Merge branch 'dev0.8.0' of github.com:fastnlp/fastNLP into dev0.8.0

This commit is contained in:
x54-729 2022-04-12 08:48:16 +00:00
commit e08ae33bfd
4 changed files with 133 additions and 70 deletions

View File

@ -15,6 +15,7 @@ from sklearn.metrics import accuracy_score as sklearn_accuracy
from fastNLP.core.dataset import DataSet
from fastNLP.core.metrics.accuracy import Accuracy
from fastNLP.core.metrics.metric import Metric
from .utils import find_free_network_port, setup_ddp, _assert_allclose
set_start_method("spawn", force=True)
@ -23,42 +24,6 @@ NUM_PROCESSES = 2
pool = None
def setup_ddp(rank: int, world_size: int, master_port: int) -> None:
"""Setup ddp environment."""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(master_port)
print(torch.cuda.device_count())
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"):
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
def find_free_network_port() -> int:
"""Finds a free port on localhost.
It is useful in single-node training when we don't want to connect to a real master node but have to set the
`MASTER_PORT` environment variable.
"""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
s.listen(1)
port = s.getsockname()[1]
s.close()
return port
def _assert_allclose(my_result: Union[float, np.ndarray], sklearn_result: Union[float, np.ndarray],
atol: float = 1e-8) -> None:
"""
测试对比结果这里不用非得是必须数组且维度对应一些其他情况例如 np.allclose(np.array([[1e10, ], ]), 1e10+1) 也是 True
:param my_result: 可以不限设备等
:param sklearn_result:
:param atol:
:return:
"""
assert np.allclose(a=my_result, b=sklearn_result, atol=atol)
def _test(local_rank: int,
world_size: int,
device: torch.device,

View File

@ -1,8 +1,32 @@
from functools import partial
import copy
import pytest
import torch
import numpy as np
from torch.multiprocessing import Pool, set_start_method
from fastNLP.core.metrics import ClassifyFPreRecMetric
from fastNLP.core.dataset import DataSet
from .utils import find_free_network_port, setup_ddp
set_start_method("spawn", force=True)
def _test(local_rank: int, world_size: int, device: torch.device,
dataset: DataSet, metric_class, metric_kwargs, metric_result):
metric = metric_class(**metric_kwargs)
# dataset 也类似(每个进程有自己的一个)
dataset = copy.deepcopy(dataset)
metric.to(device)
# 把数据拆到每个 GPU 上,有点模仿 DistributedSampler 的感觉,但这里数据单位是一个 batch即每个 i 取了一个 batch 到自己的 GPU 上)
for i in range(local_rank, len(dataset), world_size):
pred, tg = dataset[i]['pred'].to(device), dataset[i]['tg'].to(device)
metric.update(pred, tg)
my_result = metric.get_metric()
for keys in ['f', 'pre', 'rec']:
np.allclose(my_result[keys], metric_result[keys], atol=0.000001)
class TestClassfiyFPreRecMetric:
@ -86,3 +110,68 @@ class TestClassfiyFPreRecMetric:
tmp_d = {"p": "precision", "r": "recall", "f": "f1-score"}
gk = tmp_d[keys[0]]
np.allclose(result_dict[keys], ground_truth[gl][gk], atol=0.000001)
@pytest.mark.parametrize("f_type, f1_score,recall,pre",
[('macro', 0.1882051282051282, 0.1619047619047619, 0.23928571428571427),
('micro', 0.21875, 0.21875, 0.21875)])
def test_case_2(self, f_type, f1_score, recall, pre):
dataset = DataSet({
'pred': [torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910],
[1.3410, 0.2889, -0.8667, -1.8580, 0.3029],
[0.7459, -1.1957, 0.3231, 0.0308, -0.1847],
[1.1439, -0.0057, 0.8203, 0.0312, -1.0051],
[-0.4870, 0.3215, -0.8290, 0.9221, 0.4683],
[0.9078, 1.0674, -0.5629, 0.3895, 0.8917],
[-0.7743, -0.4041, -0.9026, 0.2112, 1.0892],
[1.8232, -1.4188, -2.5615, -2.4187, 0.5907],
[-1.0592, 0.4164, -0.1192, 1.4238, -0.9258],
[-1.1137, 0.5773, 2.5778, 0.5398, -0.3323],
[-0.3868, -0.5165, 0.2286, -1.3876, 0.5561],
[-0.3304, 1.3619, -1.5744, 0.4902, -0.7661],
[1.8387, 0.5234, 0.4269, 1.3748, -1.2793],
[0.6692, 0.2571, 1.2425, -0.5894, -0.0184],
[0.4165, 0.4084, -0.1280, 1.4489, -2.3058],
[-0.5826, -0.5469, 1.5898, -0.2786, -0.9882]]),
torch.tensor([
[-1.5548, -2.2891, 0.2983, -1.2145, -0.1947],
[-0.7222, 2.3543, -0.5801, -0.0640, -1.5614],
[-1.4978, 1.9297, -1.3652, -0.2358, 2.5566],
[0.1561, -0.0316, 0.9331, 1.0363, 2.3949],
[0.2650, -0.8459, 1.3221, 0.1321, -1.1900],
[0.0664, -1.2353, -0.5242, -1.4491, 1.3300],
[-0.2744, 0.0941, 0.7157, 0.1404, 1.2046],
[0.9341, -0.6652, 1.4512, 0.9608, -0.3623],
[-1.1641, 0.0873, 0.1163, -0.2068, -0.7002],
[1.4775, -2.0025, -0.5634, -0.1589, 0.0247],
[1.0151, 1.0304, -0.1042, -0.6955, -0.0629],
[-0.3119, -0.4558, 0.7757, 0.0758, -1.6297],
[1.0654, 0.0313, -0.7716, 0.1194, 0.6913],
[-0.8088, -0.6648, -0.5018, -0.0230, -0.8207],
[-0.7753, -0.3508, 1.6163, 0.7158, 1.5207],
[0.8692, 0.7718, -0.6734, 0.6515, 0.0641]
])],
'tg': [
torch.LongTensor([0, 2, 4, 1, 4, 0, 1, 3, 3, 3, 1, 3, 4, 4, 3, 4]),
torch.LongTensor([0, 2, 4, 4, 3, 4, 4, 3, 0, 3, 0, 0, 0, 1, 3, 1])
]
})
metric_kwargs = {
'f_type': f_type,
'num_class': 5,
'only_gross': False,
'aggregate_when_get_metric': True
}
ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall}
NUM_PROCESSES = 2
pool = Pool(processes=NUM_PROCESSES)
master_port = find_free_network_port()
pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)])
pool.starmap(partial(_test, dataset=dataset,
metric_class=ClassifyFPreRecMetric,
metric_kwargs=metric_kwargs,
metric_result=ground_truth),
[(rank, NUM_PROCESSES, torch.device(f'cuda:{rank+4}')) for rank in range(NUM_PROCESSES)])
pool.close()
pool.join()

View File

@ -14,6 +14,7 @@ from torch.multiprocessing import Pool, set_start_method
from fastNLP.core.vocabulary import Vocabulary
from fastNLP.core.metrics import SpanFPreRecMetric
from fastNLP.core.dataset import DataSet
from .utils import find_free_network_port, setup_ddp
set_start_method("spawn", force=True)
@ -41,40 +42,6 @@ NUM_PROCESSES = 2
pool = None
def setup_ddp(rank: int, world_size: int, master_port: int) -> None:
"""Setup ddp environment."""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(master_port)
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"):
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
def find_free_network_port() -> int:
"""Finds a free port on localhost.
It is useful in single-node training when we don't want to connect to a real master node but have to set the
`MASTER_PORT` environment variable.
"""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
s.listen(1)
port = s.getsockname()[1]
s.close()
return port
# @pytest.fixture(scope='class', autouse=True)
# def pre_process():
# global pool
# pool = Pool(processes=NUM_PROCESSES)
# master_port = find_free_network_port()
# pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)])
# yield
# pool.close()
# pool.join()
def _test(local_rank: int,
world_size: int,
device: torch.device,

View File

@ -0,0 +1,42 @@
import os, sys
import socket
from typing import Union
import torch
from torch import distributed
import numpy as np
def setup_ddp(rank: int, world_size: int, master_port: int) -> None:
"""Setup ddp environment."""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(master_port)
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"):
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
def find_free_network_port() -> int:
"""Finds a free port on localhost.
It is useful in single-node training when we don't want to connect to a real master node but have to set the
`MASTER_PORT` environment variable.
"""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
s.listen(1)
port = s.getsockname()[1]
s.close()
return port
def _assert_allclose(my_result: Union[float, np.ndarray], sklearn_result: Union[float, np.ndarray],
atol: float = 1e-8) -> None:
"""
测试对比结果这里不用非得是必须数组且维度对应一些其他情况例如 np.allclose(np.array([[1e10, ], ]), 1e10+1) 也是 True
:param my_result: 可以不限设备等
:param sklearn_result:
:param atol:
:return:
"""
assert np.allclose(a=my_result, b=sklearn_result, atol=atol)