List, Optional
import numpy as np
from .file_utils import add_start_docstrings
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
from fastNLP.core.log import logger
if _NEED_IMPORT_TORCH:
import torch
LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs:
Additional logits processor specific kwargs.
Return:
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class LogitsProcessor(ABC):
"""Abstract base class for all logit processors that can be applied during generation."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
"""Torch method for processing logits."""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsWarper(ABC):
"""Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
"""Torch method for warping logits."""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsProcessorList(list):
"""
This class can be used to create a list of :class:`~transformers.LogitsProcessor` or
:class:`~transformers.LogitsWarper` to subsequently process a :obj:`scores` input tensor. This class inherits from
list and adds a specific `__call__` method to apply each :class:`~transformers.LogitsProcessor` or
:class:`~transformers.LogitsWarper` to the inputs.
"""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor", **kwargs) -> "torch.FloatTensor":
for processor in self:
function_args = inspect.signature(processor.__call__).parameters
if len(function_args) > 2:
assert all(
arg in kwargs for arg in list(function_args.keys())[2:]
), f"Make sure that all the required parameters: {list(function_args.keys())} for {processor.__class__} are passed to the logits processor."
scores = processor(input_ids, scores, **kwargs)
else:
scores = processor(input_ids, scores)
return scores
class MinLengthLogitsProcessor(LogitsProcessor):
r"""
:class:`transformers.LogitsProcessor` enforcing a min-length by setting EOS probability to 0.
Args:
min_length (:obj:`int`):
The minimum length below which the score of :obj:`eos_token_id` is set to :obj:`-float("Inf")`.
eos_token_id (:obj:`int`):
The id of the `end-of-sequence` token.
"""
def __init__(self, min_length: int, eos_token_id: int):
if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}")
if not isinstance(eos_token_id, int) or eos_token_id < 0:
raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}")
self.min_length = min_length
self.eos_token_id = eos_token_id
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
cur_len = input_ids.shape[-1]
if cur_len < self.min_length:
scores[:, self.eos_token_id] = -float("inf")
return scores
class TemperatureLogitsWarper(LogitsWarper):
r"""
:class:`transformers.LogitsWarper` for temperature (exponential scaling output probability distribution).
Args:
temperature (:obj:`float`):
The value used to module the logits distribution.
"""
def __init__(self, temperature: float):
if not isinstance(temperature, float) or not (temperature > 0):
raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}")
self.temperature = temperature
def __call__(self, input_ids: "torch.Tensor", scores: "torch.Tensor") -> "torch.FloatTensor":
scores = scores / self.temperature
return scores
class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
r"""
:class:`transformers.LogitsProcessor` enforcing an exponential penalty on repeated sequences.
Args:
repetition_penalty (:obj:`float`):
The parameter for repetition penalty. 1.0 means no penalty. See `this paper
<https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
"""
def __init__(self, penalty: float):
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
self.penalty = penalty
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
score = torch.gather(scores, 1, input_ids)
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores.scatter_(1, input_ids, score)
return scores
class TopPLogitsWarper(LogitsWarper):
"""
:class:`transformers.LogitsWarper` that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <=
prob_cut_off.
Args:
top_p (:obj:`float`):
If set to < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are
kept for generation.
filter_value (:obj:`float`, `optional`, defaults to :obj:`-float("Inf")`):
All filtered values will be set to this float value.
min_tokens_to_keep (:obj:`int`, `optional`, defaults to 1):
Minimum number of tokens that cannot be filtered.
"""
def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
top_p = float(top_p)
if top_p < 0 or top_p > 1.0:
raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}")
self.top_p = top_p
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > self.top_p
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., : self.min_tokens_to_keep - 1] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TopKLogitsWarper(LogitsWarper):
r"""
:class:`transformers.LogitsWarper` that performs top-k, i.e. restricting to the k highest probability elements.
Args:
top_k (:obj:`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
filter_value (:obj:`float`, `optional`, defaults to :obj:`-float("Inf")`):
All filtered values will be set to this float value.
min_tokens_to_keep (:obj:`int`, `optional`, defaults to 1):
Minimum number of tokens that cannot be filtered.
"""
def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}")
self.top_k = top_k
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
top_k = min(max(self.top_k, self.min_tokens_to_keep), scores.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = scores < torch.topk(scores, top_k)[0][..., -1, None]
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
def _get_ngrams(ngram_size: int, prev_input_ids: "torch.Tensor", num_hypos: int):
generated_ngrams = [{} for _ in range(num_hypos)]
for idx in range(num_hypos):
gen_tokens = prev_input_ids[idx].tolist()
generated_ngram = generated_ngrams[idx]
for ngram in zip(*[gen_tokens[i:] for i in range(ngram_size)]):
prev_ngram_tuple = tuple(ngram[:-1])
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
return generated_ngrams
def _get_generated_ngrams(banned_ngrams, prev_input_ids, ngram_size, cur_len):
# Before decoding the next token, prevent decoding of ngrams that have already appeared
start_idx = cur_len + 1 - ngram_size
ngram_idx = tuple(prev_input_ids[start_idx:cur_len].tolist())
return banned_ngrams.get(ngram_idx, [])
def _calc_banned_ngram_tokens(
ngram_size: int, prev_input_ids: "torch.Tensor", num_hypos: int, cur_len: int
) -> List[Iterable[int]]:
"""Copied from fairseq for no_repeat_ngram in beam_search"""
if cur_len + 1 < ngram_size:
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
return [[] for _ in range(num_hypos)]
generated_ngrams = _get_ngrams(ngram_size, prev_input_ids, num_hypos)
banned_tokens = [
_get_generated_ngrams(generated_ngrams[hypo_idx], prev_input_ids[hypo_idx], ngram_size, cur_len)
for hypo_idx in range(num_hypos)
]
return banned_tokens
class NoRepeatNGramLogitsProcessor(LogitsProcessor):
r"""
:class:`transformers.LogitsProcessor` that enforces no repetition of n-grams. See `Fairseq
<https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345>`__.
Args:
ngram_size (:obj:`int`):
All ngrams of size :obj:`ngram_size` can only occur once.
"""
def __init__(self, ngram_size: int):
if not isinstance(ngram_size, int) or ngram_size <= 0:
raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
self.ngram_size = ngram_size
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
num_batch_hypotheses = scores.shape[0]
cur_len = input_ids.shape[-1]
banned_batch_tokens = _calc_banned_ngram_tokens(self.ngram_size, input_ids, num_batch_hypotheses, cur_len)
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
return scores
class EncoderNoRepeatNGramLogitsProcessor(LogitsProcessor):
r"""
:class:`transformers.LogitsProcessor` that enforces no repetition of encoder input ids n-grams for the decoder ids.
See `ParlAI <https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/torch_generator_agent.py#L1350>`__.
Args:
encoder_ngram_size (:obj:`int`):
All ngrams of size :obj:`ngram_size` can only occur within the encoder input ids.
encoder_input_ids (:obj:`int`):
The encoder_input_ids that should not be repeated within the decoder ids.
"""
def __init__(self, encoder_ngram_size: int, encoder_input_ids: "torch.LongTensor"):
if not isinstance(encoder_ngram_size, int) or encoder_ngram_size <= 0:
raise ValueError(
f"`encoder_ngram_size` has to be a strictly positive integer, but is {encoder_ngram_size}"
)
self.ngram_size = encoder_ngram_size
if len(encoder_input_ids.shape) == 1:
encoder_input_ids = encoder_input_ids.unsqueeze(0)
self.batch_size = encoder_input_ids.shape[0]
self.generated_ngrams = _get_ngrams(encoder_ngram_size, encoder_input_ids, self.batch_size)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
# B x num_beams
num_hypos = scores.shape[0]
num_beams = num_hypos // self.batch_size
cur_len = input_ids.shape[-1]
banned_batch_tokens = [
_get_generated_ngrams(
self.generated_ngrams[hypo_idx // num_beams], input_ids[hypo_idx], self.ngram_size, cur_len
)
for hypo_idx in range(num_hypos)
]
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
return scores
class NoBadWordsLogitsProcessor(LogitsProcessor):
"""
:class:`transformers.LogitsProcessor` that enforces that specified sequences will never be sampled.
Args:
bad_words_ids (:obj:`List[List[int]]`):
List of list of token ids that are not allowed to be generated. In order to get the tokens of the words
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
add_prefix_space=True).input_ids`.
eos_token_id (:obj:`int`):
The id of the `end-of-sequence` token.
"""
def __init__(self, bad_words_ids: List[List[int]], eos_token_id: int):
if not isinstance(bad_words_ids, List) or len(bad_words_ids) == 0:
raise ValueError(f"`bad_words_ids` has to be a non-emtpy list, but is {bad_words_ids}.")
if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids):
raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.")
if any(
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids)
for bad_word_ids in bad_words_ids
):
raise ValueError(
f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}."
)
bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], bad_words_ids))
self.bad_words_id_length_1 = []
self.bad_words_id_length_greater_than_1 = []
for word in bad_words_ids:
if len(word) == 1:
self.bad_words_id_length_1.append(word[0])
else:
self.bad_words_id_length_greater_than_1.append(word)
self.static_bad_words_mask: Optional[torch.LongTensor] = None
for banned_token_seq in self.bad_words_id_length_greater_than_1:
assert len(banned_token_seq) > 0, f"Banned words token sequences {bad_words_ids} cannot have an empty list"
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
if self.static_bad_words_mask is None and len(self.bad_words_id_length_1) > 0:
self.static_bad_words_mask = self._calc_static_bad_word_mask(scores)
dynamic_banned_tokens = self._calc_banned_bad_words_ids(input_ids.tolist())
scores = self._set_scores_to_inf_for_banned_tokens(scores, dynamic_banned_tokens)
return scores
def _calc_static_bad_word_mask(self, scores: "torch.FloatTensor") -> "torch.BoolTensor":
static_bad_words_mask = torch.zeros(scores.shape[1])
static_bad_words_mask[self.bad_words_id_length_1] = 1
return static_bad_words_mask.unsqueeze(0).to(scores.device).bool()
def _tokens_match(self, prev_tokens: List[int], tokens: List[int]) -> bool:
if len(tokens) == 0:
# if bad word tokens is just one token always ban it
return True
elif len(tokens) > len(prev_tokens):
# if bad word tokens are longer then prev input_ids they can't be equal
return False
else:
return prev_tokens[-len(tokens) :] == tokens
def _calc_banned_bad_words_ids(self, prev_input_ids: List[List[int]]) -> Iterable[int]:
banned_tokens = []
for prev_input_ids_slice in prev_input_ids:
banned_tokens_slice = []
for banned_token_seq in self.bad_words_id_length_greater_than_1:
if self._tokens_match(prev_input_ids_slice, banned_token_seq[:-1]):
banned_tokens_slice.append(banned_token_seq[-1])
banned_tokens.append(banned_tokens_slice)
return banned_tokens
def _set_scores_to_inf_for_banned_tokens(
self, scores: "torch.Tensor", banned_tokens: List[List[int]]
) -> "torch.Tensor":
"""
Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be a
list of list of banned tokens to ban in the format [[batch index, vocabulary position],...
Args:
scores: logits distribution of shape (batch size, vocabulary size)
banned_tokens: list of list of tokens to ban of length (batch_size)
"""
banned_mask_list = []
for idx, batch_banned_tokens in enumerate(banned_tokens):
for token in batch_banned_tokens:
# Eliminates invalid bad word IDs that are over the vocabulary size.
if token <= scores.shape[1]:
banned_mask_list.append([idx, token])
else:
logger.error(
f"An invalid bad word ID is defined: {token}. This ID is not contained in the"
f"vocabulary, and is therefore ignored."
)
if not banned_mask_list and self.static_bad_words_mask is None:
return scores
else:
if banned_mask_list:
banned_mask = torch.LongTensor(banned_mask_list)
indices = torch.ones(len(banned_mask))
# A sparse tensor is generated from a list of coordinates: [[0, 1], [0, 2], [2, 0]]. A conversion to dense tensor generates:
# [ 0 1 1 ]
# [ 0 0 0 ]
# [ 1 0 0 ]
banned_mask = (
torch.sparse.LongTensor(banned_mask.t(), indices, scores.size())
.to(scores.device)
.to_dense()
.bool()
)
if self.static_bad_words_mask is not None:
banned_mask = torch.bitwise_or(banned_mask, self.static_bad_words_mask)
else:
banned_mask = self.static_bad_words_mask
scores = scores.masked_fill(banned_mask, -float("inf"))
return scores
class PrefixConstrainedLogitsProcessor(LogitsProcessor):
r"""
:class:`transformers.LogitsProcessor` that enforces constrained generation and is useful for prefix-conditioned
constrained generation. See `Autoregressive Entity Retrieval <https://arxiv.org/abs/2010.00904>`__ for more
information.
Args:
prefix_allowed_tokens_fn: (:obj:`Callable[[int, torch.Tensor], List[int]]`):
This function constraints the beam search to allowed tokens only at each step. This function takes 2
arguments :obj:`inputs_ids` and the batch ID :obj:`batch_id`. It has to return a list with the allowed
tokens for the next generation step conditioned on the previously generated tokens :obj:`inputs_ids` and
the batch ID :obj:`batch_id`.
"""
def __init__(self, prefix_allowed_tokens_fn: Callable[[int, "torch.Tensor"], List[int]], num_beams: int):
self._prefix_allowed_tokens_fn = prefix_allowed_tokens_fn
self._num_beams = num_beams
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
mask = torch.full_like(scores, -math.inf)
for batch_id, beam_sent in enumerate(input_ids.view(-1, self._num_beams, input_ids.shape[-1])):
for beam_id, sent in enumerate(beam_sent):
mask[batch_id * self._num_beams + beam_id, self._prefix_allowed_tokens_fn(batch_id, sent)] = 0
return scores + mask
class HammingDiversityLogitsProcessor(LogitsProcessor):
r"""
:class:`transformers.LogitsProcessor` that enforces diverse beam search. Note that this logits processor is only
effective for :meth:`transformers.PreTrainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
Solutions from Neural Sequence Models <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
Args:
diversity_penalty (:obj:`float`):
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
particular time. Note that :obj:`diversity_penalty` is only effective if ``group beam search`` is enabled.
num_beams (:obj:`int`):
Number of beams used for group beam search. See `this paper <https://arxiv.org/pdf/1610.02424.pdf>`__ for
more details.
num_beam_groups (:obj:`int`):
Number of groups to divide :obj:`num_beams` into in order to ensure diversity among different groups of
beams. See `this paper <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
"""
def __init__(self, diversity_penalty: float, num_beams: int, num_beam_groups: int):
if not isinstance(diversity_penalty, float) or (not diversity_penalty > 0.0):
raise ValueError("`diversity_penalty` should be a float strictly larger than 0.")
self._diversity_penalty = diversity_penalty
if not isinstance(num_beams, int) or num_beams < 2:
raise ValueError("`num_beams` should be an integer strictly larger than 1.")
self._num_beams = num_beams
if not isinstance(num_beam_groups, int) or num_beam_groups < 2:
raise ValueError("`num_beam_groups` should be an integer strictly larger than 1.")
if num_beam_groups > num_beams:
raise ValueError("`beam_groups` has to be smaller or equal to `num_beams`.")
self._num_sub_beams = num_beams // num_beam_groups
def __call__(
self,
input_ids: "torch.LongTensor",
scores: "torch.FloatTensor",
current_tokens: "torch.LongTensor",
beam_group_idx: int,
) -> "torch.FloatTensor":
# hamming diversity: penalise using same token in current group which was used in previous groups at
# the same time step
batch_size = current_tokens.shape[0] // self._num_beams
group_start_idx = beam_group_idx * self._num_sub_beams
group_end_idx = min(group_start_idx + self._num_sub_beams, self._num_beams)
group_size = group_end_idx - group_start_idx
vocab_size = scores.shape[-1]
if group_start_idx == 0:
return scores
for batch_idx in range(batch_size):
# predicted tokens of last time step of previous groups
previous_group_tokens = current_tokens[
batch_idx * self._num_beams : batch_idx * self._num_beams + group_start_idx
]
token_frequency = torch.bincount(previous_group_tokens, minlength=vocab_size).to(scores.device)
scores[batch_idx * group_size : (batch_idx + 1) * group_size] -= self._diversity_penalty * token_frequency
return scores
class ForcedBOSTokenLogitsProcessor(LogitsProcessor):
r"""
:class:`~transformers.LogitsProcessor` that enforces the specified token as the first generated token.
Args:
bos_token_id (:obj:`int`):
The id of the token to force as the first generated token.
"""
def __init__(self, bos_token_id: int):
self.bos_token_id = bos_token_id
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
cur_len = input_ids.shape[-1]
if cur_len == 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i != self.bos_token_id]] = -float("inf")
scores[:, self.bos_token_id] = 0
return scores
class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
r"""
:class:`~transformers.LogitsProcessor` that enforces the specified token as the last generated token when
:obj:`max_length` is reached.
Args:
max_length (:obj:`int`):
The maximum length of the sequence to be generated.
eos_token_id (:obj:`int`):
The id of the token to force as the last generated token when :obj:`max_length` is reached.
"""
def __init__(self, max_length: int, eos_token_id: int):
self.max_length = max_length
self.eos_token_id = eos_token_id
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
cur_len = input_ids.shape[-1]
if cur_len == self.max_length - 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i != self.eos_token_id]] = -float("inf")
scores[:, self.eos_token_id] = 0
return scores
class InfNanRemoveLogitsProcessor(LogitsProcessor):
r"""
:class:`~transformers.LogitsProcessor` that removes all :obj:`nan` and :obj:`inf` values to avoid the generation
method to fail. Note that using the logits processor should only be used if necessary since it can slow down the
generation method. :obj:`max_length` is reached.
"""
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor") -> "torch.FloatTensor":
# set all nan values to 0.0
scores[scores != scores] = 0.0
# set all inf values to max possible value
scores[scores == float("inf")] = torch.finfo(scores.dtype).max
return scores

View File

@ -0,0 +1,128 @@
import time
from abc import ABC
from copy import deepcopy
from typing import Optional
from .file_utils import add_start_docstrings
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
from fastNLP.core.log import logger
if _NEED_IMPORT_TORCH:
import torch
STOPPING_CRITERIA_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
or scores for each vocabulary token after SoftMax.
kwargs:
Additional stopping criteria specific kwargs.
Return:
:obj:`bool`. :obj:`False` indicates we should continue, :obj:`True` indicates we should stop.
"""
class StoppingCriteria(ABC):
"""Abstract base class for all stopping criteria that can be applied during generation."""
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor", **kwargs) -> bool:
raise NotImplementedError("StoppingCriteria needs to be subclassed")
class MaxLengthCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the full generated number of tokens exceeds :obj:`max_length`.
Keep in mind for decoder-only type of transformers, this will include the initial prompted tokens.
Args:
max_length (:obj:`int`):
The maximum length that the output sequence can have in number of tokens.
"""
def __init__(self, max_length: int):
self.max_length = max_length
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor", **kwargs) -> bool:
return input_ids.shape[-1] >= self.max_length
class MaxNewTokensCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the generated number of tokens exceeds :obj:`max_new_tokens`.
Keep in mind for decoder-only type of transformers, this will **not** include the initial prompted tokens. This is
very close to :obj:`MaxLengthCriteria` but ignores the number of initial tokens.
Args:
start_length (:obj:`int`):
The number of initial tokens.
max_new_tokens (:obj:`int`):
The maximum number of tokens to generate.
"""
def __init__(self, start_length: int, max_new_tokens: int):
self.start_length = start_length
self.max_new_tokens = max_new_tokens
self.max_length = start_length + max_new_tokens
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor", **kwargs) -> bool:
return input_ids.shape[-1] >= self.max_length
class MaxTimeCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the full generation exceeds some amount of time. By default, the
time will start being counted when you initialize this function. You can override this by passing an
:obj:`initial_time`.
Args:
max_time (:obj:`float`):
The maximum allowed time in seconds for the generation.
initial_time (:obj:`float`, `optional`, defaults to :obj:`time.time()`):
The start of the generation allowed time.
"""
def __init__(self, max_time: float, initial_timestamp: Optional[float] = None):
self.max_time = max_time
self.initial_timestamp = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor", **kwargs) -> bool:
return time.time() - self.initial_timestamp > self.max_time
class StoppingCriteriaList(list):
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor", **kwargs) -> bool:
return any(criteria(input_ids, scores) for criteria in self)
@property
def max_length(self) -> Optional[int]:
for stopping_criterium in self:
if isinstance(stopping_criterium, MaxLengthCriteria):
return stopping_criterium.max_length
elif isinstance(stopping_criterium, MaxNewTokensCriteria):
return stopping_criterium.max_length
return None
def validate_stopping_criteria(stopping_criteria: StoppingCriteriaList, max_length: int) -> StoppingCriteriaList:
stopping_max_length = stopping_criteria.max_length
new_stopping_criteria = deepcopy(stopping_criteria)
if stopping_max_length is not None and stopping_max_length != max_length:
logger.warn("You set different `max_length` for stopping criteria and `max_length` parameter", UserWarning)
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=max_length))
return new_stopping_criteria

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,816 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple
from .file_utils import ModelOutput
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
if _NEED_IMPORT_TORCH:
import torch
@dataclass
class BaseModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class BaseModelOutputWithPooling(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: "torch.FloatTensor" = None
pooler_output: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class BaseModelOutputWithPast(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size,
1, hidden_size)` is output.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
``config.is_encoder_decoder=True`` 2 additional tensors of shape :obj:`(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
``config.is_encoder_decoder=True`` in the cross-attention blocks) that can be used (see
:obj:`past_key_values` input) to speed up sequential decoding.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class BaseModelOutputWithCrossAttentions(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` and ``config.add_cross_attention=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
last_hidden_state: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
cross_attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class BaseModelOutputWithPoolingAndCrossAttentions(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` and ``config.add_cross_attention=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
``config.is_encoder_decoder=True`` 2 additional tensors of shape :obj:`(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
``config.is_encoder_decoder=True`` in the cross-attention blocks) that can be used (see
:obj:`past_key_values` input) to speed up sequential decoding.
"""
last_hidden_state: "torch.FloatTensor" = None
pooler_output: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
cross_attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class BaseModelOutputWithPastAndCrossAttentions(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size,
1, hidden_size)` is output.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
``config.is_encoder_decoder=True`` 2 additional tensors of shape :obj:`(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
``config.is_encoder_decoder=True`` in the cross-attention blocks) that can be used (see
:obj:`past_key_values` input) to speed up sequential decoding.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` and ``config.add_cross_attention=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
last_hidden_state: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
cross_attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class Seq2SeqModelOutput(ModelOutput):
"""
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
decoding.
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size,
1, hidden_size)` is output.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
last_hidden_state: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
decoder_hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
decoder_attentions: Optional[Tuple["torch.FloatTensor"]] = None
cross_attentions: Optional[Tuple["torch.FloatTensor"]] = None
encoder_last_hidden_state: Optional["torch.FloatTensor"] = None
encoder_hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
encoder_attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class CausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Language modeling loss (for next-token prediction).
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class CausalLMOutputWithPast(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Language modeling loss (for next-token prediction).
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
:obj:`past_key_values` input) to speed up sequential decoding.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class CausalLMOutputWithCrossAttentions(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Language modeling loss (for next-token prediction).
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Cross attentions weights after the attention softmax, used to compute the weighted average in the
cross-attention heads.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`torch.FloatTensor` tuples of length :obj:`config.n_layers`, with each tuple containing the
cached key, value states of the self-attention and the cross-attention layers if model is used in
encoder-decoder setting. Only relevant if ``config.is_decoder = True``.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
:obj:`past_key_values` input) to speed up sequential decoding.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
cross_attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class SequenceClassifierOutputWithPast(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
:obj:`past_key_values` input) to speed up sequential decoding.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class MaskedLMOutput(ModelOutput):
"""
Base class for masked language models outputs.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Masked language modeling (MLM) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class Seq2SeqLMOutput(ModelOutput):
"""
Base class for sequence-to-sequence language models outputs.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Language modeling loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
decoder_hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
decoder_attentions: Optional[Tuple["torch.FloatTensor"]] = None
cross_attentions: Optional[Tuple["torch.FloatTensor"]] = None
encoder_last_hidden_state: Optional["torch.FloatTensor"] = None
encoder_hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
encoder_attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class NextSentencePredictorOutput(ModelOutput):
"""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided):
Next sequence prediction (classification) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class SequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class Seq2SeqSequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sequence-to-sequence sentence classification models.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
decoder_hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
decoder_attentions: Optional[Tuple["torch.FloatTensor"]] = None
cross_attentions: Optional[Tuple["torch.FloatTensor"]] = None
encoder_last_hidden_state: Optional["torch.FloatTensor"] = None
encoder_hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
encoder_attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class MultipleChoiceModelOutput(ModelOutput):
"""
Base class for outputs of multiple choice models.
Args:
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
Classification loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
Classification scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class TokenClassifierOutput(ModelOutput):
"""
Base class for outputs of token classification models.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
Classification loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
logits: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class QuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of question answering models.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional["torch.FloatTensor"] = None
start_logits: "torch.FloatTensor" = None
end_logits: "torch.FloatTensor" = None
hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
attentions: Optional[Tuple["torch.FloatTensor"]] = None
@dataclass
class Seq2SeqQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of sequence-to-sequence question answering models.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional["torch.FloatTensor"] = None
start_logits: "torch.FloatTensor" = None
end_logits: "torch.FloatTensor" = None
past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
decoder_hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
decoder_attentions: Optional[Tuple["torch.FloatTensor"]] = None
cross_attentions: Optional[Tuple["torch.FloatTensor"]] = None
encoder_last_hidden_state: Optional["torch.FloatTensor"] = None
encoder_hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
encoder_attentions: Optional[Tuple["torch.FloatTensor"]] = None

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,5 @@
from .bart import *
from .bert import *
from .cpt import *
from .gpt2 import *
from .roberta import *

View File

@ -0,0 +1,541 @@
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Config class. """
import importlib
import re
from collections import OrderedDict
from typing import List, Union
from fastNLP.transformers.torch.configuration_utils import PretrainedConfig
from fastNLP.transformers.torch.file_utils import CONFIG_NAME
from fastNLP.core.log import logger
CONFIG_MAPPING_NAMES = OrderedDict(
[
# Add configs here
("fnet", "FNetConfig"),
("gptj", "GPTJConfig"),
("layoutlmv2", "LayoutLMv2Config"),
("beit", "BeitConfig"),
("rembert", "RemBertConfig"),
("visual_bert", "VisualBertConfig"),
("canine", "CanineConfig"),
("roformer", "RoFormerConfig"),
("clip", "CLIPConfig"),
("bigbird_pegasus", "BigBirdPegasusConfig"),
("deit", "DeiTConfig"),
("luke", "LukeConfig"),
("detr", "DetrConfig"),
("gpt_neo", "GPTNeoConfig"),
("big_bird", "BigBirdConfig"),
("speech_to_text_2", "Speech2Text2Config"),
("speech_to_text", "Speech2TextConfig"),
("vit", "ViTConfig"),
("wav2vec2", "Wav2Vec2Config"),
("m2m_100", "M2M100Config"),
("convbert", "ConvBertConfig"),
("led", "LEDConfig"),
("blenderbot-small", "BlenderbotSmallConfig"),
("retribert", "RetriBertConfig"),
("ibert", "IBertConfig"),
("mt5", "MT5Config"),
("t5", "T5Config"),
("mobilebert", "MobileBertConfig"),
("distilbert", "DistilBertConfig"),
("albert", "AlbertConfig"),
("bert-generation", "BertGenerationConfig"),
("camembert", "CamembertConfig"),
("xlm-roberta", "XLMRobertaConfig"),
("pegasus", "PegasusConfig"),
("marian", "MarianConfig"),
("mbart", "MBartConfig"),
("megatron-bert", "MegatronBertConfig"),
("mpnet", "MPNetConfig"),
("bart", "BartConfig"),
("blenderbot", "BlenderbotConfig"),
("reformer", "ReformerConfig"),
("longformer", "LongformerConfig"),
("roberta", "RobertaConfig"),
("deberta-v2", "DebertaV2Config"),
("deberta", "DebertaConfig"),
("flaubert", "FlaubertConfig"),
("fsmt", "FSMTConfig"),
("squeezebert", "SqueezeBertConfig"),
("hubert", "HubertConfig"),
("bert", "BertConfig"),
("openai-gpt", "OpenAIGPTConfig"),
("gpt2", "GPT2Config"),
("transfo-xl", "TransfoXLConfig"),
("xlnet", "XLNetConfig"),
("xlm-prophetnet", "XLMProphetNetConfig"),
("prophetnet", "ProphetNetConfig"),
("xlm", "XLMConfig"),
("ctrl", "CTRLConfig"),
("electra", "ElectraConfig"),
("speech-encoder-decoder", "SpeechEncoderDecoderConfig"),
("encoder-decoder", "EncoderDecoderConfig"),
("funnel", "FunnelConfig"),
("lxmert", "LxmertConfig"),
("dpr", "DPRConfig"),
("layoutlm", "LayoutLMConfig"),
("rag", "RagConfig"),
("tapas", "TapasConfig"),
("splinter", "SplinterConfig"),
]
)
CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
[
# Add archive maps here
("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gptj", "GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("layoutlmv2", "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("beit", "BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("rembert", "REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("visual_bert", "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("canine", "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("roformer", "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("clip", "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bigbird_pegasus", "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("deit", "DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("luke", "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("detr", "DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt_neo", "GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("big_bird", "BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("speech_to_text", "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("speech_to_text_2", "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vit", "VIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("m2m_100", "M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("convbert", "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("led", "LED_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("blenderbot-small", "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bert", "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("bart", "BART_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("blenderbot", "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mbart", "MBART_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("openai-gpt", "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("transfo-xl", "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt2", "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("ctrl", "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlnet", "XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlm", "XLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("roberta", "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("distilbert", "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("albert", "ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("camembert", "CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("t5", "T5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlm-roberta", "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("flaubert", "FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("electra", "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("longformer", "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("retribert", "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("lxmert", "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("layoutlm", "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("dpr", "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("deberta", "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("deberta-v2", "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("squeezebert", "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlm-prophetnet", "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("prophetnet", "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mpnet", "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("tapas", "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("ibert", "IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("hubert", "HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("splinter", "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
]
)
MODEL_NAMES_MAPPING = OrderedDict(
[
# Add full (and cased) model names here
("fnet", "FNet"),
("gptj", "GPT-J"),
("beit", "BeiT"),
("rembert", "RemBERT"),
("layoutlmv2", "LayoutLMv2"),
("visual_bert", "VisualBert"),
("canine", "Canine"),
("roformer", "RoFormer"),
("clip", "CLIP"),
("bigbird_pegasus", "BigBirdPegasus"),
("deit", "DeiT"),
("luke", "LUKE"),
("detr", "DETR"),
("gpt_neo", "GPT Neo"),
("big_bird", "BigBird"),
("speech_to_text_2", "Speech2Text2"),
("speech_to_text", "Speech2Text"),
("vit", "ViT"),
("wav2vec2", "Wav2Vec2"),
("m2m_100", "M2M100"),
("convbert", "ConvBERT"),
("led", "LED"),
("blenderbot-small", "BlenderbotSmall"),
("retribert", "RetriBERT"),
("ibert", "I-BERT"),
("t5", "T5"),
("mobilebert", "MobileBERT"),
("distilbert", "DistilBERT"),
("albert", "ALBERT"),
("bert-generation", "Bert Generation"),
("camembert", "CamemBERT"),
("xlm-roberta", "XLM-RoBERTa"),
("pegasus", "Pegasus"),
("blenderbot", "Blenderbot"),
("marian", "Marian"),
("mbart", "mBART"),
("megatron-bert", "MegatronBert"),
("bart", "BART"),
("reformer", "Reformer"),
("longformer", "Longformer"),
("roberta", "RoBERTa"),
("flaubert", "FlauBERT"),
("fsmt", "FairSeq Machine-Translation"),
("squeezebert", "SqueezeBERT"),
("bert", "BERT"),
("openai-gpt", "OpenAI GPT"),
("gpt2", "OpenAI GPT-2"),
("transfo-xl", "Transformer-XL"),
("xlnet", "XLNet"),
("xlm", "XLM"),
("ctrl", "CTRL"),
("electra", "ELECTRA"),
("encoder-decoder", "Encoder decoder"),
("speech-encoder-decoder", "Speech Encoder decoder"),
("funnel", "Funnel Transformer"),
("lxmert", "LXMERT"),
("deberta-v2", "DeBERTa-v2"),
("deberta", "DeBERTa"),
("layoutlm", "LayoutLM"),
("dpr", "DPR"),
("rag", "RAG"),
("xlm-prophetnet", "XLMProphetNet"),
("prophetnet", "ProphetNet"),
("mt5", "mT5"),
("mpnet", "MPNet"),
("tapas", "TAPAS"),
("hubert", "Hubert"),
("barthez", "BARThez"),
("phobert", "PhoBERT"),
("cpm", "CPM"),
("bertweet", "Bertweet"),
("bert-japanese", "BertJapanese"),
("byt5", "ByT5"),
("mbart50", "mBART-50"),
("splinter", "Splinter"),
]
)
SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict([("openai-gpt", "openai")])
def model_type_to_module_name(key):
"""Converts a config key to the corresponding module."""
# Special treatment
if key in SPECIAL_MODEL_TYPE_TO_MODULE_NAME:
return SPECIAL_MODEL_TYPE_TO_MODULE_NAME[key]
return key.replace("-", "_")
def config_class_to_model_type(config):
"""Converts a config class name to the corresponding model type"""
for key, cls in CONFIG_MAPPING_NAMES.items():
if cls == config:
return key
return None
class _LazyConfigMapping(OrderedDict):
"""
A dictionary that lazily load its values when they are requested.
"""
def __init__(self, mapping):
self._mapping = mapping
self._modules = {}
def __getitem__(self, key):
if key not in self._mapping:
raise KeyError(key)
value = self._mapping[key]
module_name = model_type_to_module_name(key)
if module_name not in self._modules:
self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models")
return getattr(self._modules[module_name], value)
def keys(self):
return self._mapping.keys()
def values(self):
return [self[k] for k in self._mapping.keys()]
def items(self):
return [(k, self[k]) for k in self._mapping.keys()]
def __iter__(self):
return iter(self._mapping.keys())
def __contains__(self, item):
return item in self._mapping
CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES)
class _LazyLoadAllMappings(OrderedDict):
"""
A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values,
etc.)
Args:
mapping: The mapping to load.
"""
def __init__(self, mapping):
self._mapping = mapping
self._initialized = False
self._data = {}
def _initialize(self):
if self._initialized:
return
logger.warn(
"ALL_PRETRAINED_CONFIG_ARCHIVE_MAP is deprecated and will be removed in v5 of Transformers. "
"It does not contain all available model checkpoints, far from it. Checkout hf.co/models for that.",
FutureWarning,
)
for model_type, map_name in self._mapping.items():
module_name = model_type_to_module_name(model_type)
module = importlib.import_module(f".{module_name}", "transformers.models")
mapping = getattr(module, map_name)
self._data.update(mapping)
self._initialized = True
def __getitem__(self, key):
self._initialize()
return self._data[key]
def keys(self):
self._initialize()
return self._data.keys()
def values(self):
self._initialize()
return self._data.values()
def items(self):
self._initialize()
return self._data.keys()
def __iter__(self):
self._initialize()
return iter(self._data)
def __contains__(self, item):
self._initialize()
return item in self._data
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = _LazyLoadAllMappings(CONFIG_ARCHIVE_MAP_MAPPING_NAMES)
def _get_class_name(model_class: Union[str, List[str]]):
if isinstance(model_class, (list, tuple)):
return " or ".join([f":class:`~transformers.{c}`" for c in model_class if c is not None])
return f":class:`~transformers.{model_class}`"
def _list_model_options(indent, config_to_class=None, use_model_types=True):
if config_to_class is None and not use_model_types:
raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
if use_model_types:
if config_to_class is None:
model_type_to_name = {
model_type: f":class:`~transformers.{config}`" for model_type, config in CONFIG_MAPPING_NAMES.items()
}
else:
model_type_to_name = {
model_type: _get_class_name(model_class)
for model_type, model_class in config_to_class.items()
if model_type in MODEL_NAMES_MAPPING
}
lines = [
f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
for model_type in sorted(model_type_to_name.keys())
]
else:
config_to_name = {
CONFIG_MAPPING_NAMES[config]: _get_class_name(clas)
for config, clas in config_to_class.items()
if config in CONFIG_MAPPING_NAMES
}
config_to_model_name = {
config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items()
}
lines = [
f"{indent}- :class:`~transformers.{config_name}` configuration class: {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
for config_name in sorted(config_to_name.keys())
]
return "\n".join(lines)
def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
def docstring_decorator(fn):
docstrings = fn.__doc__
lines = docstrings.split("\n")
i = 0
while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
i += 1
if i < len(lines):
indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
if use_model_types:
indent = f"{indent} "
lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
docstrings = "\n".join(lines)
else:
raise ValueError(
f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current docstring is:\n{docstrings}"
)
fn.__doc__ = docstrings
return fn
return docstring_decorator
class AutoConfig:
r"""
This is a generic configuration class that will be instantiated as one of the configuration classes of the library
when created with the :meth:`~transformers.AutoConfig.from_pretrained` class method.
This class cannot be instantiated directly using ``__init__()`` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoConfig is designed to be instantiated "
"using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
def for_model(cls, model_type: str, *args, **kwargs):
if model_type in CONFIG_MAPPING:
config_class = CONFIG_MAPPING[model_type]
return config_class(*args, **kwargs)
raise ValueError(
f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}"
)
@classmethod
@replace_list_option_in_docstrings()
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the configuration classes of the library from a pretrained model configuration.
The configuration class to instantiate is selected based on the :obj:`model_type` property of the config object
that is loaded, or when it's missing, by falling back to using pattern matching on
:obj:`pretrained_model_name_or_path`:
List options
Args:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
Can be either:
- A string, the `model id` of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
- A path to a `directory` containing a configuration file saved using the
:meth:`~transformers.PretrainedConfig.save_pretrained` method, or the
:meth:`~transformers.PreTrainedModel.save_pretrained` method, e.g., ``./my_model_directory/``.
- A path or url to a saved configuration JSON `file`, e.g.,
``./my_model_directory/configuration.json``.
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (:obj:`Dict[str, str]`, `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`False`, then this function returns just the final configuration object.
If :obj:`True`, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs`
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e.,
the part of ``kwargs`` which has not been used to update ``config`` and is otherwise ignored.
kwargs(additional keyword arguments, `optional`):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the ``return_unused_kwargs`` keyword parameter.
Examples::
>>> from transformers import AutoConfig
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> # Download configuration from huggingface.co (user-uploaded) and cache.
>>> config = AutoConfig.from_pretrained('dbmdz/bert-base-german-cased')
>>> # If configuration file is in a directory (e.g., was saved using `save_pretrained('./test/saved_model/')`).
>>> config = AutoConfig.from_pretrained('./test/bert_saved_model/')
>>> # Load a specific configuration file.
>>> config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')
>>> # Change some config attributes when loading a pretrained config.
>>> config = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False)
>>> config.output_attentions
True
>>> config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True)
>>> config.output_attentions
True
>>> config.unused_kwargs
{'foo': False}
"""
kwargs["_from_auto"] = True
config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
if "model_type" in config_dict:
config_class = CONFIG_MAPPING[config_dict["model_type"]]
return config_class.from_dict(config_dict, **kwargs)
else:
# Fallback: use pattern matching on the string.
for pattern, config_class in CONFIG_MAPPING.items():
if pattern in str(pretrained_model_name_or_path):
return config_class.from_dict(config_dict, **kwargs)
raise ValueError(
f"Unrecognized model in {pretrained_model_name_or_path}. "
f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings "
f"in its name: {', '.join(CONFIG_MAPPING.keys())}"
)

View File

@ -0,0 +1,199 @@
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Tokenizer class. """
from collections import OrderedDict
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
from ...file_utils import (
is_sentencepiece_available,
is_tokenizers_available,
)
if TYPE_CHECKING:
# This significantly improves completion suggestion performance when
# the transformers package is used with Microsoft's Pylance language server.
TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
TOKENIZER_MAPPING_NAMES = OrderedDict(
[
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
(
"t5",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
(
"mt5",
(
"MT5Tokenizer" if is_sentencepiece_available() else None,
"MT5TokenizerFast" if is_tokenizers_available() else None,
),
),
("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)),
("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
(
"albert",
(
"AlbertTokenizer" if is_sentencepiece_available() else None,
"AlbertTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"camembert",
(
"CamembertTokenizer" if is_sentencepiece_available() else None,
"CamembertTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"pegasus",
(
"PegasusTokenizer" if is_sentencepiece_available() else None,
"PegasusTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"mbart",
(
"MBartTokenizer" if is_sentencepiece_available() else None,
"MBartTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"xlm-roberta",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
("blenderbot", ("BlenderbotTokenizer", None)),
("bart", ("BartTokenizer", "BartTokenizerFast")),
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
(
"reformer",
(
"ReformerTokenizer" if is_sentencepiece_available() else None,
"ReformerTokenizerFast" if is_tokenizers_available() else None,
),
),
("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
(
"dpr",
(
"DPRQuestionEncoderTokenizer",
"DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"squeezebert",
("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None),
),
("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)),
("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("transfo-xl", ("TransfoXLTokenizer", None)),
(
"xlnet",
(
"XLNetTokenizer" if is_sentencepiece_available() else None,
"XLNetTokenizerFast" if is_tokenizers_available() else None,
),
),
("flaubert", ("FlaubertTokenizer", None)),
("xlm", ("XLMTokenizer", None)),
("ctrl", ("CTRLTokenizer", None)),
("fsmt", ("FSMTTokenizer", None)),
("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)),
("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
("deberta-v2", ("DebertaV2Tokenizer" if is_sentencepiece_available() else None, None)),
("rag", ("RagTokenizer", None)),
("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)),
("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
("prophetnet", ("ProphetNetTokenizer", None)),
("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)),
("tapas", ("TapasTokenizer", None)),
("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
(
"big_bird",
(
"BigBirdTokenizer" if is_sentencepiece_available() else None,
"BigBirdTokenizerFast" if is_tokenizers_available() else None,
),
),
("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
("hubert", ("Wav2Vec2CTCTokenizer", None)),
("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("luke", ("LukeTokenizer", None)),
("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
("canine", ("CanineTokenizer", None)),
("bertweet", ("BertweetTokenizer", None)),
("bert-japanese", ("BertJapaneseTokenizer", None)),
("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")),
("byt5", ("ByT5Tokenizer", None)),
(
"cpm",
(
"CpmTokenizer" if is_sentencepiece_available() else None,
"CpmTokenizerFast" if is_tokenizers_available() else None,
),
),
("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
("phobert", ("PhobertTokenizer", None)),
(
"barthez",
(
"BarthezTokenizer" if is_sentencepiece_available() else None,
"BarthezTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"mbart50",
(
"MBart50Tokenizer" if is_sentencepiece_available() else None,
"MBart50TokenizerFast" if is_tokenizers_available() else None,
),
),
(
"rembert",
(
"RemBertTokenizer" if is_sentencepiece_available() else None,
"RemBertTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"clip",
(
"CLIPTokenizer",
"CLIPTokenizerFast" if is_tokenizers_available() else None,
),
),
]
)

View File

@ -0,0 +1,20 @@
__all__ = [
"BartConfig",
"BART_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BART_PRETRAINED_MODEL_ARCHIVE_LIST",
"BartForCausalLM",
"BartForConditionalGeneration",
"BartForQuestionAnswering",
"BartForSequenceClassification",
"BartModel",
"BartPretrainedModel",
"PretrainedBartModel",
"BartTokenizer",
]
from .configuration_bart import BartConfig, BART_PRETRAINED_CONFIG_ARCHIVE_MAP
from .tokenization_bart import BartTokenizer
from .modeling_bart import BartForCausalLM, BartForConditionalGeneration, BartModel, BartForQuestionAnswering, \
BartForSequenceClassification, BartPretrainedModel, PretrainedBartModel, BART_PRETRAINED_MODEL_ARCHIVE_LIST

View File

@ -0,0 +1,177 @@
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BART model configuration """
from fastNLP.transformers.torch.configuration_utils import PretrainedConfig
from fastNLP.core.log import logger
__all__ = [
"BartConfig",
"BART_PRETRAINED_CONFIG_ARCHIVE_MAP",
]
BART_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json",
# See all BART models at https://huggingface.co/models?filter=bart
}
class BartConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.BartModel`. It is used to
instantiate a BART model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BART `facebook/bart-large
<https://huggingface.co/facebook/bart-large>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 50265):
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.BartModel` or
:class:`~transformers.TFBartModel`.
d_model (:obj:`int`, `optional`, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (:obj:`int`, `optional`, defaults to 12):
Number of encoder layers.
decoder_layers (:obj:`int`, `optional`, defaults to 12):
Number of decoder layers.
encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
The LayerDrop probability for the encoder. See the `LayerDrop paper <see
https://arxiv.org/abs/1909.11556>`__ for more details.
decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
The LayerDrop probability for the decoder. See the `LayerDrop paper <see
https://arxiv.org/abs/1909.11556>`__ for more details.
scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models).
num_labels: (:obj:`int`, `optional`, defaults to 3):
The number of labels to use in :class:`~transformers.BartForSequenceClassification`.
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
:obj:`eos_token_id`.
Example::
>>> from transformers import BartModel, BartConfig
>>> # Initializing a BART facebook/bart-large style configuration
>>> configuration = BartConfig()
>>> # Initializing a model from the facebook/bart-large style configuration
>>> model = BartModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "bart"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=50265,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
use_cache=True,
num_labels=3,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=num_labels,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id
logger.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
"The config can simply be saved and uploaded again to be fixed."
)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,65 @@
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..roberta.tokenization_roberta import RobertaTokenizer
from fastNLP.core.log import logger
__all__ = [
"BartTokenizer",
]
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class BartTokenizer(RobertaTokenizer):
r"""
Construct a BART tokenizer.
:class:`~transformers.BartTokenizer` is identical to :class:`~transformers.RobertaTokenizer`. Refer to superclass
:class:`~transformers.RobertaTokenizer` for usage examples and documentation concerning the initialization
parameters and other methods.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

View File

@ -0,0 +1,27 @@
__all__ = [
"BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BertConfig",
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BertForMaskedLM",
"BertForMultipleChoice",
"BertForNextSentencePrediction",
"BertForPreTraining",
"BertForQuestionAnswering",
"BertForSequenceClassification",
"BertForTokenClassification",
"BertLayer",
"BertLMHeadModel",
"BertModel",
"BertPreTrainedModel",
"BasicTokenizer",
"BertTokenizer",
"WordpieceTokenizer",
]
from .configuration_bert import BertConfig, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
from .modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForPreTraining, \
BertForNextSentencePrediction, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, \
BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel

View File

@ -0,0 +1,158 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT model configuration """
from fastNLP.transformers.torch.configuration_utils import PretrainedConfig
from fastNLP.core.log import logger
__all__ = [
"BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BertConfig",
]
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json",
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json",
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json",
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json",
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json",
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json",
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json",
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json",
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json",
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json",
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-char": "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-char-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json",
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json",
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json",
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class BertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.BertModel` or a
:class:`~transformers.TFBertModel`. It is used to instantiate a BERT model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
to that of the BERT `bert-base-uncased <https://huggingface.co/bert-base-uncased>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or
:class:`~transformers.TFBertModel`.
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or
:class:`~transformers.TFBertModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
<https://arxiv.org/abs/2009.13658>`__.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if ``config.is_decoder=True``.
classifier_dropout (:obj:`float`, `optional`):
The dropout ratio for the classification head.
Examples::
>>> from transformers import BertModel, BertConfig
>>> # Initializing a BERT bert-base-uncased style configuration
>>> configuration = BertConfig()
>>> # Initializing a model from the bert-base-uncased style configuration
>>> model = BertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "bert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,558 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Bert."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from fastNLP.transformers.torch.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from fastNLP.core.log import logger
__all__ = [
"BasicTokenizer",
"BertTokenizer",
"WordpieceTokenizer",
]
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt",
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt",
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt",
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt",
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt",
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt",
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt",
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"bert-base-uncased": 512,
"bert-large-uncased": 512,
"bert-base-cased": 512,
"bert-large-cased": 512,
"bert-base-multilingual-uncased": 512,
"bert-base-multilingual-cased": 512,
"bert-base-chinese": 512,
"bert-base-german-cased": 512,
"bert-large-uncased-whole-word-masking": 512,
"bert-large-cased-whole-word-masking": 512,
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
"bert-base-cased-finetuned-mrpc": 512,
"bert-base-german-dbmdz-cased": 512,
"bert-base-german-dbmdz-uncased": 512,
"TurkuNLP/bert-base-finnish-cased-v1": 512,
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
"wietsedv/bert-base-dutch-cased": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"bert-base-uncased": {"do_lower_case": True},
"bert-large-uncased": {"do_lower_case": True},
"bert-base-cased": {"do_lower_case": False},
"bert-large-cased": {"do_lower_case": False},
"bert-base-multilingual-uncased": {"do_lower_case": True},
"bert-base-multilingual-cased": {"do_lower_case": False},
"bert-base-chinese": {"do_lower_case": False},
"bert-base-german-cased": {"do_lower_case": False},
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BertTokenizer(PreTrainedTokenizer):
r"""
Construct a BERT tokenizer. Based on WordPiece.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
vocab_file (:obj:`str`):
File containing the vocabulary.
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to do basic tokenization before WordPiece.
never_split (:obj:`Iterable`, `optional`):
Collection of tokens which will never be split during tokenization. Only has an effect when
:obj:`do_basic_tokenize=True`
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this `issue
<https://github.com/huggingface/transformers/issues/328>`__).
strip_accents: (:obj:`bool`, `optional`):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for :obj:`lowercase` (as in the original BERT).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs
):
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: ``[CLS] X [SEP]``
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` method.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
::
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
class BasicTokenizer(object):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to lowercase the input when tokenizing.
never_split (:obj:`Iterable`, `optional`):
Collection of tokens which will never be split during tokenization. Only has an effect when
:obj:`do_basic_tokenize=True`
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this `issue
<https://github.com/huggingface/transformers/issues/328>`__).
strip_accents: (:obj:`bool`, `optional`):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for :obj:`lowercase` (as in the original BERT).
"""
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
WordPieceTokenizer.
Args:
**never_split**: (`optional`) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
:func:`PreTrainedTokenizer.tokenize`) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if never_split is not None and text in never_split:
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer`.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens

View File

@ -0,0 +1,12 @@
__all__ = [
"CPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CPTForConditionalGeneration",
"CPTForSequenceClassification",
"CPTForMaskedLM",
"CPTForQuestionAnswering",
"CPTModel",
"CPTPretrainedModel",
]
from .modeling_cpt import CPT_PRETRAINED_MODEL_ARCHIVE_LIST, CPTForConditionalGeneration, CPTForSequenceClassification, \
CPTForMaskedLM, CPTForQuestionAnswering, CPTModel, CPTPretrainedModel

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,19 @@
__all__ = [
"GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GPT2Config",
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPT2DoubleHeadsModel",
"GPT2ForSequenceClassification",
"GPT2ForTokenClassification",
"GPT2LMHeadModel",
"GPT2Model",
"GPT2PreTrainedModel",
"GPT2Tokenizer",
]
from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config
from .tokenization_gpt2 import GPT2Tokenizer
from .modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2DoubleHeadsModel, GPT2ForSequenceClassification, \
GPT2ForTokenClassification, GPT2LMHeadModel, GPT2Model, GPT2PreTrainedModel

View File

@ -0,0 +1,184 @@
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT-2 configuration """
from fastNLP.transformers.torch.configuration_utils import PretrainedConfig
__all__ = [
"GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GPT2Config",
]
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"gpt2": "https://huggingface.co/gpt2/resolve/main/config.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json",
}
class GPT2Config(PretrainedConfig):
"""
This is the configuration class to store the configuration of a :class:`~transformers.GPT2Model` or a
:class:`~transformers.TFGPT2Model`. It is used to instantiate a GPT-2 model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
to that of the GPT-2 `small <https://huggingface.co/gpt2>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 50257):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.GPT2Model` or
:class:`~transformers.TFGPT2Model`.
n_positions (:obj:`int`, `optional`, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_ctx (:obj:`int`, `optional`, defaults to 1024):
Dimensionality of the causal mask (usually same as n_positions).
n_embd (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (:obj:`int`, `optional`, defaults to None):
Dimensionality of the inner feed-forward layers. :obj:`None` will set it to 4 times n_embd
activation_function (:obj:`str`, `optional`, defaults to :obj:`"gelu"`):
Activation function, to be selected in the list :obj:`["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (:obj:`int`, `optional`, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
The epsilon to use in the layer normalization layers
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
summary_type (:obj:`string`, `optional`, defaults to :obj:`"cls_index"`):
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel`
and :class:`~transformers.TFGPT2DoubleHeadsModel`.
Has to be one of the following options:
- :obj:`"last"`: Take the last token hidden state (like XLNet).
- :obj:`"first"`: Take the first token hidden state (like BERT).
- :obj:`"mean"`: Take the mean of all tokens hidden states.
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- :obj:`"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel`
and :class:`~transformers.TFGPT2DoubleHeadsModel`.
Whether or not to add a projection after the vector extraction.
summary_activation (:obj:`str`, `optional`):
Argument used when doing sequence summary. Used in for the multiple choice head in
:class:`~transformers.GPT2DoubleHeadsModel`.
Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`):
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel`
and :class:`~transformers.TFGPT2DoubleHeadsModel`.
Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes.
summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1):
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel`
and :class:`~transformers.TFGPT2DoubleHeadsModel`.
The dropout ratio to be used after the projection and activation.
scale_attn_weights (:obj:`bool`, `optional`, defaults to :obj:`True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example::
>>> from transformers import GPT2Model, GPT2Config
>>> # Initializing a GPT2 configuration
>>> configuration = GPT2Config()
>>> # Initializing a model from the configuration
>>> model = GPT2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "gpt2"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50257,
n_positions=1024,
n_ctx=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
**kwargs
):
self.vocab_size = vocab_size
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,308 @@
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from fastNLP.transformers.torch.tokenization_utils import AddedToken, PreTrainedTokenizer
# if TYPE_CHECKING:
# from transformers.pipelines.conversational import Conversation
from fastNLP.core.log import logger
__all__ = [
"GPT2Tokenizer",
]
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"gpt2": 1024,
"gpt2-medium": 1024,
"gpt2-large": 1024,
"gpt2-xl": 1024,
"distilgpt2": 1024,
}
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class GPT2Tokenizer(PreTrainedTokenizer):
"""
Construct a GPT-2 tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
::
>>> from transformers import GPT2Tokenizer
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]
You can get around that behavior by passing ``add_prefix_space=True`` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
.. note::
When used with ``is_split_into_words=True``, this tokenizer will add a space before each word (even the first
one).
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
vocab_file (:obj:`str`):
Path to the vocabulary file.
merges_file (:obj:`str`):
Path to the merges file.
errors (:obj:`str`, `optional`, defaults to :obj:`"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode
<https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information.
unk_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
The beginning of sequence token.
eos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
The end of sequence token.
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
super().__init__(
errors=errors,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, ensure_ascii=False))
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if is_split_into_words or add_prefix_space:
text = " " + text
return (text, kwargs)
# def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
# input_ids = []
# for is_user, text in conversation.iter_texts():
# input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
# if len(input_ids) > self.model_max_length:
# input_ids = input_ids[-self.model_max_length :]
# return input_ids

View File

@ -0,0 +1,21 @@
__all__ = [
"ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaConfig",
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaForCausalLM",
"RobertaForMaskedLM",
"RobertaForMultipleChoice",
"RobertaForQuestionAnswering",
"RobertaForSequenceClassification",
"RobertaForTokenClassification",
"RobertaModel",
"RobertaPreTrainedModel",
"RobertaTokenizer",
]
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig
from .tokenization_roberta import RobertaTokenizer
from .modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, \
RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel

View File

@ -0,0 +1,65 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" RoBERTa configuration """
from ..bert.configuration_bert import BertConfig
from fastNLP.core.log import logger
__all__ = [
"ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaConfig",
]
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class RobertaConfig(BertConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.RobertaModel` or a
:class:`~transformers.TFRobertaModel`. It is used to instantiate a RoBERTa model according to the specified
arguments, defining the model architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
The :class:`~transformers.RobertaConfig` class directly inherits :class:`~transformers.BertConfig`. It reuses the
same defaults. Please check the parent class for more information.
Examples::
>>> from transformers import RobertaConfig, RobertaModel
>>> # Initializing a RoBERTa configuration
>>> configuration = RobertaConfig()
>>> # Initializing a model from the configuration
>>> model = RobertaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "roberta"
def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs):
"""Constructs RobertaConfig."""
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,254 @@
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for RoBERTa."""
from typing import List, Optional
from fastNLP.transformers.torch.tokenization_utils import AddedToken
from ..gpt2.tokenization_gpt2 import GPT2Tokenizer
from fastNLP.core.log import logger
__all__ = [
"RobertaTokenizer",
]
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json",
},
"merges_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"roberta-base": 512,
"roberta-large": 512,
"roberta-large-mnli": 512,
"distilroberta-base": 512,
"roberta-base-openai-detector": 512,
"roberta-large-openai-detector": 512,
}
class RobertaTokenizer(GPT2Tokenizer):
"""
Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
::
>>> from transformers import RobertaTokenizer
>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
>>> tokenizer("Hello world")['input_ids']
[0, 31414, 232, 328, 2]
>>> tokenizer(" Hello world")['input_ids']
[0, 20920, 232, 2]
You can get around that behavior by passing ``add_prefix_space=True`` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
.. note::
When used with ``is_split_into_words=True``, this tokenizer will add a space before each word (even the first
one).
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
vocab_file (:obj:`str`):
Path to the vocabulary file.
merges_file (:obj:`str`):
Path to the merges file.
errors (:obj:`str`, `optional`, defaults to :obj:`"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode
<https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information.
bos_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
.. note::
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the :obj:`cls_token`.
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
The end of sequence token.
.. note::
When building a sequence using special tokens, this is not the token that is used for the end of
sequence. The token used is the :obj:`sep_token`.
sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
**kwargs
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A RoBERTa sequence has the following format:
- single sequence: ``<s> X </s>``
- pair of sequences: ``<s> A </s></s> B </s>``
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` method.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)

View File

@ -0,0 +1,915 @@
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tokenization classes for python tokenizers. For fast tokenizers (provided by HuggingFace's tokenizers library) see
tokenization_utils_fast.py
"""
import bisect
import itertools
import re
import unicodedata
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple, Union, overload
from .file_utils import PaddingStrategy, TensorType, add_end_docstrings
from .tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
INIT_TOKENIZER_DOCSTRING,
AddedToken,
BatchEncoding,
EncodedInput,
EncodedInputPair,
PreTokenizedInput,
PreTokenizedInputPair,
PreTrainedTokenizerBase,
TextInput,
TextInputPair,
TruncationStrategy,
)
from fastNLP.core.log import logger
# Slow tokenizers are saved in a vocabulary plus three separated files
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
ADDED_TOKENS_FILE = "added_tokens.json"
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"
class Trie:
"""
Trie in Python. Creates a Trie out of a list of words. The trie is used to split on `added_tokens` in one pass
Loose reference https://en.wikipedia.org/wiki/Trie
"""
def __init__(self):
self.data = {}
def add(self, word: str):
"""
Passes over every char (utf-8 char) on word and recursively adds it to the internal `data` trie representation.
The special key `""` is used to represent termination.
This function is idempotent, adding twice the same word will leave the trie unchanged
Example::
>>> trie = Trie()
>>> trie.add("Hello 友達")
>>> trie.data
{"H": {"e": {"l": {"l": {"o": {" ": {"": {"": {"": 1}}}}}}}}}
>>> trie.add("Hello")
>>> trie.data
{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"": {"": {"": 1}}}}}}}}}
"""
if not word:
# Prevent empty string
return
ref = self.data
for char in word:
ref[char] = char in ref and ref[char] or {}
ref = ref[char]
ref[""] = 1
def split(self, text: str) -> List[str]:
"""
Will look for the words added to the trie within `text`. Output is the original string splitted along the
boundaries of the words found.
This trie will match the longest possible word first !
Example::
>>> trie = Trie()
>>> trie.split("[CLS] This is a extra_id_100")
["[CLS] This is a extra_id_100"]
>>> trie.add("[CLS]")
>>> trie.add("extra_id_1")
>>> trie.add("extra_id_100")
>>> trie.split("[CLS] This is a extra_id_100")
["[CLS]", " This is a ", "extra_id_100"]
"""
# indexes are counted left of the chars index.
# "hello", index 0, is left of h, index 1 is between h and e.
# index 5 is right of the "o".
# States are going to capture every possible start (indexes as above)
# as keys, and have as values, a pointer to the position in the trie
# where we're at. This is a partial match for now.
# This enables to keep track of multiple matches while we're iterating
# the string
# If the trie contains, "blowing", and "lower" and we encounter the
# string "blower", we need to split into ["b", "lower"].
# This is where we need to keep track of multiple possible starts.
states = OrderedDict()
# This will contain every indices where we need
# to cut.
# We force to cut at offset 0 and len(text) (added later)
offsets = [0]
# This is used by the lookahead which needs to skip over
# some text where the full match exceeded the place in the initial
# for loop
skip = None
# Main loop, Giving this algorithm O(n) complexity
for current, current_char in enumerate(text):
if skip and current < skip:
# Prevents the lookahead for matching twice
# like extra_id_100 and id_100
continue
# This will track every state
# that stop matching, we need to stop tracking them.
# If we look at "lowball", we're going to match "l" (add it to states), "o", "w", then
# fail on "b", we need to remove 0 from the valid states.
to_remove = set()
# Whenever we found a match, we need to drop everything
# this is a greedy algorithm, it will match on the first found token
reset = False
# In this case, we already have partial matches (But unfinished)
for start, trie_pointer in states.items():
if "" in trie_pointer:
# This is a final match, we need to reset and
# store the results in `offsets`.
# Lookahead to match longest first
# Important in case of extra_id_1 vs extra_id_100
lookahead_index = current
end = current
next_char = text[lookahead_index] if lookahead_index < len(text) else None
while next_char in trie_pointer:
trie_pointer = trie_pointer[next_char]
lookahead_index += 1
if "" in trie_pointer:
end = lookahead_index
skip = lookahead_index
if lookahead_index == len(text):
# End of string
break
next_char = text[lookahead_index]
# End lookahead
# Storing and resetting
offsets.append(start)
offsets.append(end)
reset = True
elif current_char in trie_pointer:
# The current character being looked at has a match within the trie
# update the pointer (it will be stored back into states later).
trie_pointer = trie_pointer[current_char]
# Storing back the new pointer into the states.
# Partial matches got longer by one.
states[start] = trie_pointer
else:
# The new character has not match in the trie, we need
# to stop keeping track of this partial match.
# We can't do it directly within the loop because of how
# python iteration works
to_remove.add(start)
# Either clearing the full start (we found a real match)
# Or clearing only the partial matches that didn't work.
if reset:
states = {}
else:
for start in to_remove:
del states[start]
# If this character is a starting character within the trie
# start keeping track of this partial match.
if current_char in self.data:
states[current] = self.data[current_char]
# We have a cut at the end with states.
for start, trie_pointer in states.items():
if "" in trie_pointer:
# This is a final match, we need to reset and
# store the results in `offsets`.
end = len(text)
offsets.append(start)
offsets.append(end)
# Longest cut is always the one with lower start so the first
# item so we need to break.
break
# We have all the offsets now, we just need to do the actual splitting.
# We need to eventually add the first part of the string and the eventual
# last part.
offsets.append(len(text))
tokens = []
start = 0
for end in offsets:
if start == end:
# This might happen if there's a match at index 0
# we're also preventing zero-width cuts in case of two
# consecutive matches
continue
tokens.append(text[start:end])
start = end
return tokens
def _is_whitespace(char):
"""Checks whether `char` is a whitespace character."""
# \t, \n, and \r are technically control characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `char` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `char` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
def _is_end_of_word(text):
"""Checks whether the last character in text is one of a punctuation, control or whitespace character."""
last_char = text[-1]
return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char))
def _is_start_of_word(text):
"""Checks whether the first character in text is one of a punctuation, control or whitespace character."""
first_char = text[0]
return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char))
def _insert_one_token_to_ordered_list(token_list: List[str], new_token: str):
"""
Inserts one token to an ordered list if it does not already exist. Note: token_list must be sorted.
"""
insertion_idx = bisect.bisect_left(token_list, new_token)
# Checks if new_token is already in the ordered token_list
if insertion_idx < len(token_list) and token_list[insertion_idx] == new_token:
# new_token is in token_list, don't add
return
else:
token_list.insert(insertion_idx, new_token)
@add_end_docstrings(INIT_TOKENIZER_DOCSTRING)
class PreTrainedTokenizer(PreTrainedTokenizerBase):
"""
Base class for all slow tokenizers.
Inherits from :class:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase`.
Handle all the shared methods for tokenization and special tokens as well as methods downloading/caching/loading
pretrained tokenizers as well as adding tokens to the vocabulary.
This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the
specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
# Added tokens - We store this for both slow and fast tokenizers
# until the serialization of Fast tokenizers is updated
self.added_tokens_encoder: Dict[str, int] = {}
self.added_tokens_decoder: Dict[int, str] = {}
self.unique_no_split_tokens: List[str] = []
self.tokens_trie = Trie()
self._decode_use_source_tokenizer = False
@property
def is_fast(self) -> bool:
return False
@property
def vocab_size(self) -> int:
"""
:obj:`int`: Size of the base vocabulary (without the added tokens).
"""
raise NotImplementedError
def get_added_vocab(self) -> Dict[str, int]:
"""
Returns the added tokens in the vocabulary as a dictionary of token to index.
Returns:
:obj:`Dict[str, int]`: The added tokens.
"""
return self.added_tokens_encoder
def __len__(self):
"""
Size of the full vocabulary with the added tokens.
"""
return self.vocab_size + len(self.added_tokens_encoder)
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
"""
Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to
it with indices starting from length of the current vocabulary.
Args:
new_tokens (:obj:`List[str]`or :obj:`List[tokenizers.AddedToken]`):
Token(s) to add in vocabulary. A token is only added if it's not already in the vocabulary (tested by
checking if the tokenizer assign the index of the ``unk_token`` to them).
special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the tokens should be added as special tokens.
Returns:
:obj:`int`: The number of tokens actually added to the vocabulary.
Examples::
# Let's see how to increase the vocabulary of Bert model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
print('We have added', num_added_toks, 'tokens')
# Note: resize_token_embeddings expects to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))
"""
new_tokens = [str(tok) for tok in new_tokens]
tokens_to_add = []
for token in new_tokens:
if not isinstance(token, str):
raise TypeError(f"Token {token} is not a string but a {type(token)}.")
if not special_tokens and hasattr(self, "do_lower_case") and self.do_lower_case:
token = token.lower()
if (
token != self.unk_token
and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token)
and token not in tokens_to_add
):
tokens_to_add.append(token)
if self.verbose:
logger.info(f"Adding {token} to the vocabulary")
added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(tokens_to_add))
added_tok_decoder = {v: k for k, v in added_tok_encoder.items()}
self.added_tokens_encoder.update(added_tok_encoder)
self.added_tokens_decoder.update(added_tok_decoder)
# Make sure we don't split on any special tokens (even they were already in the vocab before e.g. for Albert)
if special_tokens:
if len(new_tokens) == 1:
_insert_one_token_to_ordered_list(self.unique_no_split_tokens, new_tokens[0])
else:
self.unique_no_split_tokens = sorted(set(self.unique_no_split_tokens).union(set(new_tokens)))
else:
# Or on the newly added tokens
if len(tokens_to_add) == 1:
_insert_one_token_to_ordered_list(self.unique_no_split_tokens, tokens_to_add[0])
else:
self.unique_no_split_tokens = sorted(set(self.unique_no_split_tokens).union(set(tokens_to_add)))
self._create_trie(self.unique_no_split_tokens)
return len(tokens_to_add)
def _create_trie(self, unique_no_split_tokens):
trie = Trie()
for token in unique_no_split_tokens:
if hasattr(self, "do_lower_case") and self.do_lower_case and token not in self.all_special_tokens:
trie.add(token.lower())
else:
trie.add(token)
self.tokens_trie = trie
def num_special_tokens_to_add(self, pair: bool = False) -> int:
"""
Returns the number of added tokens when encoding a sequence with special tokens.
.. note::
This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not
put this inside your training loop.
Args:
pair (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether the number of added tokens should be computed in the case of a sequence pair or a single
sequence.
Returns:
:obj:`int`: Number of special tokens added to sequences.
"""
token_ids_0 = []
token_ids_1 = []
return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
"""
Converts a string in a sequence of tokens, using the tokenizer.
Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies
(BPE/SentencePieces/WordPieces). Takes care of added tokens.
Args:
text (:obj:`str`):
The sequence to be encoded.
**kwargs (additional keyword arguments):
Passed along to the model-specific ``prepare_for_tokenization`` preprocessing method.
Returns:
:obj:`List[str]`: The list of tokens.
"""
# Simple mapping string => AddedToken for special tokens with specific tokenization behaviors
all_special_tokens_extended = dict(
(str(t), t) for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
)
text, kwargs = self.prepare_for_tokenization(text, **kwargs)
if kwargs:
logger.warning(f"Keyword arguments {kwargs} not recognized.")
# TODO: should this be in the base class?
if hasattr(self, "do_lower_case") and self.do_lower_case:
# convert non-special tokens to lowercase
escaped_special_toks = [
re.escape(s_tok) for s_tok in (self.unique_no_split_tokens + self.all_special_tokens)
]
pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)
no_split_token = set(self.unique_no_split_tokens)
tokens = self.tokens_trie.split(text)
# ["This is something", "<special_token_1>", " else"]
for i, token in enumerate(tokens):
if token in no_split_token:
tok_extended = all_special_tokens_extended.get(token, None)
left = tokens[i - 1] if i > 0 else None
right = tokens[i + 1] if i < len(tokens) - 1 else None
if isinstance(tok_extended, AddedToken):
if tok_extended.rstrip and right:
# A bit counter-intuitive but we strip the left of the string
# since tok_extended.rstrip means the special token is eating all white spaces on its right
tokens[i + 1] = right.lstrip()
# Strip white spaces on the left
if tok_extended.lstrip and left:
tokens[i - 1] = left.rstrip() # Opposite here
else:
# We strip left and right by default
if right:
tokens[i + 1] = right.lstrip()
if left:
tokens[i - 1] = left.rstrip()
# ["This is something", "<special_token_1>", "else"]
tokenized_text = []
for token in tokens:
# Need to skip eventual empty (fully stripped) tokens
if not token:
continue
if token in no_split_token:
tokenized_text.append(token)
else:
tokenized_text.extend(self._tokenize(token))
# ["This", " is", " something", "<special_token_1>", "else"]
return tokenized_text
def _tokenize(self, text, **kwargs):
"""
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
Do NOT take care of added tokens.
"""
raise NotImplementedError
def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
"""
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
vocabulary.
Args:
tokens (:obj:`str` or :obj:`List[str]`): One or several token(s) to convert to token id(s).
Returns:
:obj:`int` or :obj:`List[int]`: The token id or list of token ids.
"""
if tokens is None:
return None
if isinstance(tokens, str):
return self._convert_token_to_id_with_added_voc(tokens)
ids = []
for token in tokens:
ids.append(self._convert_token_to_id_with_added_voc(token))
return ids
def _convert_token_to_id_with_added_voc(self, token):
if token is None:
return None
if token in self.added_tokens_encoder:
return self.added_tokens_encoder[token]
return self._convert_token_to_id(token)
def _convert_token_to_id(self, token):
raise NotImplementedError
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput, EncodedInput],
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
tokens = self.tokenize(text, **kwargs)
return self.convert_tokens_to_ids(tokens)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
if is_split_into_words:
tokens = list(
itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
)
return self.convert_tokens_to_ids(tokens)
else:
return self.convert_tokens_to_ids(text)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
if is_split_into_words:
raise ValueError(
f"Input {text} is not valid. Should be a string or a list/tuple of strings when `is_split_into_words=True`."
)
else:
raise ValueError(
f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
first_ids = get_input_ids(text)
second_ids = get_input_ids(text_pair) if text_pair is not None else None
return self.prepare_for_model(
first_ids,
pair_ids=second_ids,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
List[PreTokenizedInputPair],
List[EncodedInput],
List[EncodedInputPair],
],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
tokens = self.tokenize(text, **kwargs)
return self.convert_tokens_to_ids(tokens)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
if is_split_into_words:
tokens = list(
itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
)
return self.convert_tokens_to_ids(tokens)
else:
return self.convert_tokens_to_ids(text)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
raise ValueError(
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
input_ids = []
for ids_or_pair_ids in batch_text_or_text_pairs:
if not isinstance(ids_or_pair_ids, (list, tuple)):
ids, pair_ids = ids_or_pair_ids, None
elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)):
ids, pair_ids = ids_or_pair_ids, None
else:
ids, pair_ids = ids_or_pair_ids
first_ids = get_input_ids(ids)
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
input_ids.append((first_ids, second_ids))
batch_outputs = self._batch_prepare_for_model(
input_ids,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens
Args:
batch_ids_pairs: list of tokenized input ids or input ids pairs
"""
batch_outputs = {}
for first_ids, second_ids in batch_ids_pairs:
outputs = self.prepare_for_model(
first_ids,
second_ids,
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterward
return_attention_mask=False, # we pad in batch afterward
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
def prepare_for_tokenization(
self, text: str, is_split_into_words: bool = False, **kwargs
) -> Tuple[str, Dict[str, Any]]:
"""
Performs any necessary transformations before tokenization.
This method should pop the arguments from kwargs and return the remaining :obj:`kwargs` as well. We test the
:obj:`kwargs` at the end of the encoding process to be sure all the arguments have been used.
Args:
text (:obj:`str`):
The text to prepare.
is_split_into_words (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the input is already pre-tokenized (e.g., split into words). If set to :obj:`True`, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.
kwargs:
Keyword arguments to use for the tokenization.
Returns:
:obj:`Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs.
"""
return (text, kwargs)
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
Args:
token_ids_0 (:obj:`List[int]`):
List of ids of the first sequence.
token_ids_1 (:obj:`List[int]`, `optional`):
List of ids of the second sequence.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0))
@overload
def convert_ids_to_tokens(self, ids: int, skip_special_tokens: bool = False) -> str:
...
@overload
def convert_ids_to_tokens(self, ids: List[int], skip_special_tokens: bool = False) -> List[str]:
...
def convert_ids_to_tokens(
self, ids: Union[int, List[int]], skip_special_tokens: bool = False
) -> Union[str, List[str]]:
"""
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
added tokens.
Args:
ids (:obj:`int` or :obj:`List[int]`):
The token id (or token ids) to convert to tokens.
skip_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to remove special tokens in the decoding.
Returns:
:obj:`str` or :obj:`List[str]`: The decoded token(s).
"""
if isinstance(ids, int):
if ids in self.added_tokens_decoder:
return self.added_tokens_decoder[ids]
else:
return self._convert_id_to_token(ids)
tokens = []
for index in ids:
index = int(index)
if skip_special_tokens and index in self.all_special_ids:
continue
if index in self.added_tokens_decoder:
tokens.append(self.added_tokens_decoder[index])
else:
tokens.append(self._convert_id_to_token(index))
return tokens
def _convert_id_to_token(self, index: int) -> str:
raise NotImplementedError
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return " ".join(tokens)
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = True,
spaces_between_special_tokens: bool = True,
**kwargs
) -> str:
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
sub_texts = []
current_sub_text = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
current_sub_text = []
sub_texts.append(token)
else:
current_sub_text.append(token)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
if spaces_between_special_tokens:
text = " ".join(sub_texts)
else:
text = "".join(sub_texts)
if clean_up_tokenization_spaces:
clean_text = self.clean_up_tokenization(text)
return clean_text
else:
return text

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,54 @@
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import ceil
def assert_device_map(device_map, num_blocks):
blocks = list(range(0, num_blocks))
device_map_blocks = [item for sublist in list(device_map.values()) for item in sublist]
# Duplicate check
duplicate_blocks = []
for i in device_map_blocks:
if device_map_blocks.count(i) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(i)
# Missing blocks
missing_blocks = [i for i in blocks if i not in device_map_blocks]
extra_blocks = [i for i in device_map_blocks if i not in blocks]
assert len(duplicate_blocks) == 0, (
"Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device. These "
"attention blocks were specified more than once: " + str(duplicate_blocks)
)
assert len(missing_blocks) == 0, (
"There are attention blocks for this model that are not specified in the device_map. Add these attention "
"blocks to a device on the device_map: " + str(missing_blocks)
)
assert (
len(extra_blocks) == 0
), "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(
extra_blocks
)
def get_device_map(n_layers, devices):
"""Returns a dictionary of layers distributed evenly across all devices."""
layers = list(range(n_layers))
n_blocks = int(ceil(n_layers / len(devices)))
layers_list = list(layers[i : i + n_blocks] for i in range(0, n_layers, n_blocks))
return dict(zip(devices, layers_list))

View File

@ -0,0 +1,120 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities for working with package versions
"""
import operator
import re
import sys
from typing import Optional
from packaging import version
# The package importlib_metadata is in a different place, depending on the python version.
if sys.version_info < (3, 8):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
ops = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def _compare_versions(op, got_ver, want_ver, requirement, pkg, hint):
if got_ver is None:
raise ValueError("got_ver is None")
if want_ver is None:
raise ValueError("want_ver is None")
if not ops[op](version.parse(got_ver), version.parse(want_ver)):
raise ImportError(
f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}"
)
def require_version(requirement: str, hint: Optional[str] = None) -> None:
"""
Perform a runtime check of the dependency versions, using the exact same syntax used by pip.
The installed module version comes from the `site-packages` dir via `importlib_metadata`.
Args:
requirement (:obj:`str`): pip style definition, e.g., "tokenizers==0.9.4", "tqdm>=4.27", "numpy"
hint (:obj:`str`, `optional`): what suggestion to print in case of requirements not being met
Example::
require_version("pandas>1.1.2")
require_version("numpy>1.18.5", "this is important to have for whatever reason")
"""
hint = f"\n{hint}" if hint is not None else ""
# non-versioned check
if re.match(r"^[\w_\-\d]+$", requirement):
pkg, op, want_ver = requirement, None, None
else:
match = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)", requirement)
if not match:
raise ValueError(
f"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but got {requirement}"
)
pkg, want_full = match[0]
want_range = want_full.split(",") # there could be multiple requirements
wanted = {}
for w in want_range:
match = re.findall(r"^([\s!=<>]{1,2})(.+)", w)
if not match:
raise ValueError(
f"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but got {requirement}"
)
op, want_ver = match[0]
wanted[op] = want_ver
if op not in ops:
raise ValueError(f"{requirement}: need one of {list(ops.keys())}, but got {op}")
# special case
if pkg == "python":
got_ver = ".".join([str(x) for x in sys.version_info[:3]])
for op, want_ver in wanted.items():
_compare_versions(op, got_ver, want_ver, requirement, pkg, hint)
return
# check if any version is installed
try:
got_ver = importlib_metadata.version(pkg)
except importlib_metadata.PackageNotFoundError:
raise importlib_metadata.PackageNotFoundError(
f"The '{requirement}' distribution was not found and is required by this application. {hint}"
)
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(op, got_ver, want_ver, requirement, pkg, hint)
def require_version_core(requirement):
"""require_version wrapper which emits a core-specific hint on failure"""
hint = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git master"
return require_version(requirement, hint)