update reproduction/README.md

This commit is contained in:
xuyige 2019-06-05 16:07:56 +08:00
parent 60de1b2c52
commit e643d7aed5
5 changed files with 55 additions and 36 deletions

View File

@ -476,7 +476,7 @@ class SpanFPreRecMetric(MetricBase):
label的f1, pre, rec
:param str f_type: 'micro''macro'. 'micro':通过先计算总体的TPFN和FP的数量再计算f, precision, recall; 'macro':
分布计算每个类别的f, precision, recall然后做平均各类别f的权重相同
:param float beta: f_beta分数:math:`f_beta = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}`.
:param float beta: f_beta分数 :math:`f_beta = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}` .
常用为beta=0.5, 1, 2. 若为0.5则精确率的权重高于召回率若为1则两者平等若为2则召回率权重高于精确率
"""
@ -708,7 +708,7 @@ class SQuADMetric(MetricBase):
:param pred2: 参数映射表中`pred2`的映射关系None表示映射关系为`pred2`->`pred2`
:param target1: 参数映射表中`target1`的映射关系None表示映射关系为`target1`->`target1`
:param target2: 参数映射表中`target2`的映射关系None表示映射关系为`target2`->`target2`
:param float beta: f_beta分数:math:`f_beta = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}`.
:param float beta: f_beta分数 :math:`f_beta = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}` .
常用为beta=0.5, 1, 2. 若为0.5则精确率的权重高于召回率若为1则两者平等若为2则召回率权重高于精确率
:param bool right_open: right_open为true表示start跟end指针指向一个左闭右开区间为false表示指向一个左闭右闭区间
:param bool print_predict_stat: True则输出预测答案是否为空与正确答案是否为空的统计信息, False则不输出

View File

@ -2,43 +2,28 @@
这里复现了在fastNLP中实现的模型旨在达到与论文中相符的性能。
复现的模型有:
- Star-Transformer
- [Star-Transformer](Star-transformer/)
- ...
## Star-Transformer
[reference](https://arxiv.org/abs/1902.09113)
### Performance (still in progress)
|任务| 数据集 | SOTA | 模型表现 |
|------|------| ------| ------|
|Pos Tagging|CTB 9.0|-|ACC 92.31|
|Pos Tagging|CONLL 2012|-|ACC 96.51|
|Named Entity Recognition|CONLL 2012|-|F1 85.66|
|Text Classification|SST|-|49.18|
|Natural Language Inference|SNLI|-|83.76|
### Usage
``` python
# for sequence labeling(ner, pos tagging, etc)
from fastNLP.models.star_transformer import STSeqLabel
model = STSeqLabel(
vocab_size=10000, num_cls=50,
emb_dim=300)
# 任务复现
## Text Classification (文本分类)
- still in progress
# for sequence classification
from fastNLP.models.star_transformer import STSeqCls
model = STSeqCls(
vocab_size=10000, num_cls=50,
emb_dim=300)
## Matching (自然语言推理/句子匹配)
- still in progress
# for natural language inference
from fastNLP.models.star_transformer import STNLICls
model = STNLICls(
vocab_size=10000, num_cls=50,
emb_dim=300)
## Sequence Labeling (序列标注)
- still in progress
## Coreference resolution (指代消解)
- still in progress
## Summarization (摘要)
- still in progress
```
## ...

View File

@ -0,0 +1,34 @@
# Star-Transformer
paper: [Star-Transformer](https://arxiv.org/abs/1902.09113)
## Performance (still in progress)
|任务| 数据集 | SOTA | 模型表现 |
|------|------| ------| ------|
|Pos Tagging|CTB 9.0|-|ACC 92.31|
|Pos Tagging|CONLL 2012|-|ACC 96.51|
|Named Entity Recognition|CONLL 2012|-|F1 85.66|
|Text Classification|SST|-|49.18|
|Natural Language Inference|SNLI|-|83.76|
## Usage
``` python
# for sequence labeling(ner, pos tagging, etc)
from fastNLP.models.star_transformer import STSeqLabel
model = STSeqLabel(
vocab_size=10000, num_cls=50,
emb_dim=300)
# for sequence classification
from fastNLP.models.star_transformer import STSeqCls
model = STSeqCls(
vocab_size=10000, num_cls=50,
emb_dim=300)
# for natural language inference
from fastNLP.models.star_transformer import STNLICls
model = STNLICls(
vocab_size=10000, num_cls=50,
emb_dim=300)
```

View File

@ -1,6 +1,6 @@
import unittest
from reproduction.matching.data import SNLIDataLoader
from fastNLP.core.vocabulary import VocabularyOption
from ..data import SNLIDataLoader
from fastNLP.core.vocabulary import Vocabulary
class TestCWSDataLoader(unittest.TestCase):

View File

@ -1,7 +1,7 @@
import unittest
from reproduction.seqence_labelling.cws.data.CWSDataLoader import SigHanLoader
from ..data.CWSDataLoader import SigHanLoader
from fastNLP.core.vocabulary import VocabularyOption