mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-02 12:17:35 +08:00
Merge branch 'dev0.8.0' of github.com:fastnlp/fastNLP into dev0.8.0
This commit is contained in:
commit
efa3d5451b
@ -1,4 +1,53 @@
|
||||
__all__ = [
|
||||
# callbacks
|
||||
'Callback',
|
||||
'Event',
|
||||
'Filter',
|
||||
'CallbackManager',
|
||||
'CheckpointCallback',
|
||||
'choose_progress_callback',
|
||||
'ProgressCallback',
|
||||
'RichCallback',
|
||||
"LRSchedCallback",
|
||||
'LoadBestModelCallback',
|
||||
"EarlyStopCallback",
|
||||
'MoreEvaluateCallback',
|
||||
"TorchWarmupCallback",
|
||||
"TorchGradClipCallback",
|
||||
|
||||
# collators
|
||||
'Collator',
|
||||
'NumpyNumberPadder',
|
||||
'NumpySequencePadder',
|
||||
"NumpyTensorPadder",
|
||||
"Padder",
|
||||
"NullPadder",
|
||||
"RawNumberPadder",
|
||||
"RawSequencePadder",
|
||||
'TorchNumberPadder',
|
||||
'TorchSequencePadder',
|
||||
'TorchTensorPadder',
|
||||
"PaddleNumberPadder",
|
||||
"PaddleTensorPadder",
|
||||
"PaddleSequencePadder",
|
||||
"get_padded_numpy_array",
|
||||
|
||||
# controllers
|
||||
'Loop',
|
||||
'EvaluateBatchLoop',
|
||||
'TrainBatchLoop',
|
||||
'Evaluator',
|
||||
'Trainer',
|
||||
|
||||
# dataloaders TODO 需要把 mix_dataloader 的搞定
|
||||
|
||||
# dataset
|
||||
'DataSet',
|
||||
'FieldArray',
|
||||
'Instance',
|
||||
'ApplyResultException',
|
||||
|
||||
# drivers
|
||||
"TorchSingleDriver",
|
||||
"TorchDDPDriver",
|
||||
"PaddleSingleDriver",
|
||||
@ -7,16 +56,16 @@ __all__ = [
|
||||
"JittorMPIDriver",
|
||||
"TorchPaddleDriver",
|
||||
|
||||
"paddle_to",
|
||||
"get_paddle_gpu_str",
|
||||
"get_paddle_device_id",
|
||||
"paddle_move_data_to_device",
|
||||
"torch_paddle_move_data_to_device",
|
||||
]
|
||||
# TODO:之后要优化一下这里的导入,应该是每一个 sub module 先import自己内部的类和函数,然后外层的 module 再直接从 submodule 中 import;
|
||||
from fastNLP.core.controllers.trainer import Trainer
|
||||
from fastNLP.core.controllers.evaluator import Evaluator
|
||||
from fastNLP.core.dataloaders.torch_dataloader import *
|
||||
# log
|
||||
"logger"
|
||||
|
||||
#
|
||||
]
|
||||
from .callbacks import *
|
||||
from .collators import *
|
||||
from .controllers import *
|
||||
from .dataloaders import *
|
||||
from .dataset import *
|
||||
from .drivers import *
|
||||
from .log import *
|
||||
from .utils import *
|
@ -1,7 +1,6 @@
|
||||
__all__ = [
|
||||
'Callback',
|
||||
'Events',
|
||||
'EventsList',
|
||||
'Event',
|
||||
'Filter',
|
||||
'CallbackManager',
|
||||
'CheckpointCallback',
|
||||
@ -20,7 +19,7 @@ __all__ = [
|
||||
|
||||
|
||||
from .callback import Callback
|
||||
from .callback_events import EventsList, Events, Filter
|
||||
from .callback_event import Event, Filter
|
||||
from .callback_manager import CallbackManager
|
||||
from .checkpoint_callback import CheckpointCallback
|
||||
from .progress_callback import choose_progress_callback, ProgressCallback, RichCallback
|
||||
|
@ -3,10 +3,9 @@ __all__ = [
|
||||
'Callback',
|
||||
]
|
||||
|
||||
from typing import Union, Callable, Dict, Optional, Any
|
||||
from typing import Callable, Dict, Optional
|
||||
|
||||
from .callback_events import Events, EventsList, Filter
|
||||
from fastNLP.core.callbacks.callback_events import _SingleEventState
|
||||
from .callback_event import Event, Filter
|
||||
|
||||
|
||||
class Callback:
|
||||
@ -14,32 +13,35 @@ class Callback:
|
||||
实际使用的 callback 类,不管是我们 fastNLP 默认提供的一些 callback 类,还是用户自己定制的 callback 类,都应该继承该基类;
|
||||
callback 调用时机顺序大概如下
|
||||
Trainer.__init__():
|
||||
on_after_trainer_initialized()
|
||||
on_after_trainer_initialized(trainer, driver)
|
||||
Trainer.run():
|
||||
if num_eval_sanity_batch>0:
|
||||
on_sanity_check_begin() # 如果设置了num_eval_sanity_batch
|
||||
on_sanity_check_end()
|
||||
on_sanity_check_begin(trainer) # 如果设置了num_eval_sanity_batch
|
||||
on_sanity_check_end(trainer, sanity_check_res)
|
||||
try:
|
||||
on_train_begin()
|
||||
on_train_begin(trainer)
|
||||
while cur_epoch_idx < n_epochs:
|
||||
on_train_epoch_begin()
|
||||
on_train_epoch_begin(trainer)
|
||||
while batch_idx_in_epoch<=num_batches_per_epoch:
|
||||
on_fetch_data_begin()
|
||||
on_fetch_data_end()
|
||||
on_train_batch_begin()
|
||||
on_before_backward()
|
||||
on_after_backward()
|
||||
on_before_zero_grad() # 实际调用受到 accumulation_steps 影响
|
||||
on_after_zero_grad() # 实际调用受到 accumulation_steps 影响
|
||||
on_before_optimizers_step() # 实际调用受到 accumulation_steps 影响
|
||||
on_after_optimizers_step() # 实际调用受到 accumulation_steps 影响
|
||||
on_train_batch_end()
|
||||
on_train_epoch_end()
|
||||
on_fetch_data_begin(trainer)
|
||||
batch = next(dataloader)
|
||||
on_fetch_data_end(trainer)
|
||||
on_train_batch_begin(trainer, batch, indices)
|
||||
on_before_backward(trainer, outputs) # 其中 outputs 是经过 output_mapping(如果设置了) 后的,否则即为 model 的输出。
|
||||
on_after_backward(trainer)
|
||||
on_before_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响
|
||||
on_after_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响
|
||||
on_before_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响
|
||||
on_after_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响
|
||||
on_train_batch_end(trainer)
|
||||
on_train_epoch_end(trainer)
|
||||
except BaseException:
|
||||
self.on_exception()
|
||||
self.on_exception(trainer, exception)
|
||||
finally:
|
||||
on_train_end()
|
||||
其它 callback 例如 on_evaluate_begin()/on_evaluate_end()将
|
||||
on_train_end(trainer)
|
||||
其它 callback 例如 on_evaluate_begin(trainer)/on_evaluate_end(trainer, results)/on_save_model(trainer)/
|
||||
on_load_model(trainer)/on_save_checkpoint(trainer)/on_load_checkpoint(trainer)将根据需要在Trainer.run()中特定
|
||||
的时间调用。
|
||||
"""
|
||||
|
||||
def on_after_trainer_initialized(self, trainer, driver):
|
||||
@ -294,18 +296,14 @@ class _CallbackWrapper(Callback):
|
||||
对于用户使用函数修饰器加入的 callback 函数,使用该 _CallbackWrapper 类为其进行定制,这一个类只保留用户的
|
||||
这一个 callback 函数;
|
||||
"""
|
||||
def __init__(self, event: Union[Events, EventsList], fn: Callable):
|
||||
def __init__(self, event: Event, fn: Callable):
|
||||
r"""
|
||||
:param event: 具体的 callback 时机,例如 'on_train_begin' 等;可以多个时机,此时 `event` 的 type 应当为 'EventsList';
|
||||
:param event: 具体的 callback 时机,例如 'on_train_begin' 等;
|
||||
:param fn: 用户定制的 callback 函数;
|
||||
"""
|
||||
|
||||
self.fn = fn
|
||||
if isinstance(event, EventsList):
|
||||
for each_event in event:
|
||||
_filter = Filter(each_event.every, each_event.once, each_event.filter_fn)
|
||||
setattr(self, each_event.value, _filter(fn))
|
||||
elif isinstance(event, _SingleEventState):
|
||||
if isinstance(event, Event):
|
||||
_filter = Filter(event.every, event.once, event.filter_fn)
|
||||
setattr(self, event.value, _filter(fn))
|
||||
|
||||
|
499
fastNLP/core/callbacks/callback_event.py
Normal file
499
fastNLP/core/callbacks/callback_event.py
Normal file
@ -0,0 +1,499 @@
|
||||
from typing import Optional, Callable, Dict
|
||||
from functools import wraps
|
||||
|
||||
|
||||
__all__ = [
|
||||
'Event',
|
||||
'Filter'
|
||||
]
|
||||
|
||||
|
||||
def check_legality(fn):
|
||||
@wraps(fn)
|
||||
def wrap(every=None, once=None, filter_fn=None):
|
||||
if (every is None) and (once is None) and (filter_fn is None):
|
||||
every = 1
|
||||
|
||||
if not ((every is not None) ^ (once is not None) ^ (filter_fn is not None)):
|
||||
raise ValueError("These three values should be only set one.")
|
||||
|
||||
if (filter_fn is not None) and not callable(filter_fn):
|
||||
raise TypeError("Argument filter_fn should be a callable")
|
||||
|
||||
if (every is not None) and not (isinstance(every, int) and every > 0):
|
||||
raise ValueError("Argument every should be integer and greater than zero")
|
||||
|
||||
if (once is not None) and not (isinstance(once, int) and once > 0):
|
||||
raise ValueError("Argument once should be integer and positive")
|
||||
return fn(every=every, once=once, filter_fn=filter_fn)
|
||||
return wrap
|
||||
|
||||
|
||||
class Event:
|
||||
every: Optional[int]
|
||||
once: Optional[int]
|
||||
|
||||
def __init__(self, value: str, every: Optional[int] = None, once: Optional[int] = None,
|
||||
filter_fn: Optional[Callable] = None):
|
||||
"""
|
||||
请勿直接使用本对象,而是通过调用 Event.on_after_trainer_initialized() 等方式调用。
|
||||
|
||||
:param value: Trainer 的 callback 时机。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
"""
|
||||
self.every = every
|
||||
self.once = once
|
||||
self.filter_fn = filter_fn
|
||||
self.value = value
|
||||
|
||||
def __str__(self):
|
||||
return "<event={0}, every={1}, once={2}, filter fn is:{3}>".format(self.value, self.every, self.once,
|
||||
self.filter_fn)
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_after_trainer_initialized(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_after_trainer_initialized 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。默认为
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_after_trainer_initialized', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_sanity_check_begin(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_sanity_check_begin 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_sanity_check_begin', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_sanity_check_end(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_sanity_check_end 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_sanity_check_end', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_train_begin(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_train_begin 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_train_begin', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_train_end(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_train_end 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_train_end', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_train_epoch_begin(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_train_epoch_begin 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_train_epoch_begin', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_train_epoch_end(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_train_epoch_end 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_train_epoch_end', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_fetch_data_begin(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_fetch_data_begin 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_fetch_data_begin', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_fetch_data_end(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_fetch_data_end 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_fetch_data_end', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_train_batch_begin(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_train_batch_begin 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_train_batch_begin', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_train_batch_end(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_train_batch_end 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_train_batch_end', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_exception(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_exception 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_exception', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_save_model(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_save_model 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_save_model', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_load_model(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_load_model 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_load_model', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_save_checkpoint(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_save_checkpoint 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_save_checkpoint', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_load_checkpoint(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_load_checkpoint 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_load_checkpoint', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_load_checkpoint(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_load_checkpoint 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_load_checkpoint', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_before_backward(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_before_backward 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_before_backward', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_after_backward(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_after_backward 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_after_backward', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_before_optimizers_step(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_before_optimizers_step 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_before_optimizers_step', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_after_optimizers_step(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_after_optimizers_step 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_after_optimizers_step', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_before_zero_grad(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_before_zero_grad 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_before_zero_grad', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_after_zero_grad(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_after_zero_grad 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_after_zero_grad', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_evaluate_begin(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_evaluate_begin 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_evaluate_begin', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
@staticmethod
|
||||
@check_legality
|
||||
def on_evaluate_end(every=None, once=None, filter_fn=None):
|
||||
"""
|
||||
当 Trainer 运行到 on_evaluate_end 时
|
||||
|
||||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。
|
||||
:param int every: 触发了多少次,才真正运行一次。
|
||||
:param bool once: 是否只在第一次运行后就不再执行了。
|
||||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和
|
||||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。
|
||||
:return:
|
||||
"""
|
||||
return Event(value='on_evaluate_end', every=every, once=once, filter_fn=filter_fn)
|
||||
|
||||
|
||||
class Filter:
|
||||
def __init__(self, every: Optional[int] = None, once: Optional[bool] = None, filter_fn: Optional[Callable] = None):
|
||||
r"""
|
||||
通过该 `Filter` 作为函数修饰器来控制一个函数的实际的运行频率;
|
||||
|
||||
:param every: 表示一个函数隔多少次运行一次;
|
||||
:param once: 表示一个函数只运行一次;
|
||||
:param filter_fn: 用户定制的频率控制函数;注意该函数内部的频率判断应当是无状态的,除了参数 `self.num_called` 和
|
||||
`self.num_executed` 外,因为我们会在预跑后重置这两个参数的状态;
|
||||
"""
|
||||
# check legality
|
||||
check_legality(lambda *args,**kwargs:...)(every, once, filter_fn)
|
||||
if (every is None) and (once is None) and (filter_fn is None):
|
||||
every = 1
|
||||
# 设置变量,包括全局变量;
|
||||
self.num_called = 0
|
||||
self.num_executed = 0
|
||||
|
||||
if every is not None:
|
||||
self._every = every
|
||||
self._filter = self.every_filter
|
||||
elif once is not None:
|
||||
self._once = once
|
||||
self._filter = self.once_filter
|
||||
else:
|
||||
self._filter = filter_fn
|
||||
|
||||
def __call__(self, fn: Callable):
|
||||
|
||||
@wraps(fn)
|
||||
def wrapper(*args, **kwargs) -> Callable:
|
||||
self.num_called += 1
|
||||
|
||||
# 因为我们的 callback 函数的输入是固定的,而且我们能够保证第一个参数一定是 trainer;
|
||||
trainer = args[0]
|
||||
if self._filter(self, trainer):
|
||||
self.num_executed += 1
|
||||
return fn(*args, **kwargs)
|
||||
|
||||
wrapper.__fastNLP_filter__ = self
|
||||
return wrapper
|
||||
|
||||
def every_filter(self, *args):
|
||||
return self.num_called % self._every == 0
|
||||
|
||||
def once_filter(self, *args):
|
||||
return self.num_called == self._once
|
||||
|
||||
def state_dict(self) -> Dict:
|
||||
r"""
|
||||
通过该函数来保存该 `Filter` 的状态;
|
||||
"""
|
||||
return {"num_called": self.num_called, "num_executed": self.num_executed}
|
||||
|
||||
def load_state_dict(self, state: Dict):
|
||||
r"""
|
||||
通过该函数来加载 `Filter` 的状态;
|
||||
|
||||
:param state: 通过 `Filter.state_dict` 函数保存的状态元组;
|
||||
"""
|
||||
self.num_called = state["num_called"]
|
||||
self.num_executed = state["num_executed"]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,206 +0,0 @@
|
||||
from enum import Enum, unique
|
||||
from typing import Union, Optional, List, Iterator, Callable, Tuple, Dict
|
||||
from types import DynamicClassAttribute
|
||||
from functools import wraps
|
||||
|
||||
|
||||
__all__ = [
|
||||
'Events',
|
||||
'EventsList',
|
||||
'Filter'
|
||||
]
|
||||
|
||||
|
||||
class _SingleEventState:
|
||||
every: Optional[int]
|
||||
once: Optional[int]
|
||||
|
||||
def __init__(self, value: str, every: Optional[int] = None, once: Optional[int] = None,
|
||||
filter_fn: Optional[Callable] = None, name: Optional[str] = None):
|
||||
|
||||
# 具体的检测参数对错的逻辑放在具体的 Filter 里;
|
||||
if every is None and once is None and filter_fn is None:
|
||||
self.every = 1
|
||||
self.once = None
|
||||
self.filter_fn = None
|
||||
else:
|
||||
self.every = every
|
||||
self.once = once
|
||||
self.filter_fn = filter_fn
|
||||
|
||||
if not hasattr(self, "_value_"):
|
||||
self._value_ = value
|
||||
|
||||
if not hasattr(self, "_name_") and name is not None:
|
||||
self._name_ = name
|
||||
|
||||
# copied to be compatible to enum
|
||||
@DynamicClassAttribute
|
||||
def name(self) -> str:
|
||||
"""The name of the Enum member."""
|
||||
return self._name_
|
||||
|
||||
@DynamicClassAttribute
|
||||
def value(self) -> str:
|
||||
"""The value of the Enum member."""
|
||||
return self._value_
|
||||
|
||||
def __call__(self, every: Optional[int] = None, once: Optional[int] = None, filter_fn: Optional[Callable] = None):
|
||||
return _SingleEventState(self.value, every, once, filter_fn, self.name)
|
||||
|
||||
def __str__(self):
|
||||
return "<event={0}, every={1}, once={2}, filter fn is None:{3}>".format(self.name, self.every, self.once,
|
||||
self.filter_fn)
|
||||
|
||||
def __eq__(self, other) -> bool:
|
||||
if isinstance(other, _SingleEventState):
|
||||
return self.name == other.name
|
||||
elif isinstance(other, str):
|
||||
return self.name == other
|
||||
else:
|
||||
raise NotImplemented
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self._name_)
|
||||
|
||||
def __or__(self, other) -> "EventsList":
|
||||
return EventsList() | self | other
|
||||
|
||||
|
||||
class EventEnum(_SingleEventState, Enum):
|
||||
pass
|
||||
|
||||
@unique
|
||||
class Events(EventEnum):
|
||||
on_after_trainer_initialized = "on_after_trainer_initialized"
|
||||
on_sanity_check_begin = "on_sanity_check_begin"
|
||||
on_sanity_check_end = "on_sanity_check_end"
|
||||
on_train_begin = "on_train_begin"
|
||||
on_train_end = "on_train_end"
|
||||
on_train_epoch_begin = "on_train_epoch_begin"
|
||||
on_train_epoch_end = "on_train_epoch_end"
|
||||
on_fetch_data_begin = "on_fetch_data_begin"
|
||||
on_fetch_data_end = "on_fetch_data_end"
|
||||
on_train_batch_begin = "on_train_batch_begin"
|
||||
on_train_batch_end = "on_train_batch_end"
|
||||
on_exception = "on_exception"
|
||||
on_save_model = "on_save_model"
|
||||
on_load_model = "on_load_model"
|
||||
on_save_checkpoint = "on_save_checkpoint"
|
||||
on_load_checkpoint = "on_load_checkpoint"
|
||||
on_before_backward = "on_before_backward"
|
||||
on_after_backward = "on_after_backward"
|
||||
on_before_optimizers_step = "on_before_optimizers_step"
|
||||
on_after_optimizers_step = "on_after_optimizers_step"
|
||||
on_before_zero_grad = "on_before_zero_grad"
|
||||
on_after_zero_grad = "on_after_zero_grad"
|
||||
on_evaluate_begin = "on_evaluate_begin"
|
||||
on_evaluate_end = "on_evaluate_end"
|
||||
|
||||
|
||||
class EventsList:
|
||||
"""Collection of events stacked by operator `__or__`.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._events = [] # type: List[Union[Events, _SingleEventState]]
|
||||
|
||||
def _append(self, event: Union[Events, _SingleEventState]) -> None:
|
||||
if not isinstance(event, (Events, _SingleEventState)):
|
||||
raise TypeError(f"Argument event should be Events or CallableEventWithFilter, got: {type(event)}")
|
||||
self._events.append(event)
|
||||
|
||||
def __getitem__(self, item: int) -> Union[Events, _SingleEventState]:
|
||||
return self._events[item]
|
||||
|
||||
def __iter__(self) -> Iterator[Union[Events, _SingleEventState]]:
|
||||
return iter(self._events)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self._events)
|
||||
|
||||
def __or__(self, other: Union[Events, _SingleEventState]) -> "EventsList":
|
||||
self._append(event=other)
|
||||
return self
|
||||
|
||||
|
||||
class Filter:
|
||||
def __init__(self, every: Optional[int] = None, once: Optional[int] = None, filter_fn: Optional[Callable] = None):
|
||||
r"""
|
||||
通过该 `Filter` 作为函数修饰器来控制一个函数的实际的运行频率;
|
||||
|
||||
:param every: 表示一个函数隔多少次运行一次;
|
||||
:param once: 表示一个函数只在第多少次时运行一次;
|
||||
:param filter_fn: 用户定制的频率控制函数;注意该函数内部的频率判断应当是无状态的,除了参数 `self.num_called` 和
|
||||
`self.num_executed` 外,因为我们会在预跑后重置这两个参数的状态;
|
||||
"""
|
||||
if (every is None) and (once is None) and (filter_fn is None):
|
||||
raise ValueError("If you mean your decorated function should be called every time, you do not need this filter.")
|
||||
|
||||
if not ((every is not None) ^ (once is not None) ^ (filter_fn is not None)):
|
||||
raise ValueError("These three values should be only set one.")
|
||||
|
||||
if (filter_fn is not None) and not callable(filter_fn):
|
||||
raise TypeError("Argument event_filter should be a callable")
|
||||
|
||||
if (every is not None) and not (isinstance(every, int) and every > 0):
|
||||
raise ValueError("Argument every should be integer and greater than zero")
|
||||
|
||||
if (once is not None) and not (isinstance(once, int) and once > 0):
|
||||
raise ValueError("Argument once should be integer and positive")
|
||||
|
||||
# 设置变量,包括全局变量;
|
||||
self.num_called = 0
|
||||
self.num_executed = 0
|
||||
|
||||
if every is not None:
|
||||
self._every = every
|
||||
self._filter = self.every_filter
|
||||
elif once is not None:
|
||||
self._once = once
|
||||
self._filter = self.once_filter
|
||||
else:
|
||||
self._filter = filter_fn
|
||||
|
||||
def __call__(self, fn: Callable):
|
||||
|
||||
@wraps(fn)
|
||||
def wrapper(*args, **kwargs) -> Callable:
|
||||
self.num_called += 1
|
||||
|
||||
# 因为我们的 callback 函数的输入是固定的,而且我们能够保证第一个参数一定是 trainer;
|
||||
trainer = args[0]
|
||||
if self._filter(self, trainer):
|
||||
self.num_executed += 1
|
||||
return fn(*args, **kwargs)
|
||||
|
||||
wrapper.__fastNLP_filter__ = self
|
||||
return wrapper
|
||||
|
||||
def every_filter(self, *args):
|
||||
return self.num_called % self._every == 0
|
||||
|
||||
def once_filter(self, *args):
|
||||
return self.num_called == self._once
|
||||
|
||||
def state_dict(self) -> Dict:
|
||||
r"""
|
||||
通过该函数来保存该 `Filter` 的状态;
|
||||
"""
|
||||
return {"num_called": self.num_called, "num_executed": self.num_executed}
|
||||
|
||||
def load_state_dict(self, state: Dict):
|
||||
r"""
|
||||
通过该函数来加载 `Filter` 的状态;
|
||||
|
||||
:param state: 通过 `Filter.state_dict` 函数保存的状态元组;
|
||||
"""
|
||||
self.num_called = state["num_called"]
|
||||
self.num_executed = state["num_executed"]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -6,7 +6,7 @@ __all__ = [
|
||||
'CallbackManager'
|
||||
]
|
||||
|
||||
from .callback_events import Events
|
||||
from .callback_event import Event
|
||||
from .callback import Callback
|
||||
from fastNLP.core.log import logger
|
||||
from .progress_callback import ProgressCallback, choose_progress_callback
|
||||
@ -110,7 +110,7 @@ class CallbackManager:
|
||||
def initialize_class_callbacks(self):
|
||||
r"""
|
||||
在实际的运行过程中,我们是将具体的一个 callback 实例拆分为单独的一个个 callback 函数,然后将它们加在一个字典里,该字典的键值就是
|
||||
一个个 callback 时机,也就是 `Events` 的类别;
|
||||
一个个 callback 时机,也就是 `Event` 的类别;
|
||||
如果一个 callback 类的 callback 函数并不具备任何作用,我们实际并不会将其加在字典当中;
|
||||
|
||||
:param callbacks:
|
||||
@ -127,11 +127,12 @@ class CallbackManager:
|
||||
:param callback: 一个具体的 callback 实例;
|
||||
"""
|
||||
self.all_callbacks.append(callback)
|
||||
for name, member in Events.__members__.items():
|
||||
_fn = getattr(callback, member.value)
|
||||
if inspect.getsource(_fn) != inspect.getsource(getattr(Callback, member.value)):
|
||||
self.callback_fns[member.value].append(_fn)
|
||||
self.extract_callback_filter_state(callback.callback_name, _fn)
|
||||
for name, member in Event.__dict__.items():
|
||||
if isinstance(member, staticmethod):
|
||||
_fn = getattr(callback, name)
|
||||
if inspect.getsource(_fn) != inspect.getsource(getattr(Callback, name)):
|
||||
self.callback_fns[name].append(_fn)
|
||||
self.extract_callback_filter_state(callback.callback_name, _fn)
|
||||
|
||||
def extract_callback_filter_state(self, callback_name, callback_fn):
|
||||
r"""
|
||||
|
@ -161,7 +161,6 @@ class MonitorUtility:
|
||||
return monitor_name
|
||||
|
||||
|
||||
|
||||
class HasMonitorCallback(MonitorUtility, Callback):
|
||||
def __init__(self, monitor, larger_better, must_have_monitor=False):
|
||||
"""
|
||||
|
@ -1,4 +1,20 @@
|
||||
__all__ = [
|
||||
'Collator'
|
||||
'Collator',
|
||||
|
||||
'NumpyNumberPadder',
|
||||
'NumpySequencePadder',
|
||||
"NumpyTensorPadder",
|
||||
"Padder",
|
||||
"NullPadder",
|
||||
"RawNumberPadder",
|
||||
"RawSequencePadder",
|
||||
'TorchNumberPadder',
|
||||
'TorchSequencePadder',
|
||||
'TorchTensorPadder',
|
||||
"PaddleNumberPadder",
|
||||
"PaddleTensorPadder",
|
||||
"PaddleSequencePadder",
|
||||
"get_padded_numpy_array",
|
||||
]
|
||||
from .collator import Collator
|
||||
from .padders import *
|
||||
|
@ -65,12 +65,16 @@ def _get_backend() -> str:
|
||||
return catch_backend[0]
|
||||
|
||||
# 方式 (2)
|
||||
for backend in CHECK_BACKEND:
|
||||
if backend in sys.modules:
|
||||
logger.debug(f"sys.modules contains backend:{catch_backend[0]}.")
|
||||
return backend
|
||||
for key, module in sys.modules.items():
|
||||
catch_backend = _check_module(module)
|
||||
if catch_backend:
|
||||
break
|
||||
if len(catch_backend):
|
||||
logger.debug(f"Find a file named:{catch_backend[1]} from sys.modules contains backend:{catch_backend[0]}.")
|
||||
logger.debug(f"Find a module file named:{catch_backend[1]} from sys.modules contains backend:{catch_backend[0]}.")
|
||||
return catch_backend[0]
|
||||
|
||||
return 'numpy'
|
||||
@ -227,7 +231,7 @@ class Collator:
|
||||
设置可以 pad 的 field 默认 pad 为什么类型的 tensor
|
||||
|
||||
:param backend: 对于可以 pad 的 field,使用哪种 tensor,支持 ['torch','jittor','paddle','numpy','raw', 'auto', None],
|
||||
若为 auto ,则在进行 pad 的时候会根据调用的环境决定其 backend 。
|
||||
若为 auto ,则在进行 pad 的时候会自动根据调用的环境决定其 backend 。
|
||||
:return:
|
||||
"""
|
||||
assert backend in SUPPORTED_BACKENDS
|
||||
|
@ -0,0 +1,30 @@
|
||||
|
||||
__all__ = [
|
||||
'NumpyNumberPadder',
|
||||
'NumpySequencePadder',
|
||||
"NumpyTensorPadder",
|
||||
|
||||
"Padder",
|
||||
"NullPadder",
|
||||
|
||||
"RawNumberPadder",
|
||||
"RawSequencePadder",
|
||||
|
||||
'TorchNumberPadder',
|
||||
'TorchSequencePadder',
|
||||
'TorchTensorPadder',
|
||||
|
||||
"PaddleNumberPadder",
|
||||
"PaddleTensorPadder",
|
||||
"PaddleSequencePadder",
|
||||
|
||||
"get_padded_numpy_array",
|
||||
]
|
||||
|
||||
|
||||
from .numpy_padder import *
|
||||
from .padder import Padder, NullPadder
|
||||
from .raw_padder import *
|
||||
from .torch_padder import *
|
||||
from .paddle_padder import *
|
||||
from .utils import get_padded_numpy_array
|
@ -1,8 +1,3 @@
|
||||
|
||||
from typing import Dict
|
||||
|
||||
|
||||
|
||||
from typing import Sequence, Any, Union, Dict
|
||||
from abc import ABC
|
||||
|
||||
@ -12,7 +7,7 @@ from fastNLP.core.log import logger
|
||||
from .padder import Padder, NullPadder
|
||||
from .numpy_padder import NumpyNumberPadder, NumpySequencePadder, NumpyTensorPadder
|
||||
from .torch_padder import TorchNumberPadder, TorchSequencePadder, TorchTensorPadder
|
||||
from .raw_padder import RawNumberPadder, RawSequencePadder
|
||||
from .raw_padder import RawNumberPadder, RawSequencePadder, RawTensorPadder
|
||||
from .paddle_padder import PaddleTensorPadder, PaddleSequencePadder, PaddleNumberPadder
|
||||
from .exceptions import *
|
||||
|
||||
@ -28,7 +23,7 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)->
|
||||
:param field_name: 方便报错的。
|
||||
:return:
|
||||
"""
|
||||
|
||||
assert len(batch_field)!=0, "Empty batch encountered."
|
||||
logger.debug(f"The content in the field:`{field_name}` is:\n" + str(batch_field))
|
||||
if pad_val is None:
|
||||
logger.debug(f"The pad_val for field:{field_name} is None, not padding this field.")
|
||||
@ -68,7 +63,10 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)->
|
||||
return NullPadder()
|
||||
|
||||
# 再检查所有的元素 type 是否一致
|
||||
ele_dtypes = set([v[1] for v in catalog.values()])
|
||||
try:
|
||||
ele_dtypes = set([v[1] for v in catalog.values()])
|
||||
except TypeError:
|
||||
ele_dtypes = set([str(v[1]) for v in catalog.values()])
|
||||
num_eletypes = len(ele_dtypes)
|
||||
if num_eletypes != 1:
|
||||
msg = f'Field:`{field_name}` cannot pad, since it has various types({ele_dtypes}) of data. To view more ' \
|
||||
@ -80,7 +78,7 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)->
|
||||
|
||||
depth = depths.pop()
|
||||
shape_len = shape_lens.pop()
|
||||
ele_dtype = ele_dtypes.pop()
|
||||
ele_dtype = list(catalog.values())[0][1] # 因为上面有except的情况,所以这样处理了
|
||||
|
||||
# 需要由 padder 自己决定是否能够 pad 。
|
||||
try:
|
||||
@ -93,6 +91,8 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)->
|
||||
return TorchNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype)
|
||||
elif backend == 'paddle':
|
||||
return PaddleNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype)
|
||||
else:
|
||||
raise ValueError(f"backend={backend} is not supported for list(Field:{field_name}).")
|
||||
|
||||
if depth > 1 and shape_len == 0: # 形如 [[0, 1], [2]] 这种
|
||||
if backend == 'raw':
|
||||
@ -103,14 +103,21 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)->
|
||||
return TorchSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype)
|
||||
elif backend == 'paddle':
|
||||
return PaddleSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype)
|
||||
else:
|
||||
raise ValueError(f"backend={backend} is not supported for nested list(Field:{field_name}).")
|
||||
|
||||
if depth == 1 and shape_len != 0:
|
||||
if backend == 'numpy':
|
||||
return NumpyTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype)
|
||||
# 如果有有 shape 的话,只有当该对象拥有 tolist() 方法才行
|
||||
if depth == 1 and shape_len != 0 and callable(getattr(batch_field[0], 'tolist', None)):
|
||||
if backend == 'raw':
|
||||
return RawTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype)
|
||||
elif backend == 'numpy':
|
||||
return NumpyTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype)
|
||||
elif backend == 'torch':
|
||||
return TorchTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype)
|
||||
return TorchTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype)
|
||||
elif backend == 'paddle':
|
||||
return PaddleTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype)
|
||||
return PaddleTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype)
|
||||
else:
|
||||
raise ValueError(f"backend={backend} is not supported for tensors(Field:{field_name}).")
|
||||
|
||||
if shape_len != 0 and depth>1:
|
||||
msg = "Does not support pad tensor under nested list. If you need this, please report."
|
||||
@ -179,23 +186,3 @@ def _get_element_shape_dtype(content, parent=None, catalog=None)->Dict:
|
||||
else: # 包括 int/float/bool/dict 以及 其它无法pad 的等
|
||||
catalog[parent] = ((), type(content)) # () 表示 shape 的长度为 0,后面表示其类别
|
||||
return catalog
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
from numbers import Number
|
||||
|
||||
issubclass(type(3), Number) # True
|
||||
issubclass(type(3.1), Number) # True
|
||||
issubclass(type('3'), Number) # False
|
||||
issubclass(type(True), Number) # True
|
||||
issubclass(type(np.zeros(3)[0]), Number) # True
|
||||
isinstance(np.zeros(3, dtype=float).dtype, np.dtype) # True
|
||||
isinstance(np.zeros(3, dtype=int).dtype, np.dtype) # True
|
||||
isinstance(np.zeros(3, dtype=str).dtype, np.dtype) # True, 需要通过和来判定
|
||||
is_torch_tensor_dtype() # 可以通过isinstance(torch.zeros(3).dtype, torch.dtype)
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
@ -66,7 +66,7 @@ class NumpySequencePadder(Padder):
|
||||
class NumpyTensorPadder(Padder):
|
||||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None):
|
||||
"""
|
||||
pad 类似于 [np.array([3, 4], np.array([1])] 的 field
|
||||
pad 类似于 [np.array([3, 4], np.array([1])] 的 field 。若内部元素不为 np.ndarray ,则必须含有 tolist() 方法。
|
||||
|
||||
:param pad_val: pad 的值是多少。
|
||||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 np.array 类型。
|
||||
@ -77,6 +77,13 @@ class NumpyTensorPadder(Padder):
|
||||
|
||||
@staticmethod
|
||||
def pad(batch_field, pad_val, dtype):
|
||||
try:
|
||||
if not isinstance(batch_field[0], np.ndarray):
|
||||
batch_field = [np.array(field.tolist()) for field in batch_field]
|
||||
except AttributeError:
|
||||
raise RuntimeError(f"If the field is not a np.ndarray (it is {type(batch_field[0])}), "
|
||||
f"it must have tolist() method.")
|
||||
|
||||
shapes = [field.shape for field in batch_field]
|
||||
max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)]
|
||||
array = np.full(max_shape, fill_value=pad_val, dtype=dtype)
|
||||
|
@ -56,7 +56,7 @@ def is_paddle_dtype_str(dtype):
|
||||
|
||||
|
||||
def _get_dtype(ele_dtype, dtype, class_name):
|
||||
if not (is_number_or_numpy_number(ele_dtype) or is_paddle_tensor(ele_dtype) or is_paddle_dtype_str(ele_dtype)):
|
||||
if not (ele_dtype is not None or is_number_or_numpy_number(ele_dtype) or is_paddle_tensor(ele_dtype) or is_paddle_dtype_str(ele_dtype)):
|
||||
raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers "
|
||||
f"or numpy numbers or paddle.Tensor but get `{ele_dtype}`.")
|
||||
|
||||
@ -74,13 +74,20 @@ def _get_dtype(ele_dtype, dtype, class_name):
|
||||
elif is_numpy_generic_class(ele_dtype):
|
||||
dtype = numpy_to_paddle_dtype_dict.get(ele_dtype)
|
||||
else:
|
||||
dtype == ele_dtype
|
||||
dtype = ele_dtype
|
||||
|
||||
return dtype
|
||||
|
||||
|
||||
class PaddleNumberPadder(Padder):
|
||||
def __init__(self, ele_dtype, pad_val=0, dtype=None):
|
||||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None):
|
||||
"""
|
||||
可以将形如 [1, 2, 3] 这类的数据转为 paddle.Tensor([1, 2, 3])
|
||||
|
||||
:param pad_val: 该值无意义
|
||||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 paddle.tensor 类型。
|
||||
:param dtype: 输出的数据的 dtype 是什么。如 int, float, 'int32' 等
|
||||
"""
|
||||
# 仅当 ele_dtype 是 python number/ numpy number 或者 tensor
|
||||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__)
|
||||
super().__init__(pad_val=pad_val, dtype=dtype)
|
||||
@ -91,7 +98,14 @@ class PaddleNumberPadder(Padder):
|
||||
|
||||
|
||||
class PaddleSequencePadder(Padder):
|
||||
def __init__(self, ele_dtype, pad_val=0, dtype=None):
|
||||
def __init__(self, ele_dtype=None, pad_val=0, dtype=None):
|
||||
"""
|
||||
将类似于 [[1], [1, 2]] 的内容 pad 为 paddle.Tensor([[1, 0], [1, 2]]) 可以 pad 多重嵌套的数据。
|
||||
|
||||
:param pad_val: pad 的值。
|
||||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 paddle.tensor 类型。
|
||||
:param dtype: 输出的数据的 dtype 是什么。如 int, float, 'int32' 等
|
||||
"""
|
||||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__)
|
||||
super().__init__(pad_val=pad_val, dtype=dtype)
|
||||
|
||||
@ -102,19 +116,26 @@ class PaddleSequencePadder(Padder):
|
||||
|
||||
|
||||
class PaddleTensorPadder(Padder):
|
||||
def __init__(self, ele_dtype, pad_val=0, dtype=None):
|
||||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None):
|
||||
"""
|
||||
目前仅支持 [paddle.tensor([3, 2], paddle.tensor([1])] 类似的
|
||||
目前支持 [paddle.tensor([3, 2], paddle.tensor([2, 1])] 类似的,若内部元素不为 paddle.tensor ,则必须含有 tolist() 方法。
|
||||
|
||||
:param ele_dtype:
|
||||
:param pad_val:
|
||||
:param dtype:
|
||||
:param pad_val: pad 的值。
|
||||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 paddle.tensor 类型。
|
||||
:param dtype: 输出的数据的 dtype 是什么。如 int, float, 'int32' 等
|
||||
"""
|
||||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__)
|
||||
super().__init__(pad_val=pad_val, dtype=dtype)
|
||||
|
||||
@staticmethod
|
||||
def pad(batch_field, pad_val, dtype):
|
||||
try:
|
||||
if not isinstance(batch_field[0], paddle.Tensor):
|
||||
batch_field = [paddle.to_tensor(field.tolist()) for field in batch_field]
|
||||
except AttributeError:
|
||||
raise RuntimeError(f"If the field is not a paddle.Tensor (it is {type(batch_field[0])}), "
|
||||
f"it must have tolist() method.")
|
||||
|
||||
shapes = [field.shape for field in batch_field]
|
||||
max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)]
|
||||
if isinstance(dtype, np.dtype):
|
||||
@ -174,6 +195,5 @@ def get_padded_paddle_tensor(batch_field, dtype=None, pad_val=0):
|
||||
"""
|
||||
shapes = get_shape(batch_field)
|
||||
tensor = paddle.to_tensor(np.full(shape=shapes, fill_value=pad_val), dtype=dtype)
|
||||
# tensor = paddle.full(shape=shapes, dtype=dtype, fill_value=pad_val)
|
||||
tensor = fill_tensor(batch_field, tensor, dtype=dtype)
|
||||
return tensor
|
||||
|
@ -1,4 +1,8 @@
|
||||
|
||||
__all__ = [
|
||||
"RawNumberPadder",
|
||||
"RawSequencePadder",
|
||||
"RawTensorPadder"
|
||||
]
|
||||
|
||||
from .padder import Padder
|
||||
from .utils import is_number, get_padded_numpy_array, is_number_or_numpy_number
|
||||
@ -63,3 +67,34 @@ class RawSequencePadder(Padder):
|
||||
:return:
|
||||
"""
|
||||
return get_padded_numpy_array(batch_field, dtype=dtype, pad_val=pad_val).tolist()
|
||||
|
||||
|
||||
class RawTensorPadder(Padder):
|
||||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None):
|
||||
"""
|
||||
将类似于 [[1], [1, 2]] 的内容 pad 为 [[1, 0], [1, 2]] 。可以 pad 多重嵌套的数据。
|
||||
|
||||
:param pad_val: pad 的值
|
||||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 np.array 类型。
|
||||
:param dtype: 输出的数据的 dtype 是什么
|
||||
"""
|
||||
dtype = _get_dtype(ele_dtype, dtype, self.__class__.__name__)
|
||||
super().__init__(pad_val=pad_val, dtype=dtype)
|
||||
|
||||
@staticmethod
|
||||
def pad(batch_field, pad_val, dtype):
|
||||
"""
|
||||
|
||||
:param batch_field:
|
||||
:param pad_val:
|
||||
:param dtype: 该参数无意义。
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
if not isinstance(batch_field[0], (list, tuple)):
|
||||
batch_field = [field.tolist() for field in batch_field]
|
||||
except AttributeError:
|
||||
raise RuntimeError(f"If the field is not a list or tuple(it is {type(batch_field[0])}), "
|
||||
f"it must have tolist() method.")
|
||||
|
||||
return get_padded_numpy_array(batch_field, dtype=dtype, pad_val=pad_val).tolist()
|
||||
|
@ -1,4 +1,8 @@
|
||||
|
||||
__all__ = [
|
||||
'TorchNumberPadder',
|
||||
'TorchSequencePadder',
|
||||
'TorchTensorPadder'
|
||||
]
|
||||
from inspect import isclass
|
||||
import numpy as np
|
||||
|
||||
@ -37,7 +41,7 @@ def is_torch_tensor(dtype):
|
||||
|
||||
|
||||
def _get_dtype(ele_dtype, dtype, class_name):
|
||||
if not (ele_dtype is not None and (is_number_or_numpy_number(ele_dtype) or is_torch_tensor(ele_dtype))):
|
||||
if not (ele_dtype is None or (is_number_or_numpy_number(ele_dtype) or is_torch_tensor(ele_dtype))):
|
||||
raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers "
|
||||
f"or numpy numbers or torch.Tensor but get `{ele_dtype}`.")
|
||||
|
||||
@ -97,7 +101,7 @@ class TorchSequencePadder(Padder):
|
||||
class TorchTensorPadder(Padder):
|
||||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None):
|
||||
"""
|
||||
目前仅支持 [torch.tensor([3, 2], torch.tensor([1])] 类似的
|
||||
目前支持 [torch.tensor([3, 2], torch.tensor([1])] 类似的。若内部元素不为 torch.tensor ,则必须含有 tolist() 方法。
|
||||
|
||||
:param pad_val: 需要 pad 的值。
|
||||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 torch.tensor 类型。
|
||||
@ -108,6 +112,13 @@ class TorchTensorPadder(Padder):
|
||||
|
||||
@staticmethod
|
||||
def pad(batch_field, pad_val, dtype):
|
||||
try:
|
||||
if not isinstance(batch_field[0], torch.Tensor):
|
||||
batch_field = [torch.tensor(field.tolist()) for field in batch_field]
|
||||
except AttributeError:
|
||||
raise RuntimeError(f"If the field is not a torch.Tensor (it is {type(batch_field[0])}), "
|
||||
f"it must have tolist() method.")
|
||||
|
||||
shapes = [field.shape for field in batch_field]
|
||||
max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)]
|
||||
tensor = torch.full(max_shape, fill_value=pad_val, dtype=dtype)
|
||||
|
@ -1,6 +1,10 @@
|
||||
|
||||
__all__ = [
|
||||
'get_padded_numpy_array'
|
||||
]
|
||||
|
||||
|
||||
from typing import Sequence, List
|
||||
from numbers import Number
|
||||
import re
|
||||
from inspect import isclass
|
||||
|
||||
|
@ -2,8 +2,6 @@ __all__ = [
|
||||
'Loop',
|
||||
'EvaluateBatchLoop',
|
||||
'TrainBatchLoop',
|
||||
'State',
|
||||
'TrainerState',
|
||||
'Evaluator',
|
||||
'Trainer',
|
||||
]
|
||||
|
@ -17,10 +17,10 @@ from .utils import State, TrainerState
|
||||
from .utils.utils import check_evaluate_every
|
||||
from .evaluator import Evaluator
|
||||
from fastNLP.core.controllers.utils.utils import TrainerEventTrigger, _TruncatedDataLoader
|
||||
from fastNLP.core.callbacks import Callback, CallbackManager, Events, EventsList
|
||||
from fastNLP.core.callbacks import Callback, CallbackManager
|
||||
from fastNLP.core.callbacks.callback import _CallbackWrapper
|
||||
from fastNLP.core.callbacks.callback_manager import prepare_callbacks
|
||||
from fastNLP.core.callbacks.callback_events import _SingleEventState
|
||||
from fastNLP.core.callbacks.callback_event import Event
|
||||
from fastNLP.core.drivers import Driver
|
||||
from fastNLP.core.drivers.utils import choose_driver
|
||||
from fastNLP.core.utils import get_fn_arg_names, match_and_substitute_params, nullcontext
|
||||
@ -363,7 +363,6 @@ class Trainer(TrainerEventTrigger):
|
||||
raise e
|
||||
finally:
|
||||
self.on_train_end()
|
||||
self.driver.barrier()
|
||||
|
||||
def _set_num_eval_batch_per_dl(self, num_eval_batch_per_dl):
|
||||
def _evaluate_fn(trainer: Trainer, evaluate_fn: Callable) -> None:
|
||||
@ -399,7 +398,7 @@ class Trainer(TrainerEventTrigger):
|
||||
if self.cur_epoch_idx % evaluate_every == 0:
|
||||
self.run_evaluate()
|
||||
|
||||
def add_callback_fn(self, event: Optional[Union[Events, EventsList]], fn: Callable):
|
||||
def add_callback_fn(self, event: Event, fn: Callable):
|
||||
r"""
|
||||
在初始化一个 trainer 实例后,用户可以使用这一函数来方便地添加 callback 函数;
|
||||
这一函数应当交给具体的 trainer 实例去做,因此不需要 `mark` 参数;
|
||||
@ -407,19 +406,69 @@ class Trainer(TrainerEventTrigger):
|
||||
:param event: 特定的 callback 时机,用户需要为该 callback 函数指定其属于哪一个 callback 时机;
|
||||
:param fn: 具体的 callback 函数;
|
||||
"""
|
||||
if not isinstance(event, (_SingleEventState, EventsList)):
|
||||
raise ValueError("parameter event should only be `Events` or `EventsList` type.")
|
||||
if not isinstance(event, Event):
|
||||
raise ValueError("parameter event should only be `Event` type.")
|
||||
|
||||
_custom_callback = _CallbackWrapper(event, fn)
|
||||
self.callback_manager.dissect_one_callback(_custom_callback)
|
||||
|
||||
@classmethod
|
||||
def on(cls, event: Optional[Union[Events, EventsList]], marker: Optional[str] = None):
|
||||
def on(cls, event: Event, marker: Optional[str] = None):
|
||||
r"""
|
||||
函数修饰器,用户可以使用该函数来方便地将一个函数转变为 callback 函数,从而进行训练流程中的控制;
|
||||
支持的 event 时机有以下这些,其执行的时机顺序也如下所示。每个时机装饰的函数应该接受的参数列表也如下所示,例如
|
||||
Trainer.__init__():
|
||||
on_after_trainer_initialized(trainer, driver)
|
||||
Trainer.run():
|
||||
if num_eval_sanity_batch>0:
|
||||
on_sanity_check_begin(trainer) # 如果设置了num_eval_sanity_batch
|
||||
on_sanity_check_end(trainer, sanity_check_res)
|
||||
try:
|
||||
on_train_begin(trainer)
|
||||
while cur_epoch_idx < n_epochs:
|
||||
on_train_epoch_begin(trainer)
|
||||
while batch_idx_in_epoch<=num_batches_per_epoch:
|
||||
on_fetch_data_begin(trainer)
|
||||
batch = next(dataloader)
|
||||
on_fetch_data_end(trainer)
|
||||
on_train_batch_begin(trainer, batch, indices)
|
||||
on_before_backward(trainer, outputs) # 其中 outputs 是经过 output_mapping(如果设置了) 后的,否则即为 model 的输出。
|
||||
on_after_backward(trainer)
|
||||
on_before_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响
|
||||
on_after_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响
|
||||
on_before_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响
|
||||
on_after_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响
|
||||
on_train_batch_end(trainer)
|
||||
on_train_epoch_end(trainer)
|
||||
except BaseException:
|
||||
self.on_exception(trainer, exception)
|
||||
finally:
|
||||
on_train_end(trainer)
|
||||
其它 callback 例如 on_evaluate_begin(trainer)/on_evaluate_end(trainer, results)/on_save_model(trainer)/
|
||||
on_load_model(trainer)/on_save_checkpoint(trainer)/on_load_checkpoint(trainer)将根据需要在Trainer.run()中
|
||||
特定的时间调用。
|
||||
|
||||
Example::
|
||||
from fastNLP import Event
|
||||
@Trainer.on(Event.on_save_model())
|
||||
def do_something_1(trainer):
|
||||
# do something
|
||||
# 以上函数会在 Trainer 保存模型时执行。
|
||||
|
||||
@Trainer.on(Event.on_save_model(once=True))
|
||||
def do_something_2(trainer):
|
||||
# do something
|
||||
# 以上函数会在 Trainer 保存模型时执行,但只执行一次。
|
||||
|
||||
@Trainer.on(Event.on_train_batch_begin(every=2))
|
||||
def do_something_3(trainer, batch, indices):
|
||||
# do something
|
||||
# 以上函数会在 Trainer 每个新的 batch 开始的时候执行,但是是两个 batch 才执行一次。
|
||||
|
||||
注意如果你使用该函数修饰器来为你的训练添加 callback,请务必保证你加入 callback 函数的代码在实例化 `Trainer` 之前;
|
||||
|
||||
:param event: 特定的 callback 时机,用户需要为该 callback 函数指定其属于哪一个 callback 时机;
|
||||
:param event: 特定的 callback 时机,用户需要为该 callback 函数指定其属于哪一个 callback 时机。每个时机运行的函数应该包含
|
||||
特定的参数,可以通过上述说明查阅。
|
||||
:param marker: 用来标记该 callback 函数属于哪几个具体的 trainer 实例;两个特殊情况:1.当 `marker` 为 None(默认情况)时,
|
||||
表示该 callback 函数只属于代码下方最近的一个 trainer 实例;2.当 `marker` 为 'all' 时,该 callback 函数会被所有的 trainer
|
||||
实例使用;
|
||||
@ -427,9 +476,9 @@ class Trainer(TrainerEventTrigger):
|
||||
"""
|
||||
|
||||
def wrapper(fn: Callable) -> Callable:
|
||||
cls._custom_callbacks[marker].append((event, fn))
|
||||
callback_fn_args = get_fn_arg_names(getattr(Callback, event.value))[1:]
|
||||
_check_valid_parameters_number(fn, callback_fn_args)
|
||||
cls._custom_callbacks[marker].append((event, fn))
|
||||
return fn
|
||||
|
||||
return wrapper
|
||||
@ -441,6 +490,7 @@ class Trainer(TrainerEventTrigger):
|
||||
"""
|
||||
_own_callbacks: List = copy.deepcopy(self._custom_callbacks["all"])
|
||||
_own_callbacks.extend(self._custom_callbacks[None])
|
||||
logger.debug(f"Get {len(_own_callbacks)} callback fns through Trainer.on().")
|
||||
self._custom_callbacks[None] = []
|
||||
if self.marker is not None:
|
||||
if len(self._custom_callbacks[self.marker]) == 0:
|
||||
|
@ -14,7 +14,7 @@ else:
|
||||
from fastNLP.core.dataset import DataSet as Dataset
|
||||
from fastNLP.core.utils.jittor_utils import jittor_collate_wraps
|
||||
from fastNLP.core.collators import Collator
|
||||
from fastNLP.core.utils.utils import indice_collate_wrapper
|
||||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper
|
||||
from fastNLP.core.dataset import DataSet as FDataSet
|
||||
|
||||
|
||||
@ -107,33 +107,33 @@ class JittorDataLoader:
|
||||
return len(self.dataset) // self.dataset.batch_size
|
||||
return (len(self.dataset) - 1) // self.dataset.batch_size + 1
|
||||
|
||||
def set_pad(self, field_name: Union[str, tuple], pad_val: Union[int, float, None] = 0, dtype=None, backend=None,
|
||||
pad_fn: Callable = None) -> "JittorDataLoader":
|
||||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None,
|
||||
pad_fn:Callable=None) -> Collator:
|
||||
"""
|
||||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。
|
||||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。
|
||||
|
||||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
|
||||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b');
|
||||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没
|
||||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。
|
||||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的
|
||||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。
|
||||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。
|
||||
:param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor,
|
||||
paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。
|
||||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的
|
||||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch
|
||||
形式,输出将被直接作为结果输出。
|
||||
:return: 返回 Collator 自身
|
||||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
|
||||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b');
|
||||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没
|
||||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。
|
||||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的
|
||||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值
|
||||
无意义。
|
||||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。
|
||||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray,
|
||||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。
|
||||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的
|
||||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch
|
||||
形式,输出将被直接作为结果输出。
|
||||
:return: 返回 Collator 自身
|
||||
"""
|
||||
if isinstance(self._collate_fn, Collator):
|
||||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn,
|
||||
backend=backend)
|
||||
return self
|
||||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend)
|
||||
return self._collate_fn
|
||||
else:
|
||||
raise ValueError(f"collate_fn is not fastnlp collator")
|
||||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.")
|
||||
|
||||
def set_ignore(self, *field_names) -> "JittorDataLoader":
|
||||
def set_ignore(self, *field_names) -> Collator:
|
||||
"""
|
||||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。
|
||||
Ex::
|
||||
@ -146,18 +146,17 @@ class JittorDataLoader:
|
||||
"""
|
||||
if isinstance(self._collate_fn, Collator):
|
||||
self._collate_fn.set_ignore(*field_names)
|
||||
return self
|
||||
return self._collate_fn
|
||||
else:
|
||||
raise ValueError(f"collate_fn is not fastnlp collator")
|
||||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.")
|
||||
|
||||
def get_batch_indices(self) -> List[int]:
|
||||
"""
|
||||
获取当前数据的idx
|
||||
获取当前 batch 的 idx
|
||||
|
||||
:return:
|
||||
"""
|
||||
return self.cur_batch_indices
|
||||
|
||||
|
||||
def prepare_jittor_dataloader():
|
||||
...
|
||||
|
@ -15,8 +15,9 @@ else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as DataLoader
|
||||
|
||||
from fastNLP.core.collators.collator import Collator
|
||||
from fastNLP.core.utils.utils import indice_collate_wrapper
|
||||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper
|
||||
from fastNLP.core.dataset import DataSet as FDataSet
|
||||
from fastNLP.core.samplers import ReproducibleBatchSampler, RandomBatchSampler
|
||||
|
||||
|
||||
class _PaddleDataset(Dataset):
|
||||
@ -54,6 +55,10 @@ class PaddleDataLoader(DataLoader):
|
||||
if not isinstance(dataset, _PaddleDataset):
|
||||
dataset = _PaddleDataset(dataset)
|
||||
|
||||
if batch_sampler is None:
|
||||
batch_sampler = RandomBatchSampler(dataset, batch_size=batch_size, shuffle=shuffle,
|
||||
drop_last=drop_last)
|
||||
|
||||
super(PaddleDataLoader, self).__init__(dataset=dataset, feed_list=feed_list, places=places,
|
||||
return_list=return_list, batch_sampler=batch_sampler,
|
||||
batch_size=batch_size, shuffle=shuffle, drop_last=drop_last,
|
||||
@ -66,8 +71,6 @@ class PaddleDataLoader(DataLoader):
|
||||
if isinstance(dataset.dataset, FDataSet):
|
||||
self._collate_fn = dataset.dataset.collator
|
||||
self._collate_fn.set_backend(backend="paddle")
|
||||
# if collate_fn is not None:
|
||||
# self._collate_fn.add_collator(collate_fn)
|
||||
else:
|
||||
self._collate_fn = Collator(backend="paddle")
|
||||
|
||||
@ -94,33 +97,33 @@ class PaddleDataLoader(DataLoader):
|
||||
self.cur_batch_indices = indices
|
||||
yield data
|
||||
|
||||
def set_pad(self, field_name: Union[str, tuple], pad_val: Union[int, float, None] = 0, dtype=None, backend=None,
|
||||
pad_fn: Callable = None) -> "PaddleDataLoader":
|
||||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None,
|
||||
pad_fn:Callable=None) -> Collator:
|
||||
"""
|
||||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。
|
||||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。
|
||||
|
||||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
|
||||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b');
|
||||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没
|
||||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。
|
||||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的
|
||||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。
|
||||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。
|
||||
:param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor,
|
||||
paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。
|
||||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的
|
||||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch
|
||||
形式,输出将被直接作为结果输出。
|
||||
:return: 返回 Collator 自身
|
||||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
|
||||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b');
|
||||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没
|
||||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。
|
||||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的
|
||||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值
|
||||
无意义。
|
||||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。
|
||||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray,
|
||||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。
|
||||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的
|
||||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch
|
||||
形式,输出将被直接作为结果输出。
|
||||
:return: 返回 Collator 自身
|
||||
"""
|
||||
if isinstance(self._collate_fn, Collator):
|
||||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn,
|
||||
backend=backend)
|
||||
return self
|
||||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend)
|
||||
return self._collate_fn
|
||||
else:
|
||||
raise ValueError(f"collate_fn is not fastnlp collator")
|
||||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.")
|
||||
|
||||
def set_ignore(self, *field_names) -> "PaddleDataLoader":
|
||||
def set_ignore(self, *field_names) -> Collator:
|
||||
"""
|
||||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。
|
||||
Ex::
|
||||
@ -133,13 +136,13 @@ class PaddleDataLoader(DataLoader):
|
||||
"""
|
||||
if isinstance(self._collate_fn, Collator):
|
||||
self._collate_fn.set_ignore(*field_names)
|
||||
return self
|
||||
return self._collate_fn
|
||||
else:
|
||||
raise ValueError(f"collate_fn is not fastnlp collator")
|
||||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.")
|
||||
|
||||
def get_batch_indices(self) -> List[int]:
|
||||
"""
|
||||
获取当前数据的idx
|
||||
获取当前 batch 的 idx
|
||||
|
||||
:return:
|
||||
"""
|
||||
@ -147,7 +150,8 @@ class PaddleDataLoader(DataLoader):
|
||||
|
||||
|
||||
def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None,
|
||||
return_list: bool = True, batch_sampler=None,
|
||||
return_list: bool = True,
|
||||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None,
|
||||
train_batch_size: int = 1, shuffle: bool = False,
|
||||
drop_last: bool = False, collate_fn: Union[Callable, str, None] = None,
|
||||
num_workers: int = 0, use_buffer_reader: bool = True,
|
||||
|
@ -3,14 +3,14 @@ __all__ = [
|
||||
'prepare_torch_dataloader'
|
||||
]
|
||||
|
||||
from typing import Optional, Callable, Sequence, List, Union, Tuple, Dict, Mapping
|
||||
from typing import Optional, Callable, Sequence, Union, Tuple, Dict, Mapping, List
|
||||
|
||||
from fastNLP.core.dataset import DataSet
|
||||
from fastNLP.core.collators import Collator
|
||||
from fastNLP.core.utils.utils import indice_collate_wrapper
|
||||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper
|
||||
from fastNLP.io.data_bundle import DataBundle
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, UnrepeatedSampler
|
||||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, UnrepeatedSampler, RandomSampler
|
||||
|
||||
if _NEED_IMPORT_TORCH:
|
||||
from torch.utils.data import DataLoader, Sampler
|
||||
@ -76,6 +76,10 @@ class TorchDataLoader(DataLoader):
|
||||
if not isinstance(dataset, _FDataSet):
|
||||
dataset = _FDataSet(dataset)
|
||||
|
||||
if sampler is None and batch_sampler is None:
|
||||
sampler = RandomSampler(dataset, shuffle=shuffle)
|
||||
shuffle=False
|
||||
|
||||
super().__init__(dataset=dataset, batch_size=batch_size, shuffle=shuffle, sampler=sampler,
|
||||
batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=None,
|
||||
pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn,
|
||||
@ -87,9 +91,6 @@ class TorchDataLoader(DataLoader):
|
||||
if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset
|
||||
self._collate_fn = dataset.dataset.collator
|
||||
self._collate_fn.set_backend(backend="torch")
|
||||
# if collate_fn is not None and collate_fn is not default_collate:
|
||||
# # 防止ddp重新初始化时候将torch dataloader的默认collate加进来
|
||||
# self._collate_fn.add_collator(collate_fn)
|
||||
else:
|
||||
self._collate_fn = Collator(backend="torch")
|
||||
else:
|
||||
@ -112,31 +113,32 @@ class TorchDataLoader(DataLoader):
|
||||
yield data
|
||||
|
||||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None,
|
||||
pad_fn:Callable=None) -> "TorchDataLoader":
|
||||
pad_fn:Callable=None) -> Collator:
|
||||
"""
|
||||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。
|
||||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。
|
||||
|
||||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
|
||||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b');
|
||||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没
|
||||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。
|
||||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的
|
||||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。
|
||||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。
|
||||
:param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor,
|
||||
paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。
|
||||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的
|
||||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch
|
||||
形式,输出将被直接作为结果输出。
|
||||
:return: 返回 Collator 自身
|
||||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
|
||||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b');
|
||||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没
|
||||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。
|
||||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的
|
||||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值
|
||||
无意义。
|
||||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。
|
||||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray,
|
||||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。
|
||||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的
|
||||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch
|
||||
形式,输出将被直接作为结果输出。
|
||||
:return: 返回 Collator 自身
|
||||
"""
|
||||
if isinstance(self._collate_fn, Collator):
|
||||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend)
|
||||
return self
|
||||
return self._collate_fn
|
||||
else:
|
||||
raise ValueError(f"collate_fn is not fastnlp collator")
|
||||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.")
|
||||
|
||||
def set_ignore(self, *field_names) -> "TorchDataLoader":
|
||||
def set_ignore(self, *field_names) -> Collator:
|
||||
"""
|
||||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。
|
||||
Ex::
|
||||
@ -149,24 +151,23 @@ class TorchDataLoader(DataLoader):
|
||||
"""
|
||||
if isinstance(self._collate_fn, Collator):
|
||||
self._collate_fn.set_ignore(*field_names)
|
||||
return self
|
||||
return self._collate_fn
|
||||
else:
|
||||
raise ValueError(f"collate_fn is not fastnlp collator")
|
||||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.")
|
||||
|
||||
def get_batch_indices(self) -> List[int]:
|
||||
"""
|
||||
获取当前数据的idx
|
||||
获取当前 batch 的 idx
|
||||
|
||||
:return:
|
||||
"""
|
||||
return self.cur_batch_indices
|
||||
|
||||
|
||||
|
||||
def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataSet], Mapping[str, DataSet]],
|
||||
batch_size: int = 1,
|
||||
shuffle: bool = False, sampler: Optional["Sampler[int]"] = None,
|
||||
batch_sampler: Optional["Sampler[Sequence[int]]"] = None,
|
||||
shuffle: bool = False, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None,
|
||||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None,
|
||||
num_workers: int = 0, collate_fn: Union[str, Callable, None] = None,
|
||||
pin_memory: bool = False, drop_last: bool = False,
|
||||
timeout: float = 0, worker_init_fn: Optional[Callable] = None,
|
||||
|
16
fastNLP/core/dataloaders/utils.py
Normal file
16
fastNLP/core/dataloaders/utils.py
Normal file
@ -0,0 +1,16 @@
|
||||
def indice_collate_wrapper(func):
|
||||
"""
|
||||
其功能是封装一层collate_fn,将dataset取到的tuple数据分离开,将idx打包为indices。
|
||||
|
||||
:param func: 需要修饰的函数
|
||||
:return:
|
||||
"""
|
||||
|
||||
def wrapper(tuple_data):
|
||||
indice, ins_list = [], []
|
||||
for idx, ins in tuple_data:
|
||||
indice.append(idx)
|
||||
ins_list.append(ins)
|
||||
return indice, func(ins_list)
|
||||
|
||||
return wrapper
|
@ -770,17 +770,8 @@ class DataSet:
|
||||
df = self.to_pandas()
|
||||
return df.to_csv(path, encoding="utf-8")
|
||||
|
||||
def set_ignore(self, *field_names) -> None:
|
||||
"""
|
||||
被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉
|
||||
|
||||
:param field_names:
|
||||
:return:
|
||||
"""
|
||||
self.collator.set_ignore(*field_names)
|
||||
|
||||
@property
|
||||
def collator(self):
|
||||
def collator(self) -> Collator:
|
||||
if self._collator is None:
|
||||
self._collator = Collator()
|
||||
return self._collator
|
||||
|
@ -22,7 +22,7 @@ from fastNLP.core.utils import (
|
||||
rank_zero_rm
|
||||
)
|
||||
from fastNLP.core.samplers import (
|
||||
RandomBatchSampler,
|
||||
ReproduceBatchSampler,
|
||||
ReproducibleSampler,
|
||||
ReproducibleBatchSampler,
|
||||
RandomSampler,
|
||||
@ -485,7 +485,7 @@ class PaddleFleetDriver(PaddleDriver):
|
||||
|
||||
return self.model, model.forward
|
||||
|
||||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, RandomBatchSampler]],
|
||||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, ReproduceBatchSampler]],
|
||||
reproducible: bool = False):
|
||||
r"""
|
||||
根据输入的 dataloader 得到一个 支持分布式 (distributed) 与 可复现的 (reproducible) 的 dataloader。
|
||||
|
@ -22,7 +22,7 @@ from fastNLP.core.log import logger
|
||||
from fastNLP.core.samplers import (
|
||||
ReproducibleBatchSampler,
|
||||
ReproducibleSampler,
|
||||
RandomBatchSampler,
|
||||
ReproduceBatchSampler,
|
||||
RandomSampler,
|
||||
)
|
||||
|
||||
@ -345,7 +345,7 @@ class PaddleDriver(Driver):
|
||||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or "
|
||||
"`ReproducibleSampler`.")
|
||||
else:
|
||||
sampler = RandomBatchSampler(
|
||||
sampler = ReproduceBatchSampler(
|
||||
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler,
|
||||
batch_size=dataloader_args.batch_size,
|
||||
drop_last=dataloader_args.drop_last
|
||||
@ -476,7 +476,7 @@ class PaddleDriver(Driver):
|
||||
res.shuffle = True
|
||||
else:
|
||||
res.shuffle = False
|
||||
# RandomBatchSampler 的情况
|
||||
# ReproduceBatchSampler 的情况
|
||||
elif hasattr(dataloader.batch_sampler, "batch_sampler"):
|
||||
batch_sampler = dataloader.batch_sampler.batch_sampler
|
||||
res.sampler = batch_sampler.sampler
|
||||
|
@ -14,7 +14,7 @@ from fastNLP.core.utils import (
|
||||
from fastNLP.core.utils.utils import _get_fun_msg
|
||||
from fastNLP.core.samplers import (
|
||||
ReproducibleBatchSampler,
|
||||
RandomBatchSampler,
|
||||
ReproduceBatchSampler,
|
||||
ReproducibleSampler,
|
||||
RandomSampler,
|
||||
re_instantiate_sampler,
|
||||
@ -177,7 +177,7 @@ class PaddleSingleDriver(PaddleDriver):
|
||||
logger.debug("Replace paddle RandomSampler into fastNLP RandomSampler.")
|
||||
return replace_sampler(dataloader, sampler)
|
||||
else:
|
||||
batch_sampler = RandomBatchSampler(
|
||||
batch_sampler = ReproduceBatchSampler(
|
||||
batch_sampler=args.batch_sampler,
|
||||
batch_size=args.batch_size,
|
||||
drop_last=args.drop_last
|
||||
|
@ -15,7 +15,7 @@ from .torch_driver import TorchDriver
|
||||
from fastNLP.core.drivers.torch_driver.utils import replace_sampler, replace_batch_sampler
|
||||
from fastNLP.core.utils import auto_param_call
|
||||
from fastNLP.core.utils.utils import _get_fun_msg
|
||||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, re_instantiate_sampler, RandomBatchSampler
|
||||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, re_instantiate_sampler, ReproduceBatchSampler
|
||||
from fastNLP.core.samplers import RandomSampler
|
||||
from fastNLP.core.log import logger
|
||||
|
||||
@ -113,7 +113,7 @@ class TorchSingleDriver(TorchDriver):
|
||||
logger.debug("Replace torch RandomSampler into fastNLP RandomSampler.")
|
||||
return replace_sampler(dataloader, sampler)
|
||||
else:
|
||||
batch_sampler = RandomBatchSampler(
|
||||
batch_sampler = ReproduceBatchSampler(
|
||||
batch_sampler=args.batch_sampler,
|
||||
batch_size=args.batch_size,
|
||||
drop_last=args.drop_last
|
||||
|
@ -31,7 +31,7 @@ from fastNLP.core.utils import apply_to_collection, torch_move_data_to_device
|
||||
from fastNLP.envs import rank_zero_call
|
||||
from fastNLP.envs import FASTNLP_SEED_WORKERS, FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME
|
||||
from fastNLP.core.log import logger
|
||||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, RandomBatchSampler, RandomSampler
|
||||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, ReproduceBatchSampler, RandomSampler
|
||||
|
||||
|
||||
class TorchDriver(Driver):
|
||||
@ -293,7 +293,7 @@ class TorchDriver(Driver):
|
||||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or "
|
||||
"`ReproducibleSampler`.")
|
||||
else:
|
||||
sampler = RandomBatchSampler(
|
||||
sampler = ReproduceBatchSampler(
|
||||
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler,
|
||||
batch_size=dataloader_args.batch_size,
|
||||
drop_last=dataloader_args.drop_last
|
||||
@ -407,7 +407,7 @@ class TorchDriver(Driver):
|
||||
res.shuffle = True
|
||||
else:
|
||||
res.shuffle = False
|
||||
# RandomBatchSampler 的情况
|
||||
# ReproduceBatchSampler 的情况
|
||||
elif hasattr(dataloader.batch_sampler, "batch_sampler"):
|
||||
batch_sampler = dataloader.batch_sampler.batch_sampler
|
||||
res.sampler = batch_sampler.sampler
|
||||
|
25
fastNLP/core/log/print.py
Normal file
25
fastNLP/core/log/print.py
Normal file
@ -0,0 +1,25 @@
|
||||
__all__ = [
|
||||
'print'
|
||||
]
|
||||
|
||||
from .logger import logger
|
||||
|
||||
|
||||
def print(*args, sep=' ', end='\n', file=None, flush=False):
|
||||
"""
|
||||
用来重定向 print 函数至 logger.info 的函数。
|
||||
|
||||
Example:
|
||||
from fastNLP import print
|
||||
|
||||
print("This is a test") # 等价于调用了 logger.info("This is a test")
|
||||
|
||||
:param args: 需要打印的内容
|
||||
:param sep: 存在多个输入时,使用的间隔。
|
||||
:param end: 该参数在当前设置无意义,因为结尾一定会被加入 \n 。
|
||||
:param file: 该参数无意义。
|
||||
:param flush: 该参数无意义。
|
||||
:return:
|
||||
"""
|
||||
line = sep.join(args)
|
||||
logger.info(line)
|
@ -14,9 +14,10 @@ __all__ = [
|
||||
"UnrepeatedSortedSampler",
|
||||
"UnrepeatedSequentialSampler",
|
||||
|
||||
"RandomBatchSampler",
|
||||
"ReproduceBatchSampler",
|
||||
"BucketedBatchSampler",
|
||||
"ReproducibleBatchSampler",
|
||||
"RandomBatchSampler",
|
||||
|
||||
"re_instantiate_sampler"
|
||||
]
|
||||
@ -26,5 +27,5 @@ from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, Polling
|
||||
from .reproducible_sampler import ReproducibleSampler, RandomSampler, SequentialSampler, SortedSampler
|
||||
from .utils import re_instantiate_sampler
|
||||
from .conversion_utils import conversion_between_reproducible_and_unrepeated_sampler
|
||||
from .reproducible_batch_sampler import RandomBatchSampler, BucketedBatchSampler, ReproducibleBatchSampler
|
||||
from .reproducible_batch_sampler import ReproduceBatchSampler, BucketedBatchSampler, ReproducibleBatchSampler, RandomBatchSampler
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
__all__ = [
|
||||
'BucketedBatchSampler',
|
||||
"ReproduceBatchSampler",
|
||||
"RandomBatchSampler"
|
||||
]
|
||||
|
||||
@ -7,7 +8,6 @@ import math
|
||||
from copy import deepcopy
|
||||
from typing import Dict, Union, List
|
||||
from itertools import chain
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
@ -54,13 +54,12 @@ class ReproducibleBatchSampler:
|
||||
raise NotImplementedError("Each specific batch_sampler should implement its own `batch_idx_in_epoch` property.")
|
||||
|
||||
|
||||
class RandomBatchSampler(ReproducibleBatchSampler):
|
||||
# 这两个参数的值应当交给 driver 的 get_dataloader_args 函数去拿;
|
||||
class ReproduceBatchSampler(ReproducibleBatchSampler):
|
||||
def __init__(self, batch_sampler, batch_size: int, drop_last: bool, **kwargs):
|
||||
"""
|
||||
可以使得 batch_sampler 对象状态恢复的 wrapper 。
|
||||
|
||||
:param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。RandomBatchSampler 将首先遍历一边该对象,然后将迭代
|
||||
:param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。ReproduceBatchSampler 将首先遍历一边该对象,然后将迭代
|
||||
出来的序号暂存起来,使用时按照 batch_size 的 batch 大小吐出序号列表。
|
||||
:param batch_size: 每个 batch 的大小是多少。
|
||||
:param drop_last: 如果最后一个 batch 无法构成 batch_size 那么多个 sample ,是否丢掉。
|
||||
@ -143,7 +142,7 @@ class RandomBatchSampler(ReproducibleBatchSampler):
|
||||
self.need_reinitialize = False
|
||||
|
||||
def set_distributed(self, num_replicas, rank, pad=True):
|
||||
raise RuntimeError(f"RandomBatchSampler does not support to change to distributed training.")
|
||||
raise RuntimeError(f"ReproduceBatchSampler does not support to change to distributed training.")
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, 'set_epoch') and callable(self.batch_sampler.sampler.set_epoch):
|
||||
@ -158,6 +157,211 @@ class RandomBatchSampler(ReproducibleBatchSampler):
|
||||
(len(self.index_list) - self.num_consumed_samples + self.batch_size - 1) // self.batch_size
|
||||
|
||||
|
||||
class RandomBatchSampler(ReproducibleBatchSampler):
|
||||
def __init__(self, dataset, batch_size:int = 32, shuffle: bool = True,
|
||||
drop_last: bool = False, seed: int = 0, **kwargs):
|
||||
"""
|
||||
随机分 batch 的 batch_sampler 。
|
||||
|
||||
:param dataset: 实现了 __len__ 方法的数据容器。
|
||||
:param batch_size: 每个 batch 的大小
|
||||
:param shuffle: 如果为 True,将不进行 shuffle,实际上数据会以从长到短的方式输出。
|
||||
:param drop_last: 如果最后一个 batch 的 sample 数量无法凑齐 batch_size 这么多,是否需要丢掉。
|
||||
:param seed: 设置的随机数种子
|
||||
:param kwargs: fastNLP 保留使用
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.dataset = dataset
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.drop_last = drop_last
|
||||
self.seed = seed
|
||||
|
||||
self.num_consumed_samples = kwargs.get("num_consumed_samples", 0) # 总共迭代了多少数据了,包括多卡情况下的其它卡上的输出的数量
|
||||
|
||||
# 多卡的相关的参数
|
||||
self.num_replicas = kwargs.get("num_replicas", 1)
|
||||
self.rank = kwargs.get("rank", 0)
|
||||
self.epoch = kwargs.get("epoch", -1)
|
||||
self.pad = kwargs.get("pad", False) # 该参数在单卡上不具有任何意义;
|
||||
|
||||
# 是否处于iteration之间,为True不允许调用 set_distributed()和load_state_dict()
|
||||
self.during_iter = kwargs.get("during_iter", False)
|
||||
|
||||
# 以下变量为内部使用恢复状态的变量。
|
||||
self.old_batch_size = kwargs.get('old_batch_size', self.batch_size)
|
||||
|
||||
def set_distributed(self, num_replicas, rank, pad=True):
|
||||
assert self.during_iter is False, "Cannot set the sampler to be distributed when it is " \
|
||||
"during an unfinished iteration."
|
||||
assert num_replicas > 0 and isinstance(num_replicas, int)
|
||||
assert isinstance(rank, int) and 0 <= rank < num_replicas
|
||||
# 注意初始化该函数时,所有的状态都应当默认是一个 epoch 刚开始训练的状态;
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
self.pad = pad
|
||||
|
||||
return self
|
||||
|
||||
def __iter__(self):
|
||||
if self.during_iter: # 如果发现_during_iter为True,说明之前的还没结束,只有强制重新初始化了
|
||||
self.num_consumed_samples = 0
|
||||
self.during_iter = True
|
||||
|
||||
indices = list(range(len(self.dataset)))
|
||||
|
||||
if self.shuffle:
|
||||
if self.num_consumed_samples > 0: # 需要先按照原来的排序,删掉多余的
|
||||
_batches = []
|
||||
for _i in range(self.old_num_replicas):
|
||||
_indices = indices[_i:len(indices):self.old_num_replicas]
|
||||
__batches = self.batchify(_indices, self.old_batch_size, seed=self.seed + self.epoch)
|
||||
_batches.append(__batches)
|
||||
batches = list(chain(*[_ for _ in zip(*_batches)]))
|
||||
indices = list(chain(*batches))
|
||||
indices = indices[self.num_consumed_samples:]
|
||||
# 取出这个 rank ,
|
||||
indices = indices[self.rank:len(indices):self.num_replicas]
|
||||
batches = self.batchify(indices, self.batch_size, seed=self.seed + self.epoch)
|
||||
batches = list(map(list, batches))
|
||||
else:
|
||||
indices = indices[self.num_consumed_samples:]
|
||||
indices = indices[self.rank:len(indices):self.num_replicas]
|
||||
_num_batches = len(indices) // self.batch_size
|
||||
if _num_batches == 0:
|
||||
batches = [indices]
|
||||
else:
|
||||
batches = list(map(list, np.array_split(indices[:_num_batches*self.batch_size], _num_batches)))
|
||||
if len(indices)%self.batch_size!=0:
|
||||
batches.append(indices[_num_batches*self.batch_size:])
|
||||
|
||||
need_pad_num = (len(self.dataset)-self.num_consumed_samples) % self.num_replicas
|
||||
if self.pad and need_pad_num !=0 and need_pad_num<=self.rank:
|
||||
if len(batches) > 0:
|
||||
if len(batches[-1])<self.batch_size:
|
||||
batches[-1].append(batches[-1][0]) # 这里可以保证这个bucket的长度没被破坏。
|
||||
else:
|
||||
batches.append([batches[-1][0]])
|
||||
elif self.pad is False and need_pad_num !=0 and need_pad_num>self.rank:
|
||||
if len(batches):
|
||||
batches[-1].pop(-1)
|
||||
if len(batches[-1])==0:
|
||||
batches.pop(-1)
|
||||
|
||||
assert sum(map(len, batches)) == self.num_left_samples
|
||||
|
||||
if self.drop_last and len(batches) >= 1 and len(batches[-1]) < self.batch_size:
|
||||
batches = batches[:-1]
|
||||
|
||||
for batch in batches:
|
||||
self.num_consumed_samples += self.num_replicas * len(batch)
|
||||
yield list(map(int, batch))
|
||||
self.during_iter = False
|
||||
self.num_consumed_samples = 0
|
||||
self.old_batch_size = self.batch_size
|
||||
self.old_num_replicas = self.num_replicas
|
||||
if self.epoch < 0: # 防止用户没有修改epoch,导致每个epoch都一样了
|
||||
self.epoch -= 1
|
||||
|
||||
def batchify(self, indices, batch_size, seed):
|
||||
"""
|
||||
将 indices 分为 batches
|
||||
|
||||
:param sorted_indices: List[int]
|
||||
:param batch_size: int
|
||||
:param seed: int
|
||||
:return: List[List[int]]
|
||||
"""
|
||||
# 实际的 bucket 大小
|
||||
rng = np.random.default_rng(abs(seed))
|
||||
rng.shuffle(indices)
|
||||
num_samples = 0
|
||||
batches = []
|
||||
while num_samples<len(indices):
|
||||
batches.append(indices[num_samples:num_samples+batch_size])
|
||||
num_samples += batch_size
|
||||
return batches
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
self.epoch = epoch
|
||||
|
||||
@property
|
||||
def batch_idx_in_epoch(self):
|
||||
if self.drop_last:
|
||||
return len(self.dataset) // self.num_replicas // self.batch_size - self.num_left_samples // self.batch_size
|
||||
else:
|
||||
return (len(self.dataset) // self.num_replicas + self.batch_size - 1) // self.batch_size - \
|
||||
(self.num_left_samples + self.batch_size - 1) // self.batch_size
|
||||
|
||||
@property
|
||||
def total_size(self):
|
||||
"""
|
||||
这个变量代表的含义是当前这个sampler会最终产生出的index数量(包括了其它rank的),因为replica和pad的原因,这个值可能等于、
|
||||
大于或者小于len(dataset)
|
||||
|
||||
:return:
|
||||
"""
|
||||
return self.num_consumed_samples + self.num_replicas*self.num_left_samples
|
||||
|
||||
@property
|
||||
def num_left_samples(self):
|
||||
"""
|
||||
返回当前 iteration 还有多少个 sample 结束,表示的是当前 rank 的还剩多少。
|
||||
|
||||
:return:
|
||||
"""
|
||||
num_consumed_samples = self.num_consumed_samples
|
||||
return math.ceil((len(self.dataset) - num_consumed_samples) / self.num_replicas) if \
|
||||
self.pad else math.floor(((len(self.dataset) - num_consumed_samples) / self.num_replicas))
|
||||
|
||||
def __len__(self)->int:
|
||||
"""
|
||||
返回当前 sampler 还会返回多少个 batch 的数据
|
||||
|
||||
:return:
|
||||
"""
|
||||
num_sampler_per_rank = self.total_size//self.num_replicas
|
||||
num_batches = num_sampler_per_rank//self.batch_size if self.drop_last else \
|
||||
(num_sampler_per_rank+self.batch_size-1)//self.batch_size
|
||||
return num_batches
|
||||
|
||||
def state_dict(self) -> Dict:
|
||||
if self.old_batch_size != self.batch_size:
|
||||
raise RuntimeError("BucketedBatchSampler does not support saving before last checkpoint states have been"
|
||||
" consumed. ")
|
||||
states = {'seed': self.seed, 'epoch': self.epoch, 'num_consumed_samples': self.num_consumed_samples,
|
||||
'sampler_type': self.__class__.__name__, 'length': len(self.dataset), 'shuffle': self.shuffle,
|
||||
'batch_size': self.batch_size,
|
||||
'num_replicas': self.num_replicas}
|
||||
|
||||
return states
|
||||
|
||||
def load_state_dict(self, states: Dict):
|
||||
# 如果 self.during_iter 是 True,那么 num_consumed_samples 一定是 0;
|
||||
assert self.during_iter is False, "Cannot call load_state_dict() when it is " \
|
||||
"during an unfinished iteration."
|
||||
|
||||
assert states['sampler_type'] == self.__class__.__name__, f"The sampler type in checkpoint is {states['sampler_type']}," \
|
||||
f"we cannot use {self.__class__.__name__} to load it."
|
||||
|
||||
length = states['length']
|
||||
assert length == len(self.dataset), "The number of samples is different between the checkpoint record " \
|
||||
"and current dataset."
|
||||
self.seed = states['seed']
|
||||
self.epoch = states['epoch']
|
||||
self.num_consumed_samples = states['num_consumed_samples']
|
||||
if self.num_consumed_samples>=length: # 如果保存的时候已经到达了最后一个sample了,则直接将结果重置为0
|
||||
self.num_consumed_samples = 0
|
||||
if self.shuffle != states['shuffle']:
|
||||
logger.info(f"The shuffle from the checkpoint is {states['shuffle']}, while set as {self.shuffle}, "
|
||||
f"we use shuffle={states['shuffle']}")
|
||||
self.shuffle = states["shuffle"]
|
||||
self.old_batch_size = states['batch_size']
|
||||
self.old_num_replicas = states['num_replicas']
|
||||
|
||||
|
||||
class BucketedBatchSampler(ReproducibleBatchSampler):
|
||||
def __init__(self, dataset, length: Union[List[int], str], batch_size:int = 32, num_batch_per_bucket:int = 10,
|
||||
shuffle: bool = True, drop_last: bool = False, seed: int = 0, **kwargs):
|
||||
|
@ -16,6 +16,8 @@ from fastNLP.core.dataset import DataSet
|
||||
|
||||
class ReproducibleSampler:
|
||||
"""
|
||||
可复现的 Sampler 对象。
|
||||
|
||||
注意所有继承 `ReproducibleSampler` 的类的 `__init__` 方法中都需要加入参数 `**kwargs`,用来使我们再断点重训时重新实例化这个 sampler
|
||||
或者 batch_sampler;注意,所有在 init 中初始化的变量,都不能含有 _ 下横线作为开头;所有不在 init 中设置的变量都必须以下横线开头。
|
||||
|
||||
@ -54,13 +56,12 @@ class RandomSampler(ReproducibleSampler):
|
||||
def __init__(self, dataset, shuffle: bool = True, seed: int = 0, **kwargs):
|
||||
"""
|
||||
|
||||
|
||||
:param dataset: 实现了 __len__ 方法的数据容器
|
||||
:param shuffle: 是否在每次 iterate 的时候打乱顺序。
|
||||
:param seed: 随机数种子。
|
||||
:param kwargs: 用户不需要使用,fastNLP 内部使用
|
||||
"""
|
||||
|
||||
super(RandomSampler, self).__init__()
|
||||
self.dataset = dataset
|
||||
self.shuffle = shuffle
|
||||
self.seed = seed
|
||||
|
@ -21,7 +21,6 @@ __all__ = [
|
||||
'nullcontext',
|
||||
'pretty_table_printer',
|
||||
'Option',
|
||||
'indice_collate_wrapper',
|
||||
'deprecated',
|
||||
'seq_len_to_mask',
|
||||
'rank_zero_rm',
|
||||
@ -37,6 +36,7 @@ from .torch_paddle_utils import torch_paddle_move_data_to_device
|
||||
from .torch_utils import torch_move_data_to_device
|
||||
from .utils import get_fn_arg_names, auto_param_call, check_user_specific_params, \
|
||||
dataclass_to_dict, match_and_substitute_params, apply_to_collection, nullcontext, pretty_table_printer, Option, \
|
||||
indice_collate_wrapper, deprecated, seq_len_to_mask, rank_zero_rm, rank_zero_mkdir
|
||||
deprecated, seq_len_to_mask, rank_zero_rm, rank_zero_mkdir
|
||||
from ..dataloaders.utils import indice_collate_wrapper
|
||||
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
import functools
|
||||
|
||||
class DummyClass:
|
||||
def __call__(self, *args, **kwargs):
|
||||
return
|
||||
def __init__(self, *args, **kwargs):
|
||||
pass
|
||||
|
@ -35,6 +35,7 @@ def paddle_to(data, device: Union[str, int]):
|
||||
else:
|
||||
return data.cuda(get_paddle_device_id(device))
|
||||
|
||||
|
||||
def get_paddle_gpu_str(device: Union[str, int]):
|
||||
"""
|
||||
获得 `gpu:x` 类型的设备名
|
||||
@ -46,6 +47,7 @@ def get_paddle_gpu_str(device: Union[str, int]):
|
||||
return device.replace("cuda", "gpu")
|
||||
return f"gpu:{device}"
|
||||
|
||||
|
||||
def get_paddle_device_id(device: Union[str, int]):
|
||||
"""
|
||||
获得 gpu 的设备id
|
||||
@ -94,18 +96,21 @@ def paddle_move_data_to_device(batch: Any, device: Optional[str] = None,
|
||||
|
||||
return apply_to_collection(batch, dtype=paddle.Tensor, function=batch_to)
|
||||
|
||||
|
||||
def is_in_paddle_dist():
|
||||
"""
|
||||
判断是否处于分布式的进程下,使用 global_rank 和 selected_gpus 判断
|
||||
"""
|
||||
return ('PADDLE_RANK_IN_NODE' in os.environ and 'FLAGS_selected_gpus' in os.environ)
|
||||
|
||||
|
||||
def is_in_fnlp_paddle_dist():
|
||||
"""
|
||||
判断是否处于 FastNLP 拉起的分布式进程中
|
||||
"""
|
||||
return FASTNLP_DISTRIBUTED_CHECK in os.environ
|
||||
|
||||
|
||||
def is_in_paddle_launch_dist():
|
||||
"""
|
||||
判断是否处于 launch 启动的分布式进程中
|
||||
|
@ -6,7 +6,7 @@ import warnings
|
||||
from dataclasses import is_dataclass
|
||||
from copy import deepcopy
|
||||
from collections import defaultdict, OrderedDict
|
||||
from typing import Callable, List, Any, Dict, AnyStr, Union, Mapping, Sequence, Optional
|
||||
from typing import Callable, List, Any, Dict, AnyStr, Union, Mapping, Sequence
|
||||
from typing import Tuple, Optional
|
||||
from time import sleep
|
||||
|
||||
@ -35,7 +35,6 @@ __all__ = [
|
||||
'nullcontext',
|
||||
'pretty_table_printer',
|
||||
'Option',
|
||||
'indice_collate_wrapper',
|
||||
'deprecated',
|
||||
'seq_len_to_mask',
|
||||
'rank_zero_rm',
|
||||
@ -513,24 +512,6 @@ class Option(dict):
|
||||
self.update(state)
|
||||
|
||||
|
||||
def indice_collate_wrapper(func):
|
||||
"""
|
||||
其功能是封装一层collate_fn,将dataset取到的tuple数据分离开,将idx打包为indices。
|
||||
|
||||
:param func: 需要修饰的函数
|
||||
:return:
|
||||
"""
|
||||
|
||||
def wrapper(tuple_data):
|
||||
indice, ins_list = [], []
|
||||
for idx, ins in tuple_data:
|
||||
indice.append(idx)
|
||||
ins_list.append(ins)
|
||||
return indice, func(ins_list)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
_emitted_deprecation_warnings = set()
|
||||
|
||||
|
||||
|
@ -332,13 +332,44 @@ class DataBundle:
|
||||
show_progress_bar=show_progress_bar, progress_desc=progress_desc)
|
||||
return res
|
||||
|
||||
def set_pad_val(self, *field_names, val=0) -> None:
|
||||
for _, ds in self.iter_datasets():
|
||||
ds.set_pad_val(*field_names, val=val)
|
||||
def set_pad(self, field_name, pad_val=0, dtype=None, backend=None, pad_fn=None) -> "DataBundle":
|
||||
"""
|
||||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。
|
||||
|
||||
def set_input(self, *field_names) -> None:
|
||||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
|
||||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b');
|
||||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没
|
||||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。
|
||||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的
|
||||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值
|
||||
无意义。
|
||||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。
|
||||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray,
|
||||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。
|
||||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的
|
||||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch
|
||||
形式,输出将被直接作为结果输出。
|
||||
:return: self
|
||||
"""
|
||||
for _, ds in self.iter_datasets():
|
||||
ds.set_input(*field_names)
|
||||
ds.collator.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, backend=backend,
|
||||
pad_fn=pad_fn)
|
||||
return self
|
||||
|
||||
def set_ignore(self, *field_names) -> "DataBundle":
|
||||
"""
|
||||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。
|
||||
Ex::
|
||||
collator.set_ignore('field1', 'field2')
|
||||
|
||||
:param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
|
||||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果
|
||||
__getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。
|
||||
:return: self
|
||||
"""
|
||||
for _, ds in self.iter_datasets():
|
||||
ds.collator.set_ignore(*field_names)
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
_str = ''
|
||||
|
208
tests/core/callbacks/test_callback_event.py
Normal file
208
tests/core/callbacks/test_callback_event.py
Normal file
@ -0,0 +1,208 @@
|
||||
import pytest
|
||||
from functools import reduce
|
||||
|
||||
from fastNLP.core.callbacks.callback_event import Event, Filter
|
||||
|
||||
|
||||
|
||||
class TestFilter:
|
||||
def test_every_filter(self):
|
||||
# every = 10
|
||||
@Filter(every=10)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [w-1 for w in range(10, 101, 10)]
|
||||
|
||||
# every = 1
|
||||
@Filter(every=1)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == list(range(100))
|
||||
|
||||
def test_once_filter(self):
|
||||
# once = 10
|
||||
@Filter(once=10)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [9]
|
||||
|
||||
|
||||
def test_extract_filter_from_fn(self):
|
||||
@Filter(every=10)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_filter_num_called = []
|
||||
_filter_num_executed = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
_filter = _fn.__fastNLP_filter__
|
||||
_filter_num_called.append(_filter.num_called)
|
||||
_filter_num_executed.append(_filter.num_executed)
|
||||
assert _filter_num_called == list(range(1, 101))
|
||||
assert _filter_num_executed == [0]*9 + reduce(lambda x, y: x+y, [[w]*10 for w in range(1, 10)]) + [10]
|
||||
|
||||
def _fn(data):
|
||||
return data
|
||||
assert not hasattr(_fn, "__fastNLP_filter__")
|
||||
|
||||
def test_filter_state_dict(self):
|
||||
# every = 10
|
||||
@Filter(every=10)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(50):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [w - 1 for w in range(10, 51, 10)]
|
||||
|
||||
# 保存状态
|
||||
state = _fn.__fastNLP_filter__.state_dict()
|
||||
# 加载状态
|
||||
_fn.__fastNLP_filter__.load_state_dict(state)
|
||||
|
||||
_res = []
|
||||
for i in range(50, 100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [w - 1 for w in range(60, 101, 10)]
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_filter_fn_torch():
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
from fastNLP.core.controllers.trainer import Trainer
|
||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification
|
||||
|
||||
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10)
|
||||
optimizer = SGD(model.parameters(), lr=0.0001)
|
||||
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10)
|
||||
dataloader = DataLoader(dataset=dataset, batch_size=4)
|
||||
|
||||
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer)
|
||||
def filter_fn(filter, trainer):
|
||||
if trainer.__heihei_test__ == 10:
|
||||
return True
|
||||
return False
|
||||
|
||||
@Filter(filter_fn=filter_fn)
|
||||
def _fn(trainer, data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
trainer.__heihei_test__ = i
|
||||
cu_res = _fn(trainer, i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [10]
|
||||
|
||||
|
||||
class TestCallbackEvents:
|
||||
def test_every(self):
|
||||
|
||||
# 这里是什么样的事件是不影响的,因为我们是与 Trainer 拆分开了进行测试;
|
||||
event_state = Event.on_train_begin() # 什么都不输入是应当默认 every=1;
|
||||
@Filter(every=event_state.every, once=event_state.once, filter_fn=event_state.filter_fn)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == list(range(100))
|
||||
|
||||
event_state = Event.on_train_begin(every=10)
|
||||
@Filter(every=event_state.every, once=event_state.once, filter_fn=event_state.filter_fn)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [w - 1 for w in range(10, 101, 10)]
|
||||
|
||||
def test_once(self):
|
||||
event_state = Event.on_train_begin(once=10)
|
||||
|
||||
@Filter(once=event_state.once)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [9]
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_callback_events_torch():
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
from fastNLP.core.controllers.trainer import Trainer
|
||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification
|
||||
|
||||
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10)
|
||||
optimizer = SGD(model.parameters(), lr=0.0001)
|
||||
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10)
|
||||
dataloader = DataLoader(dataset=dataset, batch_size=4)
|
||||
|
||||
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer)
|
||||
def filter_fn(filter, trainer):
|
||||
if trainer.__heihei_test__ == 10:
|
||||
return True
|
||||
return False
|
||||
|
||||
event_state = Event.on_train_begin(filter_fn=filter_fn)
|
||||
|
||||
@Filter(filter_fn=event_state.filter_fn)
|
||||
def _fn(trainer, data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
trainer.__heihei_test__ = i
|
||||
cu_res = _fn(trainer, i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [10]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,157 +0,0 @@
|
||||
import pytest
|
||||
from functools import reduce
|
||||
|
||||
from fastNLP.core.callbacks.callback_events import Events, Filter
|
||||
|
||||
|
||||
class TestFilter:
|
||||
|
||||
def test_params_check(self):
|
||||
# 顺利通过
|
||||
_filter1 = Filter(every=10)
|
||||
_filter2 = Filter(once=10)
|
||||
_filter3 = Filter(filter_fn=lambda: None)
|
||||
|
||||
# 触发 ValueError
|
||||
with pytest.raises(ValueError) as e:
|
||||
_filter4 = Filter()
|
||||
exec_msg = e.value.args[0]
|
||||
assert exec_msg == "If you mean your decorated function should be called every time, you do not need this filter."
|
||||
|
||||
# 触发 ValueError
|
||||
with pytest.raises(ValueError) as e:
|
||||
_filter5 = Filter(every=10, once=10)
|
||||
exec_msg = e.value.args[0]
|
||||
assert exec_msg == "These three values should be only set one."
|
||||
|
||||
# 触发 TypeError
|
||||
with pytest.raises(ValueError) as e:
|
||||
_filter6 = Filter(every="heihei")
|
||||
exec_msg = e.value.args[0]
|
||||
assert exec_msg == "Argument every should be integer and greater than zero"
|
||||
|
||||
# 触发 TypeError
|
||||
with pytest.raises(ValueError) as e:
|
||||
_filter7 = Filter(once="heihei")
|
||||
exec_msg = e.value.args[0]
|
||||
assert exec_msg == "Argument once should be integer and positive"
|
||||
|
||||
# 触发 TypeError
|
||||
with pytest.raises(TypeError) as e:
|
||||
_filter7 = Filter(filter_fn="heihei")
|
||||
exec_msg = e.value.args[0]
|
||||
assert exec_msg == "Argument event_filter should be a callable"
|
||||
|
||||
def test_every_filter(self):
|
||||
# every = 10
|
||||
@Filter(every=10)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [w-1 for w in range(10, 101, 10)]
|
||||
|
||||
# every = 1
|
||||
@Filter(every=1)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == list(range(100))
|
||||
|
||||
def test_once_filter(self):
|
||||
# once = 10
|
||||
@Filter(once=10)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [9]
|
||||
|
||||
def test_filter_fn(self):
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
from fastNLP.core.controllers.trainer import Trainer
|
||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification
|
||||
|
||||
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10)
|
||||
optimizer = SGD(model.parameters(), lr=0.0001)
|
||||
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10)
|
||||
dataloader = DataLoader(dataset=dataset, batch_size=4)
|
||||
|
||||
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer)
|
||||
def filter_fn(filter, trainer):
|
||||
if trainer.__heihei_test__ == 10:
|
||||
return True
|
||||
return False
|
||||
|
||||
@Filter(filter_fn=filter_fn)
|
||||
def _fn(trainer, data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(100):
|
||||
trainer.__heihei_test__ = i
|
||||
cu_res = _fn(trainer, i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [10]
|
||||
|
||||
def test_extract_filter_from_fn(self):
|
||||
@Filter(every=10)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_filter_num_called = []
|
||||
_filter_num_executed = []
|
||||
for i in range(100):
|
||||
cu_res = _fn(i)
|
||||
_filter = _fn.__fastNLP_filter__
|
||||
_filter_num_called.append(_filter.num_called)
|
||||
_filter_num_executed.append(_filter.num_executed)
|
||||
assert _filter_num_called == list(range(1, 101))
|
||||
assert _filter_num_executed == [0]*9 + reduce(lambda x, y: x+y, [[w]*10 for w in range(1, 10)]) + [10]
|
||||
|
||||
def _fn(data):
|
||||
return data
|
||||
assert not hasattr(_fn, "__fastNLP_filter__")
|
||||
|
||||
def test_filter_state_dict(self):
|
||||
# every = 10
|
||||
@Filter(every=10)
|
||||
def _fn(data):
|
||||
return data
|
||||
|
||||
_res = []
|
||||
for i in range(50):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [w - 1 for w in range(10, 51, 10)]
|
||||
|
||||
# 保存状态
|
||||
state = _fn.__fastNLP_filter__.state_dict()
|
||||
# 加载状态
|
||||
_fn.__fastNLP_filter__.load_state_dict(state)
|
||||
|
||||
_res = []
|
||||
for i in range(50, 100):
|
||||
cu_res = _fn(i)
|
||||
if cu_res is not None:
|
||||
_res.append(cu_res)
|
||||
assert _res == [w - 1 for w in range(60, 101, 10)]
|
||||
|
||||
|
@ -2,9 +2,6 @@ import os
|
||||
import pytest
|
||||
from typing import Any
|
||||
from dataclasses import dataclass
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.optim import SGD
|
||||
import torch.distributed as dist
|
||||
from pathlib import Path
|
||||
import re
|
||||
import time
|
||||
@ -20,6 +17,11 @@ from tests.helpers.datasets.torch_data import TorchArgMaxDataset
|
||||
from torchmetrics import Accuracy
|
||||
from fastNLP.core.log import logger
|
||||
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.optim import SGD
|
||||
import torch.distributed as dist
|
||||
|
||||
@dataclass
|
||||
class ArgMaxDatasetConfig:
|
||||
@ -216,9 +218,9 @@ def test_model_checkpoint_callback_2(
|
||||
path = Path.cwd().joinpath("test_model_checkpoint")
|
||||
path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
from fastNLP.core.callbacks.callback_events import Events
|
||||
from fastNLP.core.callbacks.callback_event import Event
|
||||
|
||||
@Trainer.on(Events.on_train_epoch_end)
|
||||
@Trainer.on(Event.on_train_epoch_end())
|
||||
def raise_exception(trainer):
|
||||
if trainer.driver.get_local_rank() == 0 and trainer.cur_epoch_idx == 4:
|
||||
raise NotImplementedError
|
||||
@ -550,7 +552,7 @@ def test_trainer_checkpoint_callback_2(
|
||||
|
||||
if version == 0:
|
||||
callbacks = [
|
||||
TrainerCheckpointCallback(
|
||||
CheckpointCallback(
|
||||
monitor="acc",
|
||||
folder=path,
|
||||
every_n_epochs=None,
|
||||
@ -558,12 +560,13 @@ def test_trainer_checkpoint_callback_2(
|
||||
topk=None,
|
||||
last=False,
|
||||
on_exception=None,
|
||||
model_save_fn=model_save_fn
|
||||
model_save_fn=model_save_fn,
|
||||
save_object="trainer"
|
||||
)
|
||||
]
|
||||
elif version == 1:
|
||||
callbacks = [
|
||||
TrainerCheckpointCallback(
|
||||
CheckpointCallback(
|
||||
monitor="acc",
|
||||
folder=path,
|
||||
every_n_epochs=None,
|
||||
@ -571,7 +574,8 @@ def test_trainer_checkpoint_callback_2(
|
||||
topk=1,
|
||||
last=True,
|
||||
on_exception=None,
|
||||
model_save_fn=model_save_fn
|
||||
model_save_fn=model_save_fn,
|
||||
save_object="trainer"
|
||||
)
|
||||
]
|
||||
|
||||
|
@ -12,9 +12,7 @@ import os
|
||||
import pytest
|
||||
from typing import Any
|
||||
from dataclasses import dataclass
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.optim import SGD
|
||||
import torch.distributed as dist
|
||||
|
||||
from pathlib import Path
|
||||
import re
|
||||
|
||||
@ -29,7 +27,11 @@ from torchmetrics import Accuracy
|
||||
from fastNLP.core.metrics import Metric
|
||||
from fastNLP.core.log import logger
|
||||
from fastNLP.core.callbacks import MoreEvaluateCallback
|
||||
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.optim import SGD
|
||||
import torch.distributed as dist
|
||||
|
||||
@dataclass
|
||||
class ArgMaxDatasetConfig:
|
||||
|
@ -17,12 +17,13 @@ def test_get_element_shape_dtype():
|
||||
@pytest.mark.parametrize('backend', ['raw', None, 'numpy', 'torch', 'jittor', 'paddle'])
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.paddle
|
||||
@pytest.mark.jittor
|
||||
def test_get_padder_run(backend):
|
||||
if not _NEED_IMPORT_TORCH and backend == 'torch':
|
||||
pytest.skip("No torch")
|
||||
if not _NEED_IMPORT_PADDLE and backend == 'paddle':
|
||||
pytest.skip("No paddle")
|
||||
if not _NEED_IMPORT_PADDLE and backend == 'jittor':
|
||||
if not _NEED_IMPORT_JITTOR and backend == 'jittor':
|
||||
pytest.skip("No jittor")
|
||||
batch_field = [1, 2, 3]
|
||||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test')
|
||||
@ -66,6 +67,13 @@ def test_raw_padder():
|
||||
pad_batch = padder(batch_field)
|
||||
assert np.shape(pad_batch) == (3, 3, 2)
|
||||
|
||||
batch_field = [np.ones((3,3)), np.ones((2,3)), np.ones((1,0))]
|
||||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test')
|
||||
pad_batch = padder(batch_field)
|
||||
assert isinstance(pad_batch, list)
|
||||
assert np.shape(pad_batch) == (3, 3, 3)
|
||||
assert (pad_batch == np.zeros(np.shape(pad_batch))).sum()==12
|
||||
|
||||
|
||||
def test_numpy_padder():
|
||||
backend = 'numpy'
|
||||
@ -140,3 +148,18 @@ def test_torch_padder():
|
||||
with pytest.raises(InconsistencyError):
|
||||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test')
|
||||
|
||||
# 可以是 numpy.ndarray
|
||||
batch_field = [np.ones((3,3)), np.ones((2,3)), np.ones((1,0))]
|
||||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test')
|
||||
pad_batch = padder(batch_field)
|
||||
assert isinstance(pad_batch, target_type)
|
||||
assert pad_batch.shape == (3, 3, 3)
|
||||
assert (pad_batch == torch.zeros(pad_batch.shape)).sum()==12
|
||||
|
||||
# 测试 to numpy
|
||||
batch_field = [torch.ones((3,3)), torch.ones((2,3)), torch.ones((1,0))]
|
||||
padder = get_padder(batch_field, pad_val=0, backend='numpy', dtype=int, field_name='test')
|
||||
pad_batch = padder(batch_field)
|
||||
assert isinstance(pad_batch, np.ndarray)
|
||||
assert np.shape(pad_batch) == (3, 3, 3)
|
||||
assert (pad_batch == np.zeros(np.shape(pad_batch))).sum()==12
|
||||
|
@ -1,7 +1,7 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from fastNLP.core.collators.padders.paddle_padder import paddleTensorPadder, paddleSequencePadder, paddleNumberPadder
|
||||
from fastNLP.core.collators.padders.paddle_padder import PaddleTensorPadder, PaddleSequencePadder, PaddleNumberPadder
|
||||
from fastNLP.core.collators.padders.exceptions import DtypeError
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE
|
||||
|
||||
@ -10,9 +10,9 @@ if _NEED_IMPORT_PADDLE:
|
||||
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestpaddleNumberPadder:
|
||||
class TestPaddleNumberPadder:
|
||||
def test_run(self):
|
||||
padder = paddleNumberPadder(ele_dtype=int, dtype=int, pad_val=-1)
|
||||
padder = PaddleNumberPadder(ele_dtype=int, dtype=int, pad_val=-1)
|
||||
a = [1, 2, 3]
|
||||
t_a = padder(a)
|
||||
assert isinstance(t_a, paddle.Tensor)
|
||||
@ -20,9 +20,9 @@ class TestpaddleNumberPadder:
|
||||
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestpaddleSequencePadder:
|
||||
class TestPaddleSequencePadder:
|
||||
def test_run(self):
|
||||
padder = paddleSequencePadder(ele_dtype=int, dtype=int, pad_val=-1)
|
||||
padder = PaddleSequencePadder(ele_dtype=int, dtype=int, pad_val=-1)
|
||||
a = [[1, 2, 3], [3]]
|
||||
a = padder(a)
|
||||
shape = a.shape
|
||||
@ -32,20 +32,20 @@ class TestpaddleSequencePadder:
|
||||
assert (a == b).sum().item() == shape[0]*shape[1]
|
||||
|
||||
def test_dtype_check(self):
|
||||
padder = paddleSequencePadder(ele_dtype=np.zeros(3, dtype=np.int32).dtype, dtype=int, pad_val=-1)
|
||||
padder = PaddleSequencePadder(ele_dtype=np.zeros(3, dtype=np.int32).dtype, dtype=int, pad_val=-1)
|
||||
with pytest.raises(DtypeError):
|
||||
padder = paddleSequencePadder(ele_dtype=str, dtype=int, pad_val=-1)
|
||||
padder = paddleSequencePadder(ele_dtype='int64', dtype=int, pad_val=-1)
|
||||
padder = paddleSequencePadder(ele_dtype=np.int32, dtype=None, pad_val=-1)
|
||||
padder = PaddleSequencePadder(ele_dtype=str, dtype=int, pad_val=-1)
|
||||
padder = PaddleSequencePadder(ele_dtype='int64', dtype=int, pad_val=-1)
|
||||
padder = PaddleSequencePadder(ele_dtype=np.int32, dtype=None, pad_val=-1)
|
||||
a = padder([[1], [2, 322]])
|
||||
# assert (a>67).sum()==0 # 因为int8的范围为-67 - 66
|
||||
padder = paddleSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1)
|
||||
padder = PaddleSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1)
|
||||
|
||||
|
||||
@pytest.mark.paddle
|
||||
class TestpaddleTensorPadder:
|
||||
class TestPaddleTensorPadder:
|
||||
def test_run(self):
|
||||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3,)).dtype, dtype=paddle.zeros((3,)).dtype, pad_val=-1)
|
||||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3,)).dtype, dtype=paddle.zeros((3,)).dtype, pad_val=-1)
|
||||
a = [paddle.zeros((3,)), paddle.zeros((2,))]
|
||||
a = padder(a)
|
||||
shape = a.shape
|
||||
@ -74,7 +74,7 @@ class TestpaddleTensorPadder:
|
||||
[[0, -1], [-1, -1], [-1, -1]]])
|
||||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2]
|
||||
|
||||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3, )).dtype, dtype=paddle.zeros((3, )).dtype, pad_val=-1)
|
||||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3, )).dtype, dtype=paddle.zeros((3, )).dtype, pad_val=-1)
|
||||
a = [paddle.zeros((3, 2)), paddle.zeros((2, 2))]
|
||||
a = padder(a)
|
||||
shape = a.shape
|
||||
@ -85,7 +85,7 @@ class TestpaddleTensorPadder:
|
||||
])
|
||||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2]
|
||||
|
||||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3, 2)).dtype, dtype=None, pad_val=-1)
|
||||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3, 2)).dtype, dtype=None, pad_val=-1)
|
||||
a = [np.zeros((3, 2), dtype=np.float32), np.zeros((2, 2), dtype=np.float32)]
|
||||
a = padder(a)
|
||||
shape = a.shape
|
||||
@ -96,11 +96,11 @@ class TestpaddleTensorPadder:
|
||||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2]
|
||||
|
||||
def test_dtype_check(self):
|
||||
padder = paddleTensorPadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1)
|
||||
padder = PaddleTensorPadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1)
|
||||
with pytest.raises(DtypeError):
|
||||
padder = paddleTensorPadder(ele_dtype=str, dtype=int, pad_val=-1)
|
||||
padder = paddleTensorPadder(ele_dtype='int64', dtype=int, pad_val=-1)
|
||||
padder = paddleTensorPadder(ele_dtype=int, dtype='int64', pad_val=-1)
|
||||
padder = PaddleTensorPadder(ele_dtype=str, dtype=int, pad_val=-1)
|
||||
padder = PaddleTensorPadder(ele_dtype='int64', dtype=int, pad_val=-1)
|
||||
padder = PaddleTensorPadder(ele_dtype=int, dtype='int64', pad_val=-1)
|
||||
|
||||
def test_v1(self):
|
||||
print(paddle.zeros((3, )).dtype)
|
||||
|
@ -23,7 +23,6 @@ class TestRawSequencePadder:
|
||||
assert (a == b).sum().item() == shape[0]*shape[1]
|
||||
|
||||
def test_dtype_check(self):
|
||||
with pytest.raises(DtypeError):
|
||||
padder = RawSequencePadder(pad_val=-1, ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int)
|
||||
padder = RawSequencePadder(pad_val=-1, ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int)
|
||||
with pytest.raises(DtypeError):
|
||||
padder = RawSequencePadder(pad_val=-1, ele_dtype=str, dtype=int)
|
@ -1,81 +1,293 @@
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from fastNLP.core.collators import AutoCollator
|
||||
from fastNLP.core.collators.collator import _MultiCollator
|
||||
from fastNLP.core.dataset import DataSet
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH, _NEED_IMPORT_PADDLE, _NEED_IMPORT_JITTOR
|
||||
|
||||
from fastNLP.core.collators.collator import Collator
|
||||
|
||||
|
||||
def _assert_equal(d1, d2):
|
||||
try:
|
||||
if 'torch' in str(type(d1)):
|
||||
if 'float64' in str(d2.dtype):
|
||||
print(d2.dtype)
|
||||
assert (d1 == d2).all().item()
|
||||
else:
|
||||
assert all(d1 == d2)
|
||||
except TypeError:
|
||||
assert d1 == d2
|
||||
except ValueError:
|
||||
assert (d1 == d2).all()
|
||||
|
||||
|
||||
def findDictDiff(d1, d2, path=""):
|
||||
for k in d1:
|
||||
if k in d2:
|
||||
if isinstance(d1[k], dict):
|
||||
findDictDiff(d1[k], d2[k], "%s -> %s" % (path, k) if path else k)
|
||||
else:
|
||||
_assert_equal(d1[k], d2[k])
|
||||
else:
|
||||
raise RuntimeError("%s%s as key not in d2\n" % ("%s: " % path if path else "", k))
|
||||
|
||||
|
||||
def findListDiff(d1, d2):
|
||||
assert len(d1)==len(d2)
|
||||
for _d1, _d2 in zip(d1, d2):
|
||||
if isinstance(_d1, list):
|
||||
findListDiff(_d1, _d2)
|
||||
else:
|
||||
_assert_equal(_d1, _d2)
|
||||
|
||||
|
||||
class TestCollator:
|
||||
|
||||
@pytest.mark.parametrize('as_numpy', [True, False])
|
||||
def test_auto_collator(self, as_numpy):
|
||||
"""
|
||||
测试auto_collator的auto_pad功能
|
||||
@pytest.mark.torch
|
||||
def test_run(self):
|
||||
dict_batch = [{
|
||||
'str': '1',
|
||||
'lst_str': ['1'],
|
||||
'int': 1,
|
||||
'lst_int': [1],
|
||||
'nest_lst_int': [[1]],
|
||||
'float': 1.1,
|
||||
'lst_float': [1.1],
|
||||
'bool': True,
|
||||
'numpy': np.ones(1),
|
||||
'dict': {'1': '1'},
|
||||
'set': {'1'},
|
||||
'nested_dict': {'a': 1, 'b':[1, 2]}
|
||||
},
|
||||
{
|
||||
'str': '2',
|
||||
'lst_str': ['2', '2'],
|
||||
'int': 2,
|
||||
'lst_int': [1, 2],
|
||||
'nest_lst_int': [[1], [1, 2]],
|
||||
'float': 2.1,
|
||||
'lst_float': [2.1],
|
||||
'bool': False,
|
||||
'numpy': np.zeros(1),
|
||||
'dict': {'1': '2'},
|
||||
'set': {'2'},
|
||||
'nested_dict': {'a': 2, 'b': [1, 2]}
|
||||
}
|
||||
]
|
||||
|
||||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}],
|
||||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]]
|
||||
|
||||
raw_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': [1, 2], 'lst_int': [[1, 0], [1, 2]], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': [1, 2], 'b': [[1, 2], [1, 2]]}}
|
||||
collator = Collator(backend='raw')
|
||||
assert raw_pad_batch == collator(dict_batch)
|
||||
collator = Collator(backend='raw')
|
||||
raw_pad_lst = [['1', '2'], [['1'], ['2', '2']], [1, 2], [[1, 0], [2, 2]], [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(raw_pad_lst, collator(list_batch))
|
||||
|
||||
collator = Collator(backend='numpy')
|
||||
numpy_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': np.array([1, 2]), 'lst_int': np.array([[1, 0], [1, 2]]),
|
||||
'nest_lst_int': np.array([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), 'float': np.array([1.1, 2.1]),
|
||||
'lst_float': np.array([[1.1], [2.1]]), 'bool': np.array([True, False]), 'numpy': np.array([[1], [0]]),
|
||||
'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': np.array([1, 2]),
|
||||
'b': np.array([[1, 2], [1, 2]])}}
|
||||
|
||||
findDictDiff(numpy_pad_batch, collator(dict_batch))
|
||||
collator = Collator(backend='numpy')
|
||||
numpy_pad_lst = [['1', '2'], [['1'], ['2', '2']], np.array([1, 2]), np.array([[1, 0], [2, 2]]),
|
||||
np.array([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]),
|
||||
np.array([1.1, 2.1]), np.array([[1.1], [2.1]]), np.array([True, False]),
|
||||
np.array([[1, 0], [1, 1]]), [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(numpy_pad_lst, collator(list_batch))
|
||||
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
collator = Collator(backend='torch')
|
||||
numpy_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': torch.LongTensor([1, 2]),
|
||||
'lst_int': torch.LongTensor([[1, 0], [1, 2]]),
|
||||
'nest_lst_int': torch.LongTensor([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]),
|
||||
'float': torch.FloatTensor([1.1, 2.1]),
|
||||
'lst_float': torch.FloatTensor([[1.1], [2.1]]), 'bool': torch.BoolTensor([True, False]),
|
||||
'numpy': torch.FloatTensor([[1], [0]]),
|
||||
'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': torch.LongTensor([1, 2]),
|
||||
'b': torch.LongTensor(
|
||||
[[1, 2], [1, 2]])}}
|
||||
|
||||
findDictDiff(numpy_pad_batch, collator(dict_batch))
|
||||
collator = Collator(backend='torch')
|
||||
torch_pad_lst = [['1', '2'], [['1'], ['2', '2']], torch.LongTensor([1, 2]), torch.LongTensor([[1, 0], [2, 2]]),
|
||||
torch.LongTensor([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]),
|
||||
torch.FloatTensor([1.1, 2.1]), torch.FloatTensor([[1.1], [2.1]]), torch.BoolTensor([True, False]),
|
||||
torch.LongTensor([[1, 0], [1, 1]]), [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(torch_pad_lst, collator(list_batch))
|
||||
|
||||
def test_pad(self):
|
||||
dict_batch = [{
|
||||
'str': '1',
|
||||
'lst_str': ['1'],
|
||||
'int': 1,
|
||||
'lst_int': [1],
|
||||
'nest_lst_int': [[1]],
|
||||
'float': 1.1,
|
||||
'lst_float': [1.1],
|
||||
'bool': True,
|
||||
'numpy': np.ones(1),
|
||||
'dict': {'1': '1'},
|
||||
'set': {'1'},
|
||||
'nested_dict': {'a': 1, 'b':[1, 2]}
|
||||
},
|
||||
{
|
||||
'str': '2',
|
||||
'lst_str': ['2', '2'],
|
||||
'int': 2,
|
||||
'lst_int': [1, 2],
|
||||
'nest_lst_int': [[1], [1, 2]],
|
||||
'float': 2.1,
|
||||
'lst_float': [2.1],
|
||||
'bool': False,
|
||||
'numpy': np.zeros(1),
|
||||
'dict': {'1': '2'},
|
||||
'set': {'2'},
|
||||
'nested_dict': {'a': 2, 'b': [1, 2]}
|
||||
}
|
||||
]
|
||||
|
||||
raw_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': [1, 2], 'lst_int': [[1, 0], [1, 2]], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': [1, 2], 'b': [[1, 2], [1, 2]]}}
|
||||
|
||||
# 测试 ignore
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict', 'a'))
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}}
|
||||
findDictDiff(raw_pad_batch, collator(dict_batch))
|
||||
|
||||
# 测试 set_pad
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad('str', pad_val=1)
|
||||
with pytest.raises(BaseException):
|
||||
collator(dict_batch)
|
||||
|
||||
# 测试设置 pad 值
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad('nest_lst_int', pad_val=100)
|
||||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict','a'))
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 100], [100, 100]], [[1, 100], [1, 2]]],
|
||||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}}
|
||||
findDictDiff(raw_pad_batch, collator(dict_batch))
|
||||
|
||||
# 设置 backend 和 type
|
||||
collator.set_pad('float', pad_val=100, backend='numpy', dtype=int)
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 100], [100, 100]], [[1, 100], [1, 2]]],
|
||||
'float': np.array([1, 2]), 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}}
|
||||
findDictDiff(raw_pad_batch, collator(dict_batch))
|
||||
|
||||
|
||||
# raw_pad_lst = [['1', '2'], [['1'], ['2', '2']], [1, 2], [[1, 0], [2, 2]], [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
# [1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}],
|
||||
# [{'1'}, {'2'}]]
|
||||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}],
|
||||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]]
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('_0', '_3', '_1')
|
||||
collator.set_pad('_4', pad_val=None)
|
||||
raw_pad_lst = [[1, 2], [[[1]], [[1], [1, 2]]],
|
||||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(raw_pad_lst, collator(list_batch))
|
||||
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad('_0', pad_val=1)
|
||||
with pytest.raises(BaseException):
|
||||
collator(dict_batch)
|
||||
|
||||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}],
|
||||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]]
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('_0', '_3', '_1')
|
||||
collator.set_pad('_2', backend='numpy')
|
||||
collator.set_pad('_4', backend='numpy', pad_val=100)
|
||||
raw_pad_lst = [np.array([1, 2]), np.array([[[1, 100], [100, 100]], [[1, 100], [1, 2]]]),
|
||||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(raw_pad_lst, collator(list_batch))
|
||||
|
||||
# _single
|
||||
collator = Collator()
|
||||
collator.set_pad('_single')
|
||||
findListDiff(list_batch, collator(list_batch))
|
||||
|
||||
def test_nest_ignore(self):
|
||||
dict_batch = [{
|
||||
'str': '1',
|
||||
'lst_str': ['1'],
|
||||
'int': 1,
|
||||
'lst_int': [1],
|
||||
'nest_lst_int': [[1]],
|
||||
'float': 1.1,
|
||||
'lst_float': [1.1],
|
||||
'bool': True,
|
||||
'numpy': np.ones(1),
|
||||
'dict': {'1': '1'},
|
||||
'set': {'1'},
|
||||
'nested_dict': {'int': 1, 'lst_int':[1, 2], 'c': {'int': 1}}
|
||||
},
|
||||
{
|
||||
'str': '2',
|
||||
'lst_str': ['2', '2'],
|
||||
'int': 2,
|
||||
'lst_int': [1, 2],
|
||||
'nest_lst_int': [[1], [1, 2]],
|
||||
'float': 2.1,
|
||||
'lst_float': [2.1],
|
||||
'bool': False,
|
||||
'numpy': np.zeros(1),
|
||||
'dict': {'1': '2'},
|
||||
'set': {'2'},
|
||||
'nested_dict': {'int': 1, 'lst_int': [1, 2], 'c': {'int': 1}}
|
||||
}
|
||||
]
|
||||
# 测试 ignore
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict', 'int'))
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False],
|
||||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']},
|
||||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]],
|
||||
'c': {'int':[1, 1]}}}
|
||||
findDictDiff(raw_pad_batch, collator(dict_batch))
|
||||
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad(('nested_dict', 'c'), pad_val=None)
|
||||
collator.set_ignore('str', 'int', 'lst_int')
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False],
|
||||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']},
|
||||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]],
|
||||
'c': [{'int':1}, {'int':1}]}}
|
||||
pad_batch = collator(dict_batch)
|
||||
findDictDiff(raw_pad_batch, pad_batch)
|
||||
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad(('nested_dict', 'c'), pad_val=1)
|
||||
with pytest.raises(BaseException):
|
||||
collator(dict_batch)
|
||||
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('str', 'int', 'lst_int')
|
||||
collator.set_pad(('nested_dict', 'c'), pad_fn=lambda x: [d['int'] for d in x])
|
||||
pad_batch = collator(dict_batch)
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False],
|
||||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']},
|
||||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]],
|
||||
'c': [1, 1]}}
|
||||
findDictDiff(raw_pad_batch, pad_batch)
|
||||
|
||||
|
||||
:param as_numpy:
|
||||
:return:
|
||||
"""
|
||||
dataset = DataSet({'x': [[1, 2], [0, 1, 2, 3], [3], [9, 0, 10, 1, 5]] * 100,
|
||||
'y': [0, 1, 1, 0] * 100})
|
||||
collator = AutoCollator(as_numpy=as_numpy)
|
||||
collator.set_input('x', 'y')
|
||||
bucket_data = []
|
||||
data = []
|
||||
for i in range(len(dataset)):
|
||||
data.append(dataset[i])
|
||||
if len(data) == 40:
|
||||
bucket_data.append(data)
|
||||
data = []
|
||||
results = []
|
||||
for bucket in bucket_data:
|
||||
res = collator(bucket)
|
||||
assert res['x'].shape == (40, 5)
|
||||
assert res['y'].shape == (40,)
|
||||
results.append(res)
|
||||
|
||||
def test_auto_collator_v1(self):
|
||||
"""
|
||||
测试auto_collator的set_pad_val和set_pad_val功能
|
||||
|
||||
:return:
|
||||
"""
|
||||
dataset = DataSet({'x': [[1, 2], [0, 1, 2, 3], [3], [9, 0, 10, 1, 5]] * 100,
|
||||
'y': [0, 1, 1, 0] * 100})
|
||||
collator = AutoCollator(as_numpy=False)
|
||||
collator.set_input('x')
|
||||
collator.set_pad_val('x', val=-1)
|
||||
collator.set_as_numpy(True)
|
||||
bucket_data = []
|
||||
data = []
|
||||
for i in range(len(dataset)):
|
||||
data.append(dataset[i])
|
||||
if len(data) == 40:
|
||||
bucket_data.append(data)
|
||||
data = []
|
||||
for bucket in bucket_data:
|
||||
res = collator(bucket)
|
||||
print(res)
|
||||
|
||||
def test_multicollator(self):
|
||||
"""
|
||||
测试multicollator功能
|
||||
|
||||
:return:
|
||||
"""
|
||||
dataset = DataSet({'x': [[1, 2], [0, 1, 2, 3], [3], [9, 0, 10, 1, 5]] * 100,
|
||||
'y': [0, 1, 1, 0] * 100})
|
||||
collator = AutoCollator(as_numpy=False)
|
||||
multi_collator = _MultiCollator(collator)
|
||||
multi_collator.set_as_numpy(as_numpy=True)
|
||||
multi_collator.set_pad_val('x', val=-1)
|
||||
multi_collator.set_input('x')
|
||||
bucket_data = []
|
||||
data = []
|
||||
for i in range(len(dataset)):
|
||||
data.append(dataset[i])
|
||||
if len(data) == 40:
|
||||
bucket_data.append(data)
|
||||
data = []
|
||||
for bucket in bucket_data:
|
||||
res = multi_collator(bucket)
|
||||
print(res)
|
||||
|
@ -1,293 +0,0 @@
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH, _NEED_IMPORT_PADDLE, _NEED_IMPORT_JITTOR
|
||||
|
||||
from fastNLP.core.collators.new_collator import Collator
|
||||
|
||||
|
||||
def _assert_equal(d1, d2):
|
||||
try:
|
||||
if 'torch' in str(type(d1)):
|
||||
if 'float64' in str(d2.dtype):
|
||||
print(d2.dtype)
|
||||
assert (d1 == d2).all().item()
|
||||
else:
|
||||
assert all(d1 == d2)
|
||||
except TypeError:
|
||||
assert d1 == d2
|
||||
except ValueError:
|
||||
assert (d1 == d2).all()
|
||||
|
||||
|
||||
def findDictDiff(d1, d2, path=""):
|
||||
for k in d1:
|
||||
if k in d2:
|
||||
if isinstance(d1[k], dict):
|
||||
findDictDiff(d1[k], d2[k], "%s -> %s" % (path, k) if path else k)
|
||||
else:
|
||||
_assert_equal(d1[k], d2[k])
|
||||
else:
|
||||
raise RuntimeError("%s%s as key not in d2\n" % ("%s: " % path if path else "", k))
|
||||
|
||||
|
||||
def findListDiff(d1, d2):
|
||||
assert len(d1)==len(d2)
|
||||
for _d1, _d2 in zip(d1, d2):
|
||||
if isinstance(_d1, list):
|
||||
findListDiff(_d1, _d2)
|
||||
else:
|
||||
_assert_equal(_d1, _d2)
|
||||
|
||||
|
||||
class TestCollator:
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_run(self):
|
||||
dict_batch = [{
|
||||
'str': '1',
|
||||
'lst_str': ['1'],
|
||||
'int': 1,
|
||||
'lst_int': [1],
|
||||
'nest_lst_int': [[1]],
|
||||
'float': 1.1,
|
||||
'lst_float': [1.1],
|
||||
'bool': True,
|
||||
'numpy': np.ones(1),
|
||||
'dict': {'1': '1'},
|
||||
'set': {'1'},
|
||||
'nested_dict': {'a': 1, 'b':[1, 2]}
|
||||
},
|
||||
{
|
||||
'str': '2',
|
||||
'lst_str': ['2', '2'],
|
||||
'int': 2,
|
||||
'lst_int': [1, 2],
|
||||
'nest_lst_int': [[1], [1, 2]],
|
||||
'float': 2.1,
|
||||
'lst_float': [2.1],
|
||||
'bool': False,
|
||||
'numpy': np.zeros(1),
|
||||
'dict': {'1': '2'},
|
||||
'set': {'2'},
|
||||
'nested_dict': {'a': 2, 'b': [1, 2]}
|
||||
}
|
||||
]
|
||||
|
||||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}],
|
||||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]]
|
||||
|
||||
raw_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': [1, 2], 'lst_int': [[1, 0], [1, 2]], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': [1, 2], 'b': [[1, 2], [1, 2]]}}
|
||||
collator = Collator(backend='raw')
|
||||
assert raw_pad_batch == collator(dict_batch)
|
||||
collator = Collator(backend='raw')
|
||||
raw_pad_lst = [['1', '2'], [['1'], ['2', '2']], [1, 2], [[1, 0], [2, 2]], [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(raw_pad_lst, collator(list_batch))
|
||||
|
||||
collator = Collator(backend='numpy')
|
||||
numpy_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': np.array([1, 2]), 'lst_int': np.array([[1, 0], [1, 2]]),
|
||||
'nest_lst_int': np.array([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), 'float': np.array([1.1, 2.1]),
|
||||
'lst_float': np.array([[1.1], [2.1]]), 'bool': np.array([True, False]), 'numpy': np.array([[1], [0]]),
|
||||
'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': np.array([1, 2]),
|
||||
'b': np.array([[1, 2], [1, 2]])}}
|
||||
|
||||
findDictDiff(numpy_pad_batch, collator(dict_batch))
|
||||
collator = Collator(backend='numpy')
|
||||
numpy_pad_lst = [['1', '2'], [['1'], ['2', '2']], np.array([1, 2]), np.array([[1, 0], [2, 2]]),
|
||||
np.array([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]),
|
||||
np.array([1.1, 2.1]), np.array([[1.1], [2.1]]), np.array([True, False]),
|
||||
np.array([[1, 0], [1, 1]]), [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(numpy_pad_lst, collator(list_batch))
|
||||
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
collator = Collator(backend='torch')
|
||||
numpy_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': torch.LongTensor([1, 2]),
|
||||
'lst_int': torch.LongTensor([[1, 0], [1, 2]]),
|
||||
'nest_lst_int': torch.LongTensor([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]),
|
||||
'float': torch.FloatTensor([1.1, 2.1]),
|
||||
'lst_float': torch.FloatTensor([[1.1], [2.1]]), 'bool': torch.BoolTensor([True, False]),
|
||||
'numpy': torch.FloatTensor([[1], [0]]),
|
||||
'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': torch.LongTensor([1, 2]),
|
||||
'b': torch.LongTensor(
|
||||
[[1, 2], [1, 2]])}}
|
||||
|
||||
findDictDiff(numpy_pad_batch, collator(dict_batch))
|
||||
collator = Collator(backend='torch')
|
||||
torch_pad_lst = [['1', '2'], [['1'], ['2', '2']], torch.LongTensor([1, 2]), torch.LongTensor([[1, 0], [2, 2]]),
|
||||
torch.LongTensor([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]),
|
||||
torch.FloatTensor([1.1, 2.1]), torch.FloatTensor([[1.1], [2.1]]), torch.BoolTensor([True, False]),
|
||||
torch.LongTensor([[1, 0], [1, 1]]), [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(torch_pad_lst, collator(list_batch))
|
||||
|
||||
def test_pad(self):
|
||||
dict_batch = [{
|
||||
'str': '1',
|
||||
'lst_str': ['1'],
|
||||
'int': 1,
|
||||
'lst_int': [1],
|
||||
'nest_lst_int': [[1]],
|
||||
'float': 1.1,
|
||||
'lst_float': [1.1],
|
||||
'bool': True,
|
||||
'numpy': np.ones(1),
|
||||
'dict': {'1': '1'},
|
||||
'set': {'1'},
|
||||
'nested_dict': {'a': 1, 'b':[1, 2]}
|
||||
},
|
||||
{
|
||||
'str': '2',
|
||||
'lst_str': ['2', '2'],
|
||||
'int': 2,
|
||||
'lst_int': [1, 2],
|
||||
'nest_lst_int': [[1], [1, 2]],
|
||||
'float': 2.1,
|
||||
'lst_float': [2.1],
|
||||
'bool': False,
|
||||
'numpy': np.zeros(1),
|
||||
'dict': {'1': '2'},
|
||||
'set': {'2'},
|
||||
'nested_dict': {'a': 2, 'b': [1, 2]}
|
||||
}
|
||||
]
|
||||
|
||||
raw_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': [1, 2], 'lst_int': [[1, 0], [1, 2]], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': [1, 2], 'b': [[1, 2], [1, 2]]}}
|
||||
|
||||
# 测试 ignore
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict', 'a'))
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}}
|
||||
findDictDiff(raw_pad_batch, collator(dict_batch))
|
||||
|
||||
# 测试 set_pad
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad('str', pad_val=1)
|
||||
with pytest.raises(BaseException):
|
||||
collator(dict_batch)
|
||||
|
||||
# 测试设置 pad 值
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad('nest_lst_int', pad_val=100)
|
||||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict','a'))
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 100], [100, 100]], [[1, 100], [1, 2]]],
|
||||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}}
|
||||
findDictDiff(raw_pad_batch, collator(dict_batch))
|
||||
|
||||
# 设置 backend 和 type
|
||||
collator.set_pad('float', pad_val=100, backend='numpy', dtype=int)
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 100], [100, 100]], [[1, 100], [1, 2]]],
|
||||
'float': np.array([1, 2]), 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}}
|
||||
findDictDiff(raw_pad_batch, collator(dict_batch))
|
||||
|
||||
|
||||
# raw_pad_lst = [['1', '2'], [['1'], ['2', '2']], [1, 2], [[1, 0], [2, 2]], [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
# [1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}],
|
||||
# [{'1'}, {'2'}]]
|
||||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}],
|
||||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]]
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('_0', '_3', '_1')
|
||||
collator.set_pad('_4', pad_val=None)
|
||||
raw_pad_lst = [[1, 2], [[[1]], [[1], [1, 2]]],
|
||||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(raw_pad_lst, collator(list_batch))
|
||||
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad('_0', pad_val=1)
|
||||
with pytest.raises(BaseException):
|
||||
collator(dict_batch)
|
||||
|
||||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}],
|
||||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]]
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('_0', '_3', '_1')
|
||||
collator.set_pad('_2', backend='numpy')
|
||||
collator.set_pad('_4', backend='numpy', pad_val=100)
|
||||
raw_pad_lst = [np.array([1, 2]), np.array([[[1, 100], [100, 100]], [[1, 100], [1, 2]]]),
|
||||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}],
|
||||
[{'1'}, {'2'}]]
|
||||
findListDiff(raw_pad_lst, collator(list_batch))
|
||||
|
||||
# _single
|
||||
collator = Collator()
|
||||
collator.set_pad('_single')
|
||||
findListDiff(list_batch, collator(list_batch))
|
||||
|
||||
def test_nest_ignore(self):
|
||||
dict_batch = [{
|
||||
'str': '1',
|
||||
'lst_str': ['1'],
|
||||
'int': 1,
|
||||
'lst_int': [1],
|
||||
'nest_lst_int': [[1]],
|
||||
'float': 1.1,
|
||||
'lst_float': [1.1],
|
||||
'bool': True,
|
||||
'numpy': np.ones(1),
|
||||
'dict': {'1': '1'},
|
||||
'set': {'1'},
|
||||
'nested_dict': {'int': 1, 'lst_int':[1, 2], 'c': {'int': 1}}
|
||||
},
|
||||
{
|
||||
'str': '2',
|
||||
'lst_str': ['2', '2'],
|
||||
'int': 2,
|
||||
'lst_int': [1, 2],
|
||||
'nest_lst_int': [[1], [1, 2]],
|
||||
'float': 2.1,
|
||||
'lst_float': [2.1],
|
||||
'bool': False,
|
||||
'numpy': np.zeros(1),
|
||||
'dict': {'1': '2'},
|
||||
'set': {'2'},
|
||||
'nested_dict': {'int': 1, 'lst_int': [1, 2], 'c': {'int': 1}}
|
||||
}
|
||||
]
|
||||
# 测试 ignore
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict', 'int'))
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False],
|
||||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']},
|
||||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]],
|
||||
'c': {'int':[1, 1]}}}
|
||||
findDictDiff(raw_pad_batch, collator(dict_batch))
|
||||
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad(('nested_dict', 'c'), pad_val=None)
|
||||
collator.set_ignore('str', 'int', 'lst_int')
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False],
|
||||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']},
|
||||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]],
|
||||
'c': [{'int':1}, {'int':1}]}}
|
||||
pad_batch = collator(dict_batch)
|
||||
findDictDiff(raw_pad_batch, pad_batch)
|
||||
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_pad(('nested_dict', 'c'), pad_val=1)
|
||||
with pytest.raises(BaseException):
|
||||
collator(dict_batch)
|
||||
|
||||
collator = Collator(backend='raw')
|
||||
collator.set_ignore('str', 'int', 'lst_int')
|
||||
collator.set_pad(('nested_dict', 'c'), pad_fn=lambda x: [d['int'] for d in x])
|
||||
pad_batch = collator(dict_batch)
|
||||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]],
|
||||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False],
|
||||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']},
|
||||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]],
|
||||
'c': [1, 1]}}
|
||||
findDictDiff(raw_pad_batch, pad_batch)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,17 +1,20 @@
|
||||
import pytest
|
||||
from typing import Any
|
||||
from dataclasses import dataclass
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
from torchmetrics import Accuracy
|
||||
import torch.distributed as dist
|
||||
|
||||
|
||||
from fastNLP.core.controllers.trainer import Trainer
|
||||
from fastNLP.core.callbacks.callback_events import Events
|
||||
from fastNLP.core.callbacks.callback_event import Event
|
||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification
|
||||
from tests.helpers.callbacks.helper_callbacks import RecordTrainerEventTriggerCallback
|
||||
from tests.helpers.utils import magic_argv_env_context, Capturing
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
from torchmetrics import Accuracy
|
||||
import torch.distributed as dist
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -62,12 +65,11 @@ def model_and_optimizers():
|
||||
|
||||
return trainer_params
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu")]) # , ("torch", 6), ("torch", [6, 7])
|
||||
@pytest.mark.parametrize("callbacks", [[RecordTrainerEventTriggerCallback()]])
|
||||
@pytest.mark.torch
|
||||
@magic_argv_env_context
|
||||
def test_trainer_event_trigger(
|
||||
def test_trainer_event_trigger_1(
|
||||
model_and_optimizers: TrainerParameters,
|
||||
driver,
|
||||
device,
|
||||
@ -97,8 +99,215 @@ def test_trainer_event_trigger(
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
for name, member in Events.__members__.items():
|
||||
assert member.value in output[0]
|
||||
Event_attrs = Event.__dict__
|
||||
for k, v in Event_attrs.items():
|
||||
if isinstance(v, staticmethod):
|
||||
assert k in output[0]
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu")]) # , ("torch", 6), ("torch", [6, 7])
|
||||
@magic_argv_env_context
|
||||
def test_trainer_event_trigger_2(
|
||||
model_and_optimizers: TrainerParameters,
|
||||
driver,
|
||||
device,
|
||||
n_epochs=2,
|
||||
):
|
||||
|
||||
@Trainer.on(Event.on_after_trainer_initialized())
|
||||
def on_after_trainer_initialized(trainer, driver):
|
||||
print("on_after_trainer_initialized")
|
||||
|
||||
@Trainer.on(Event.on_sanity_check_begin())
|
||||
def on_sanity_check_begin(trainer):
|
||||
print("on_sanity_check_begin")
|
||||
|
||||
@Trainer.on(Event.on_sanity_check_end())
|
||||
def on_sanity_check_end(trainer, sanity_check_res):
|
||||
print("on_sanity_check_end")
|
||||
|
||||
@Trainer.on(Event.on_train_begin())
|
||||
def on_train_begin(trainer):
|
||||
print("on_train_begin")
|
||||
|
||||
@Trainer.on(Event.on_train_end())
|
||||
def on_train_end(trainer):
|
||||
print("on_train_end")
|
||||
|
||||
@Trainer.on(Event.on_train_epoch_begin())
|
||||
def on_train_epoch_begin(trainer):
|
||||
if trainer.cur_epoch_idx >= 1:
|
||||
# 触发 on_exception;
|
||||
raise Exception
|
||||
print("on_train_epoch_begin")
|
||||
|
||||
@Trainer.on(Event.on_train_epoch_end())
|
||||
def on_train_epoch_end(trainer):
|
||||
print("on_train_epoch_end")
|
||||
|
||||
@Trainer.on(Event.on_fetch_data_begin())
|
||||
def on_fetch_data_begin(trainer):
|
||||
print("on_fetch_data_begin")
|
||||
|
||||
@Trainer.on(Event.on_fetch_data_end())
|
||||
def on_fetch_data_end(trainer):
|
||||
print("on_fetch_data_end")
|
||||
|
||||
@Trainer.on(Event.on_train_batch_begin())
|
||||
def on_train_batch_begin(trainer, batch, indices=None):
|
||||
print("on_train_batch_begin")
|
||||
|
||||
@Trainer.on(Event.on_train_batch_end())
|
||||
def on_train_batch_end(trainer):
|
||||
print("on_train_batch_end")
|
||||
|
||||
@Trainer.on(Event.on_exception())
|
||||
def on_exception(trainer, exception):
|
||||
print("on_exception")
|
||||
|
||||
@Trainer.on(Event.on_before_backward())
|
||||
def on_before_backward(trainer, outputs):
|
||||
print("on_before_backward")
|
||||
|
||||
@Trainer.on(Event.on_after_backward())
|
||||
def on_after_backward(trainer):
|
||||
print("on_after_backward")
|
||||
|
||||
@Trainer.on(Event.on_before_optimizers_step())
|
||||
def on_before_optimizers_step(trainer, optimizers):
|
||||
print("on_before_optimizers_step")
|
||||
|
||||
@Trainer.on(Event.on_after_optimizers_step())
|
||||
def on_after_optimizers_step(trainer, optimizers):
|
||||
print("on_after_optimizers_step")
|
||||
|
||||
@Trainer.on(Event.on_before_zero_grad())
|
||||
def on_before_zero_grad(trainer, optimizers):
|
||||
print("on_before_zero_grad")
|
||||
|
||||
@Trainer.on(Event.on_after_zero_grad())
|
||||
def on_after_zero_grad(trainer, optimizers):
|
||||
print("on_after_zero_grad")
|
||||
|
||||
@Trainer.on(Event.on_evaluate_begin())
|
||||
def on_evaluate_begin(trainer):
|
||||
print("on_evaluate_begin")
|
||||
|
||||
@Trainer.on(Event.on_evaluate_end())
|
||||
def on_evaluate_end(trainer, results):
|
||||
print("on_evaluate_end")
|
||||
|
||||
with pytest.raises(Exception):
|
||||
with Capturing() as output:
|
||||
trainer = Trainer(
|
||||
model=model_and_optimizers.model,
|
||||
driver=driver,
|
||||
device=device,
|
||||
optimizers=model_and_optimizers.optimizers,
|
||||
train_dataloader=model_and_optimizers.train_dataloader,
|
||||
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders,
|
||||
input_mapping=model_and_optimizers.input_mapping,
|
||||
output_mapping=model_and_optimizers.output_mapping,
|
||||
metrics=model_and_optimizers.metrics,
|
||||
|
||||
n_epochs=n_epochs,
|
||||
)
|
||||
|
||||
trainer.run()
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
Event_attrs = Event.__dict__
|
||||
for k, v in Event_attrs.items():
|
||||
if isinstance(v, staticmethod):
|
||||
assert k in output[0]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", 6)])
|
||||
@pytest.mark.torch
|
||||
@magic_argv_env_context
|
||||
def test_trainer_event_trigger_3(
|
||||
model_and_optimizers: TrainerParameters,
|
||||
driver,
|
||||
device,
|
||||
n_epochs=2,
|
||||
):
|
||||
import re
|
||||
|
||||
once_message_1 = "This message should be typed 1 times."
|
||||
once_message_2 = "test_filter_fn"
|
||||
once_message_3 = "once message 3"
|
||||
twice_message = "twice message hei hei"
|
||||
|
||||
@Trainer.on(Event.on_train_epoch_begin(every=2))
|
||||
def train_epoch_begin_1(trainer):
|
||||
print(once_message_1)
|
||||
|
||||
@Trainer.on(Event.on_train_epoch_begin())
|
||||
def train_epoch_begin_2(trainer):
|
||||
print(twice_message)
|
||||
|
||||
@Trainer.on(Event.on_train_epoch_begin(once=2))
|
||||
def train_epoch_begin_3(trainer):
|
||||
print(once_message_3)
|
||||
|
||||
def filter_fn(filter, trainer):
|
||||
if trainer.cur_epoch_idx == 1:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@Trainer.on(Event.on_train_epoch_end(filter_fn=filter_fn))
|
||||
def test_filter_fn(trainer):
|
||||
print(once_message_2)
|
||||
|
||||
with Capturing() as output:
|
||||
trainer = Trainer(
|
||||
model=model_and_optimizers.model,
|
||||
driver=driver,
|
||||
device=device,
|
||||
optimizers=model_and_optimizers.optimizers,
|
||||
train_dataloader=model_and_optimizers.train_dataloader,
|
||||
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders,
|
||||
input_mapping=model_and_optimizers.input_mapping,
|
||||
output_mapping=model_and_optimizers.output_mapping,
|
||||
metrics=model_and_optimizers.metrics,
|
||||
|
||||
n_epochs=n_epochs,
|
||||
)
|
||||
|
||||
trainer.run()
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
once_pattern_1 = re.compile(once_message_1)
|
||||
once_pattern_2 = re.compile(once_message_2)
|
||||
once_pattern_3 = re.compile(once_message_3)
|
||||
twice_pattern = re.compile(twice_message)
|
||||
|
||||
once_res_1 = once_pattern_1.findall(output[0])
|
||||
assert len(once_res_1) == 1
|
||||
once_res_2 = once_pattern_2.findall(output[0])
|
||||
assert len(once_res_2) == 1
|
||||
once_res_3 = once_pattern_3.findall(output[0])
|
||||
assert len(once_res_3) == 1
|
||||
twice_res = twice_pattern.findall(output[0])
|
||||
assert len(twice_res) == 2
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,22 +1,22 @@
|
||||
import pytest
|
||||
|
||||
from fastNLP.core.controllers.trainer import Trainer
|
||||
from fastNLP.core.callbacks import Events
|
||||
from fastNLP.core.callbacks import Event
|
||||
from tests.helpers.utils import magic_argv_env_context
|
||||
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_trainer_torch_without_evaluator():
|
||||
@Trainer.on(Events.on_train_epoch_begin(every=10))
|
||||
@Trainer.on(Event.on_train_epoch_begin(every=10), marker="test_trainer_other_things")
|
||||
def fn1(trainer):
|
||||
pass
|
||||
|
||||
@Trainer.on(Events.on_train_batch_begin(every=10))
|
||||
@Trainer.on(Event.on_train_batch_begin(every=10), marker="test_trainer_other_things")
|
||||
def fn2(trainer, batch, indices):
|
||||
pass
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
@Trainer.on(Events.on_train_batch_begin(every=10))
|
||||
with pytest.raises(BaseException):
|
||||
@Trainer.on(Event.on_train_batch_begin(every=10), marker="test_trainer_other_things")
|
||||
def fn3(trainer, batch):
|
||||
pass
|
||||
|
||||
|
@ -2,9 +2,7 @@
|
||||
注意这一文件中的测试函数都应当是在 `test_trainer_w_evaluator_torch.py` 中已经测试过的测试函数的基础上加上 metrics 和 evaluator 修改而成;
|
||||
"""
|
||||
import pytest
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
import torch.distributed as dist
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
from torchmetrics import Accuracy
|
||||
@ -14,7 +12,11 @@ from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification, TorchArgMaxDataset
|
||||
from tests.helpers.callbacks.helper_callbacks import RecordLossCallback, RecordMetricCallback
|
||||
from tests.helpers.utils import magic_argv_env_context
|
||||
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
import torch.distributed as dist
|
||||
|
||||
@dataclass
|
||||
class NormalClassificationTrainTorchConfig:
|
||||
|
@ -2,9 +2,7 @@ import os.path
|
||||
import subprocess
|
||||
import sys
|
||||
import pytest
|
||||
import torch.distributed as dist
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
from pathlib import Path
|
||||
@ -16,6 +14,11 @@ from tests.helpers.callbacks.helper_callbacks import RecordLossCallback
|
||||
from tests.helpers.callbacks.helper_callbacks_torch import RecordAccumulationStepsCallback_Torch
|
||||
from tests.helpers.utils import magic_argv_env_context, Capturing
|
||||
from fastNLP.core import rank_zero_rm
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch.distributed as dist
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -257,9 +260,9 @@ def test_trainer_on_exception(
|
||||
cur_rank,
|
||||
n_epochs=2,
|
||||
):
|
||||
from fastNLP.core.callbacks.callback_events import Events
|
||||
from fastNLP.core.callbacks.callback_event import Event
|
||||
|
||||
@Trainer.on(Events.on_train_epoch_end)
|
||||
@Trainer.on(Event.on_train_epoch_end())
|
||||
def raise_exception(trainer):
|
||||
if trainer.driver.get_local_rank() == cur_rank:
|
||||
raise NotImplementedError
|
||||
@ -286,6 +289,7 @@ def test_trainer_on_exception(
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize("version", [0, 1, 2, 3])
|
||||
@magic_argv_env_context
|
||||
def test_torch_distributed_launch_1(version):
|
||||
|
@ -1,7 +1,7 @@
|
||||
from functools import reduce
|
||||
|
||||
from fastNLP.core.controllers.utils.utils import _TruncatedDataLoader # TODO: 该类修改过,记得将 test 也修改;
|
||||
from tests.helpers.datasets.normal_data import NormalIterator
|
||||
from tests.helpers.datasets.normal_data import NormalSampler
|
||||
|
||||
|
||||
class Test_WrapDataLoader:
|
||||
@ -9,9 +9,9 @@ class Test_WrapDataLoader:
|
||||
def test_normal_generator(self):
|
||||
all_sanity_batches = [4, 20, 100]
|
||||
for sanity_batches in all_sanity_batches:
|
||||
data = NormalIterator(num_of_data=1000)
|
||||
data = NormalSampler(num_of_data=1000)
|
||||
wrapper = _TruncatedDataLoader(dataloader=data, num_batches=sanity_batches)
|
||||
dataloader = iter(wrapper(dataloader=data))
|
||||
dataloader = iter(wrapper)
|
||||
mark = 0
|
||||
while True:
|
||||
try:
|
||||
@ -32,8 +32,7 @@ class Test_WrapDataLoader:
|
||||
dataset = TorchNormalDataset(num_of_data=1000)
|
||||
dataloader = DataLoader(dataset, batch_size=bs, shuffle=True)
|
||||
wrapper = _TruncatedDataLoader(dataloader, num_batches=sanity_batches)
|
||||
dataloader = wrapper(dataloader)
|
||||
dataloader = iter(dataloader)
|
||||
dataloader = iter(wrapper)
|
||||
all_supposed_running_data_num = 0
|
||||
while True:
|
||||
try:
|
||||
@ -55,6 +54,5 @@ class Test_WrapDataLoader:
|
||||
dataset = TorchNormalDataset(num_of_data=1000)
|
||||
dataloader = DataLoader(dataset, batch_size=bs, shuffle=True)
|
||||
wrapper = _TruncatedDataLoader(dataloader, num_batches=sanity_batches)
|
||||
dataloader = wrapper(dataloader)
|
||||
length.append(len(dataloader))
|
||||
length.append(len(wrapper))
|
||||
assert length == reduce(lambda x, y: x+y, [all_sanity_batches for _ in range(len(bses))])
|
@ -15,7 +15,7 @@ else:
|
||||
|
||||
|
||||
|
||||
class Model (Module):
|
||||
class Model(Module):
|
||||
def __init__ (self):
|
||||
super (Model, self).__init__()
|
||||
self.conv1 = nn.Conv (3, 32, 3, 1) # no padding
|
||||
@ -45,6 +45,7 @@ class Model (Module):
|
||||
return x
|
||||
|
||||
@pytest.mark.jittor
|
||||
@pytest.mark.skip("Skip jittor tests now.")
|
||||
class TestSingleDevice:
|
||||
|
||||
def test_on_gpu_without_fp16(self):
|
||||
|
@ -2,7 +2,7 @@ import pytest
|
||||
from pathlib import Path
|
||||
|
||||
from fastNLP.core.drivers.paddle_driver.single_device import PaddleSingleDriver
|
||||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler
|
||||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler
|
||||
from tests.helpers.models.paddle_model import PaddleNormalModel_Classification_1
|
||||
from tests.helpers.datasets.paddle_data import PaddleNormalDataset, PaddleRandomMaxDataset
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset
|
||||
@ -278,7 +278,7 @@ class TestPaddleDriverFunctions:
|
||||
dataset = PaddleNormalDataset()
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_sampler=RandomBatchSampler(
|
||||
batch_sampler=ReproduceBatchSampler(
|
||||
BatchSampler(dataset, batch_size=batch_size, shuffle=shuffle),
|
||||
batch_size,
|
||||
drop_last,
|
||||
@ -287,7 +287,7 @@ class TestPaddleDriverFunctions:
|
||||
res = PaddleSingleDriver.get_dataloader_args(dataloader)
|
||||
|
||||
assert isinstance(res.dataset, PaddleNormalDataset)
|
||||
assert isinstance(res.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(res.batch_sampler, ReproduceBatchSampler)
|
||||
if shuffle:
|
||||
assert isinstance(res.sampler, paddle.io.RandomSampler)
|
||||
else:
|
||||
@ -387,7 +387,7 @@ class TestSetDistReproDataloader:
|
||||
"""
|
||||
测试 set_dist_repro_dataloader 参数 `reproducible` 为 True 时的表现
|
||||
当dist为字符串时,此时应该返回新的 dataloader,且如果原 sampler 为 paddle.io.RandomSampler(shuffle=True),
|
||||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 RandomBatchSampler
|
||||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 ReproduceBatchSampler
|
||||
"""
|
||||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=True)
|
||||
@ -400,7 +400,7 @@ class TestSetDistReproDataloader:
|
||||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler)
|
||||
else:
|
||||
# 此时会替换 batch_sampler
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler)
|
||||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size
|
||||
assert replaced_loader.drop_last == dataloader.drop_last
|
||||
@ -414,11 +414,11 @@ class TestSetDistReproDataloader:
|
||||
应该返回新的 dataloader,并将 batch_sampler 替换为 dist 对应的 Sampler
|
||||
"""
|
||||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=not shuffle)
|
||||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), 4, False)
|
||||
dist = ReproduceBatchSampler(BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), 4, False)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert replaced_loader.batch_sampler is dist
|
||||
|
||||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)
|
||||
@ -450,7 +450,7 @@ class TestSetDistReproDataloader:
|
||||
"""
|
||||
dataloader = DataLoader(
|
||||
dataset=self.dataset,
|
||||
batch_sampler=RandomBatchSampler(
|
||||
batch_sampler=ReproduceBatchSampler(
|
||||
BatchSampler(self.dataset, batch_size=4, shuffle=shuffle),
|
||||
batch_size=4,
|
||||
drop_last=False,
|
||||
@ -459,7 +459,7 @@ class TestSetDistReproDataloader:
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
|
||||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size
|
||||
assert replaced_loader.drop_last == dataloader.drop_last
|
||||
@ -500,20 +500,20 @@ class TestSetDistReproDataloader:
|
||||
if idx >= num_consumed_batches:
|
||||
break
|
||||
already_seen_idx.update(batch)
|
||||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler):
|
||||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler):
|
||||
sampler_states = replaced_loader.batch_sampler.state_dict()
|
||||
else:
|
||||
sampler_states = replaced_loader.batch_sampler.sampler.state_dict()
|
||||
|
||||
# 重新加载,应该可以输出剩下的内容,且对于 PaddleNormalDataset 来说,排序后应该是一个 range
|
||||
left_idxes = set()
|
||||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler):
|
||||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler):
|
||||
batch_size = replaced_loader.batch_sampler.batch_size
|
||||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size
|
||||
# 重新改造 dataloader
|
||||
new_loader = DataLoader(
|
||||
dataset=replaced_loader.dataset,
|
||||
batch_sampler=RandomBatchSampler(
|
||||
batch_sampler=ReproduceBatchSampler(
|
||||
BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size),
|
||||
batch_size=batch_size,
|
||||
drop_last=False,
|
||||
@ -603,7 +603,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
|
||||
dataset = PaddleRandomMaxDataset(40, 10)
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=4), 4, False)
|
||||
batch_sampler=ReproduceBatchSampler(BatchSampler(dataset, batch_size=4), 4, False)
|
||||
)
|
||||
driver1, driver2 = generate_random_driver(10, 10, fp16, "gpu"), generate_random_driver(10, 10, False, "gpu")
|
||||
|
||||
@ -627,7 +627,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
|
||||
# 更改 batch_size
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=2, shuffle=True), 2, False)
|
||||
batch_sampler=ReproduceBatchSampler(BatchSampler(dataset, batch_size=2, shuffle=True), 2, False)
|
||||
)
|
||||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True)
|
||||
replaced_loader = load_states.pop("dataloader")
|
||||
@ -637,7 +637,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
|
||||
# 2. 检查 batch_sampler 是否被正确地加载和替换
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert replaced_loader.batch_sampler is dataloader.batch_sampler
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"]
|
||||
assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4
|
||||
|
||||
|
@ -6,7 +6,7 @@ from fastNLP.core.drivers.paddle_driver.utils import (
|
||||
replace_batch_sampler,
|
||||
replace_sampler,
|
||||
)
|
||||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler
|
||||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE
|
||||
if _NEED_IMPORT_PADDLE:
|
||||
import paddle
|
||||
@ -36,12 +36,12 @@ def test_get_device_from_visible_str(user_visible_devices, cuda_visible_devices,
|
||||
def test_replace_batch_sampler():
|
||||
dataset = PaddleNormalDataset(10)
|
||||
dataloader = DataLoader(dataset, batch_size=32)
|
||||
batch_sampler = RandomBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False)
|
||||
batch_sampler = ReproduceBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False)
|
||||
|
||||
replaced_loader = replace_batch_sampler(dataloader, batch_sampler)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert isinstance(replaced_loader.dataset, PaddleNormalDataset)
|
||||
assert len(replaced_loader.dataset) == len(dataset)
|
||||
assert replaced_loader.batch_sampler.batch_size == 16
|
||||
|
@ -13,12 +13,13 @@ from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset
|
||||
from tests.helpers.utils import magic_argv_env_context
|
||||
from fastNLP.core import rank_zero_rm
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data import DataLoader, BatchSampler
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data import DataLoader, BatchSampler
|
||||
|
||||
def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, output_from_new_proc="only_error"):
|
||||
def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, output_from_new_proc="all"):
|
||||
torch_model = TorchNormalModel_Classification_1(num_labels, feature_dimension)
|
||||
torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01)
|
||||
device = [torch.device(i) for i in device]
|
||||
@ -72,108 +73,100 @@ def dataloader_with_randomsampler(dataset, batch_size, shuffle, drop_last, seed=
|
||||
#
|
||||
############################################################################
|
||||
|
||||
@pytest.mark.torch
|
||||
@magic_argv_env_context
|
||||
def test_multi_drivers():
|
||||
"""
|
||||
测试使用了多个 TorchDDPDriver 的情况。
|
||||
"""
|
||||
generate_driver(10, 10)
|
||||
generate_driver(20, 10)
|
||||
|
||||
with pytest.raises(RuntimeError):
|
||||
# 设备设置不同,应该报错
|
||||
generate_driver(20, 3, device=[0,1,2])
|
||||
assert False
|
||||
dist.barrier()
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@pytest.mark.torch
|
||||
class TestDDPDriverFunction:
|
||||
"""
|
||||
测试 TorchDDPDriver 一些简单函数的测试类,基本都是测试能否运行、是否存在 import 错误等问题
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.driver = generate_driver(10, 10)
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_multi_drivers(self):
|
||||
def test_simple_functions(self):
|
||||
"""
|
||||
测试使用了多个 TorchDDPDriver 的情况。
|
||||
简单测试多个函数
|
||||
"""
|
||||
|
||||
driver2 = generate_driver(20, 10)
|
||||
|
||||
with pytest.raises(RuntimeError):
|
||||
# 设备设置不同,应该报错
|
||||
driver3 = generate_driver(20, 3, device=[0,1,2])
|
||||
assert False
|
||||
driver = generate_driver(10, 10)
|
||||
|
||||
"""
|
||||
测试 move_data_to_device 函数。这个函数仅调用了 torch_move_data_to_device ,测试例在
|
||||
tests/core/utils/test_torch_utils.py中,就不重复测试了
|
||||
"""
|
||||
driver.move_data_to_device(torch.rand((32, 64)))
|
||||
dist.barrier()
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_move_data_to_device(self):
|
||||
"""
|
||||
这个函数仅调用了torch_move_data_to_device,测试例在tests/core/utils/test_torch_utils.py中
|
||||
就不重复测试了
|
||||
"""
|
||||
self.driver.move_data_to_device(torch.rand((32, 64)))
|
||||
|
||||
dist.barrier()
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_is_distributed(self):
|
||||
"""
|
||||
测试 is_distributed 函数
|
||||
"""
|
||||
assert self.driver.is_distributed() == True
|
||||
assert driver.is_distributed() == True
|
||||
dist.barrier()
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_get_no_sync_context(self):
|
||||
"""
|
||||
测试 get_no_sync_context 函数
|
||||
"""
|
||||
res = self.driver.get_model_no_sync_context()
|
||||
res = driver.get_model_no_sync_context()
|
||||
dist.barrier()
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_is_global_zero(self):
|
||||
"""
|
||||
测试 is_global_zero 函数
|
||||
"""
|
||||
self.driver.is_global_zero()
|
||||
driver.is_global_zero()
|
||||
dist.barrier()
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_unwrap_model(self):
|
||||
"""
|
||||
测试 unwrap_model 函数
|
||||
"""
|
||||
self.driver.unwrap_model()
|
||||
driver.unwrap_model()
|
||||
dist.barrier()
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_get_local_rank(self):
|
||||
"""
|
||||
测试 get_local_rank 函数
|
||||
"""
|
||||
self.driver.get_local_rank()
|
||||
driver.get_local_rank()
|
||||
dist.barrier()
|
||||
|
||||
@magic_argv_env_context
|
||||
def test_all_gather(self):
|
||||
"""
|
||||
测试 all_gather 函数
|
||||
详细的测试在 test_dist_utils.py 中完成
|
||||
"""
|
||||
obj = {
|
||||
"rank": self.driver.global_rank
|
||||
"rank": driver.global_rank
|
||||
}
|
||||
obj_list = self.driver.all_gather(obj, group=None)
|
||||
obj_list = driver.all_gather(obj, group=None)
|
||||
for i, res in enumerate(obj_list):
|
||||
assert res["rank"] == i
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("src_rank", ([0, 1]))
|
||||
def test_broadcast_object(self, src_rank):
|
||||
"""
|
||||
测试 broadcast_object 函数
|
||||
详细的函数在 test_dist_utils.py 中完成
|
||||
"""
|
||||
if self.driver.global_rank == src_rank:
|
||||
if driver.global_rank == 0:
|
||||
obj = {
|
||||
"rank": self.driver.global_rank
|
||||
"rank": driver.global_rank
|
||||
}
|
||||
else:
|
||||
obj = None
|
||||
res = self.driver.broadcast_object(obj, src=src_rank)
|
||||
assert res["rank"] == src_rank
|
||||
res = driver.broadcast_object(obj, src=0)
|
||||
assert res["rank"] == 0
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
############################################################################
|
||||
#
|
||||
@ -187,7 +180,6 @@ class TestSetDistReproDataloader:
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.device = [0, 1]
|
||||
cls.driver = generate_driver(10, 10, device=cls.device)
|
||||
|
||||
def setup_method(self):
|
||||
self.dataset = TorchNormalDataset(40)
|
||||
@ -204,17 +196,20 @@ class TestSetDistReproDataloader:
|
||||
测试 set_dist_repro_dataloader 中 dist 为 BucketedBatchSampler 时的表现
|
||||
此时应该将 batch_sampler 替换为 dist 对应的 BucketedBatchSampler
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle)
|
||||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, batch_sampler, False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, batch_sampler, False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler)
|
||||
assert replaced_loader.batch_sampler is batch_sampler
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler)
|
||||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)
|
||||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle)
|
||||
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
@ -223,9 +218,10 @@ class TestSetDistReproDataloader:
|
||||
测试 set_dist_repro_dataloader 中 dist 为 RandomSampler 时的表现
|
||||
此时应该将 batch_sampler.sampler 替换为 dist 对应的 RandomSampler
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle)
|
||||
sampler = RandomSampler(self.dataset, shuffle=shuffle)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, sampler, False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, sampler, False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
|
||||
@ -234,9 +230,11 @@ class TestSetDistReproDataloader:
|
||||
assert replaced_loader.batch_sampler.sampler is sampler
|
||||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
|
||||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)
|
||||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle)
|
||||
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
"""
|
||||
传入的参数 `dist` 为 None 的情况,这种情况出现在 trainer 和 evaluator 的初始化过程中,用户指定了 `use_dist_sampler`
|
||||
@ -251,15 +249,17 @@ class TestSetDistReproDataloader:
|
||||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 True 时的表现
|
||||
当用户在 driver 之外初始化了分布式环境时,fastnlp 不支持进行断点重训,此时应该报错
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True)
|
||||
with pytest.raises(RuntimeError):
|
||||
# 应当抛出 RuntimeError
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, True)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, True)
|
||||
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
# @pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
@pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
def test_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self, shuffle):
|
||||
"""
|
||||
@ -268,21 +268,24 @@ class TestSetDistReproDataloader:
|
||||
此时传入的 dataloader 的 batch_sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其 batch_sampler
|
||||
和原 dataloader 相同
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False)
|
||||
dataloader.batch_sampler.set_distributed(
|
||||
num_replicas=self.driver.world_size,
|
||||
rank=self.driver.global_rank,
|
||||
num_replicas=driver.world_size,
|
||||
rank=driver.global_rank,
|
||||
pad=True
|
||||
)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler)
|
||||
assert replaced_loader.batch_sampler.batch_size == 4
|
||||
self.check_distributed_sampler(dataloader.batch_sampler)
|
||||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)
|
||||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle)
|
||||
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
@ -292,12 +295,13 @@ class TestSetDistReproDataloader:
|
||||
此时传入的 dataloader 的 batch_sampler.sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其
|
||||
batch_sampler.sampler 和原 dataloader 相同
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False)
|
||||
dataloader.batch_sampler.sampler.set_distributed(
|
||||
num_replicas=self.driver.world_size,
|
||||
rank=self.driver.global_rank
|
||||
num_replicas=driver.world_size,
|
||||
rank=driver.global_rank
|
||||
)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
|
||||
@ -307,9 +311,11 @@ class TestSetDistReproDataloader:
|
||||
assert replaced_loader.batch_sampler.batch_size == 4
|
||||
assert replaced_loader.batch_sampler.drop_last == False
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
|
||||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)
|
||||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle)
|
||||
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
@ -318,11 +324,14 @@ class TestSetDistReproDataloader:
|
||||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 为一般情况时的表现
|
||||
此时直接返回原来的 dataloader,不做任何处理。
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False)
|
||||
|
||||
assert replaced_loader is dataloader
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
"""
|
||||
传入的参数 `dist` 为 'dist' 的情况,这种情况出现在 trainer 的初始化过程中,用户指定了 `use_dist_sampler` 参数
|
||||
@ -337,12 +346,13 @@ class TestSetDistReproDataloader:
|
||||
的表现
|
||||
此时应该返回一个新的 dataloader,其batch_sampler 和原 dataloader 相同,且应该正确地设置了分布式相关的属性
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = DataLoader(
|
||||
dataset=self.dataset,
|
||||
batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle)
|
||||
)
|
||||
dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler)
|
||||
@ -351,6 +361,8 @@ class TestSetDistReproDataloader:
|
||||
assert replaced_loader.drop_last == dataloader.drop_last
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler)
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
@ -361,8 +373,9 @@ class TestSetDistReproDataloader:
|
||||
此时应该返回一个新的 dataloader,其 batch_sampler.sampler 和原 dataloader 相同,且应该正确地设置了分布式相关
|
||||
的属性
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
|
||||
@ -372,6 +385,8 @@ class TestSetDistReproDataloader:
|
||||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
@ -381,8 +396,9 @@ class TestSetDistReproDataloader:
|
||||
此时应该返回一个新的 dataloader,并替换其 batch_sampler.sampler 为 RandomSampler,且应该正确设置了分布式相关
|
||||
的属性
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
|
||||
@ -392,6 +408,8 @@ class TestSetDistReproDataloader:
|
||||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
"""
|
||||
传入的参数 `dist` 为 'unrepeatdist' 的情况,这种情况出现在 evaluator 的初始化过程中,用户指定了 `use_dist_sampler` 参数
|
||||
@ -407,8 +425,9 @@ class TestSetDistReproDataloader:
|
||||
此时应该返回一个新的 dataloader,且将原来的 Sampler 替换为 UnrepeatedRandomSampler,且正确地设置了分布式相关
|
||||
的属性
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
|
||||
@ -418,6 +437,8 @@ class TestSetDistReproDataloader:
|
||||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
@ -427,8 +448,9 @@ class TestSetDistReproDataloader:
|
||||
的表现
|
||||
此时应该返回一个新的 dataloader,且重新实例化了原来的 Sampler
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=True)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
|
||||
@ -439,6 +461,8 @@ class TestSetDistReproDataloader:
|
||||
assert replaced_loader.drop_last == dataloader.drop_last
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("shuffle", ([True, False]))
|
||||
@ -448,8 +472,9 @@ class TestSetDistReproDataloader:
|
||||
此时应该返回一个新的 dataloader,且将 sampler 替换为 UnrepeatedSequentialSampler,并正确地设置了分布式相关
|
||||
的属性
|
||||
"""
|
||||
driver = generate_driver(10, 10, device=self.device)
|
||||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)
|
||||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
|
||||
@ -459,6 +484,8 @@ class TestSetDistReproDataloader:
|
||||
assert replaced_loader.drop_last == dataloader.drop_last
|
||||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
|
||||
dist.barrier()
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
def check_distributed_sampler(self, sampler):
|
||||
"""
|
||||
@ -469,7 +496,7 @@ class TestSetDistReproDataloader:
|
||||
if not isinstance(sampler, UnrepeatedSampler):
|
||||
assert sampler.pad == True
|
||||
|
||||
def check_set_dist_repro_dataloader(self, dataloader, replaced_loader, shuffle):
|
||||
def check_set_dist_repro_dataloader(self, driver, dataloader, replaced_loader, shuffle):
|
||||
"""
|
||||
测试多卡下 set_dist_repro_dataloader 函数的执行结果是否正确
|
||||
"""
|
||||
@ -501,8 +528,8 @@ class TestSetDistReproDataloader:
|
||||
drop_last=False,
|
||||
)
|
||||
new_loader.batch_sampler.set_distributed(
|
||||
num_replicas=self.driver.world_size,
|
||||
rank=self.driver.global_rank,
|
||||
num_replicas=driver.world_size,
|
||||
rank=driver.global_rank,
|
||||
pad=True
|
||||
)
|
||||
new_loader.batch_sampler.load_state_dict(sampler_states)
|
||||
@ -512,8 +539,8 @@ class TestSetDistReproDataloader:
|
||||
# 重新构造 dataloader
|
||||
new_loader = dataloader_with_randomsampler(replaced_loader.dataset, batch_size, shuffle, drop_last=False)
|
||||
new_loader.batch_sampler.sampler.set_distributed(
|
||||
num_replicas=self.driver.world_size,
|
||||
rank=self.driver.global_rank
|
||||
num_replicas=driver.world_size,
|
||||
rank=driver.global_rank
|
||||
)
|
||||
new_loader.batch_sampler.sampler.load_state_dict(sampler_states)
|
||||
for idx, batch in enumerate(new_loader):
|
||||
@ -534,11 +561,6 @@ class TestSaveLoad:
|
||||
测试多卡情况下 save 和 load 相关函数的表现
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
# 不在这里 setup 的话会报错
|
||||
cls.driver = generate_driver(10, 10)
|
||||
|
||||
def setup_method(self):
|
||||
self.dataset = TorchArgMaxDataset(10, 20)
|
||||
|
||||
@ -552,26 +574,26 @@ class TestSaveLoad:
|
||||
path = "model"
|
||||
|
||||
dataloader = DataLoader(self.dataset, batch_size=2)
|
||||
self.driver1, self.driver2 = generate_driver(10, 10), generate_driver(10, 10)
|
||||
driver1, driver2 = generate_driver(10, 10), generate_driver(10, 10)
|
||||
|
||||
self.driver1.save_model(path, only_state_dict)
|
||||
driver1.save_model(path, only_state_dict)
|
||||
|
||||
# 同步
|
||||
dist.barrier()
|
||||
self.driver2.load_model(path, only_state_dict)
|
||||
driver2.load_model(path, only_state_dict)
|
||||
|
||||
for idx, batch in enumerate(dataloader):
|
||||
batch = self.driver1.move_data_to_device(batch)
|
||||
res1 = self.driver1.model(
|
||||
batch = driver1.move_data_to_device(batch)
|
||||
res1 = driver1.model(
|
||||
batch,
|
||||
fastnlp_fn=self.driver1.model.module.model.evaluate_step,
|
||||
fastnlp_fn=driver1.model.module.model.evaluate_step,
|
||||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model
|
||||
fastnlp_signature_fn=None,
|
||||
wo_auto_param_call=False,
|
||||
)
|
||||
res2 = self.driver2.model(
|
||||
res2 = driver2.model(
|
||||
batch,
|
||||
fastnlp_fn=self.driver2.model.module.model.evaluate_step,
|
||||
fastnlp_fn=driver2.model.module.model.evaluate_step,
|
||||
fastnlp_signature_fn=None,
|
||||
wo_auto_param_call=False,
|
||||
)
|
||||
@ -580,6 +602,9 @@ class TestSaveLoad:
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("only_state_dict", ([True, False]))
|
||||
@pytest.mark.parametrize("fp16", ([True, False]))
|
||||
@ -593,7 +618,7 @@ class TestSaveLoad:
|
||||
path = "model.ckp"
|
||||
num_replicas = len(device)
|
||||
|
||||
self.driver1, self.driver2 = generate_driver(10, 10, device=device, fp16=fp16), \
|
||||
driver1, driver2 = generate_driver(10, 10, device=device, fp16=fp16), \
|
||||
generate_driver(10, 10, device=device, fp16=False)
|
||||
dataloader = dataloader_with_bucketedbatchsampler(
|
||||
self.dataset,
|
||||
@ -603,8 +628,8 @@ class TestSaveLoad:
|
||||
drop_last=False
|
||||
)
|
||||
dataloader.batch_sampler.set_distributed(
|
||||
num_replicas=self.driver1.world_size,
|
||||
rank=self.driver1.global_rank,
|
||||
num_replicas=driver1.world_size,
|
||||
rank=driver1.global_rank,
|
||||
pad=True
|
||||
)
|
||||
num_consumed_batches = 2
|
||||
@ -623,7 +648,7 @@ class TestSaveLoad:
|
||||
# 保存状态
|
||||
sampler_states = dataloader.batch_sampler.state_dict()
|
||||
save_states = {"num_consumed_batches": num_consumed_batches}
|
||||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True)
|
||||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True)
|
||||
# 加载
|
||||
# 更改 batch_size
|
||||
dataloader = dataloader_with_bucketedbatchsampler(
|
||||
@ -634,11 +659,11 @@ class TestSaveLoad:
|
||||
drop_last=False
|
||||
)
|
||||
dataloader.batch_sampler.set_distributed(
|
||||
num_replicas=self.driver2.world_size,
|
||||
rank=self.driver2.global_rank,
|
||||
num_replicas=driver2.world_size,
|
||||
rank=driver2.global_rank,
|
||||
pad=True
|
||||
)
|
||||
load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True)
|
||||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True)
|
||||
replaced_loader = load_states.pop("dataloader")
|
||||
# 1. 检查 optimizer 的状态
|
||||
# TODO optimizer 的 state_dict 总是为空
|
||||
@ -652,7 +677,7 @@ class TestSaveLoad:
|
||||
|
||||
# 3. 检查 fp16 是否被加载
|
||||
if fp16:
|
||||
assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler)
|
||||
assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
|
||||
|
||||
# 4. 检查 model 的参数是否正确
|
||||
# 5. 检查 batch_idx
|
||||
@ -664,16 +689,16 @@ class TestSaveLoad:
|
||||
|
||||
left_x_batches.update(batch["x"])
|
||||
left_y_batches.update(batch["y"])
|
||||
res1 = self.driver1.model(
|
||||
res1 = driver1.model(
|
||||
batch,
|
||||
fastnlp_fn=self.driver1.model.module.model.evaluate_step,
|
||||
fastnlp_fn=driver1.model.module.model.evaluate_step,
|
||||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model
|
||||
fastnlp_signature_fn=None,
|
||||
wo_auto_param_call=False,
|
||||
)
|
||||
res2 = self.driver2.model(
|
||||
res2 = driver2.model(
|
||||
batch,
|
||||
fastnlp_fn=self.driver2.model.module.model.evaluate_step,
|
||||
fastnlp_fn=driver2.model.module.model.evaluate_step,
|
||||
fastnlp_signature_fn=None,
|
||||
wo_auto_param_call=False,
|
||||
)
|
||||
@ -686,6 +711,9 @@ class TestSaveLoad:
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
||||
@magic_argv_env_context
|
||||
@pytest.mark.parametrize("only_state_dict", ([True, False]))
|
||||
@pytest.mark.parametrize("fp16", ([True, False]))
|
||||
@ -700,13 +728,13 @@ class TestSaveLoad:
|
||||
|
||||
num_replicas = len(device)
|
||||
|
||||
self.driver1 = generate_driver(10, 10, device=device, fp16=fp16)
|
||||
self.driver2 = generate_driver(10, 10, device=device, fp16=False)
|
||||
driver1 = generate_driver(10, 10, device=device, fp16=fp16)
|
||||
driver2 = generate_driver(10, 10, device=device, fp16=False)
|
||||
|
||||
dataloader = dataloader_with_randomsampler(self.dataset, 4, True, False, unrepeated=False)
|
||||
dataloader.batch_sampler.sampler.set_distributed(
|
||||
num_replicas=self.driver1.world_size,
|
||||
rank=self.driver1.global_rank,
|
||||
num_replicas=driver1.world_size,
|
||||
rank=driver1.global_rank,
|
||||
pad=True
|
||||
)
|
||||
num_consumed_batches = 2
|
||||
@ -726,18 +754,18 @@ class TestSaveLoad:
|
||||
sampler_states = dataloader.batch_sampler.sampler.state_dict()
|
||||
save_states = {"num_consumed_batches": num_consumed_batches}
|
||||
if only_state_dict:
|
||||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True)
|
||||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True)
|
||||
else:
|
||||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))])
|
||||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))])
|
||||
# 加载
|
||||
# 更改 batch_size
|
||||
dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False)
|
||||
dataloader.batch_sampler.sampler.set_distributed(
|
||||
num_replicas=self.driver2.world_size,
|
||||
rank=self.driver2.global_rank,
|
||||
num_replicas=driver2.world_size,
|
||||
rank=driver2.global_rank,
|
||||
pad=True
|
||||
)
|
||||
load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True)
|
||||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True)
|
||||
replaced_loader = load_states.pop("dataloader")
|
||||
|
||||
# 1. 检查 optimizer 的状态
|
||||
@ -753,7 +781,7 @@ class TestSaveLoad:
|
||||
assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"]
|
||||
# 3. 检查 fp16 是否被加载
|
||||
if fp16:
|
||||
assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler)
|
||||
assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler)
|
||||
|
||||
# 4. 检查 model 的参数是否正确
|
||||
# 5. 检查 batch_idx
|
||||
@ -765,16 +793,16 @@ class TestSaveLoad:
|
||||
|
||||
left_x_batches.update(batch["x"])
|
||||
left_y_batches.update(batch["y"])
|
||||
res1 = self.driver1.model(
|
||||
res1 = driver1.model(
|
||||
batch,
|
||||
fastnlp_fn=self.driver1.model.module.model.evaluate_step,
|
||||
fastnlp_fn=driver1.model.module.model.evaluate_step,
|
||||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model
|
||||
fastnlp_signature_fn=None,
|
||||
wo_auto_param_call=False,
|
||||
)
|
||||
res2 = self.driver2.model(
|
||||
res2 = driver2.model(
|
||||
batch,
|
||||
fastnlp_fn=self.driver2.model.module.model.evaluate_step,
|
||||
fastnlp_fn=driver2.model.module.model.evaluate_step,
|
||||
fastnlp_signature_fn=None,
|
||||
wo_auto_param_call=False,
|
||||
)
|
||||
@ -786,4 +814,7 @@ class TestSaveLoad:
|
||||
assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas
|
||||
|
||||
finally:
|
||||
rank_zero_rm(path)
|
||||
rank_zero_rm(path)
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.destroy_process_group()
|
||||
|
@ -2,12 +2,14 @@ import pytest
|
||||
|
||||
from fastNLP.core.drivers import TorchSingleDriver, TorchDDPDriver
|
||||
from fastNLP.core.drivers.torch_driver.initialize_torch_driver import initialize_torch_driver
|
||||
from fastNLP.envs import get_gpu_count
|
||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.utils import magic_argv_env_context
|
||||
|
||||
import torch
|
||||
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
from torch import device as torchdevice
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as torchdevice
|
||||
|
||||
@pytest.mark.torch
|
||||
def test_incorrect_driver():
|
||||
@ -20,7 +22,7 @@ def test_incorrect_driver():
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize(
|
||||
"device",
|
||||
["cpu", "cuda:0", 0, torch.device("cuda:0")]
|
||||
["cpu", "cuda:0", 0, torchdevice("cuda:0")]
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"driver",
|
||||
@ -83,7 +85,6 @@ def test_get_ddp(driver, device):
|
||||
("driver", "device"),
|
||||
[("torch_ddp", "cpu")]
|
||||
)
|
||||
@magic_argv_env_context
|
||||
def test_get_ddp_cpu(driver, device):
|
||||
"""
|
||||
测试试图在 cpu 上初始化分布式训练的情况
|
||||
@ -96,13 +97,12 @@ def test_get_ddp_cpu(driver, device):
|
||||
@pytest.mark.torch
|
||||
@pytest.mark.parametrize(
|
||||
"device",
|
||||
[-2, [0, torch.cuda.device_count() + 1, 3], [-2], torch.cuda.device_count() + 1]
|
||||
[-2, [0, 20, 3], [-2], 20]
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"driver",
|
||||
["torch", "torch_ddp"]
|
||||
)
|
||||
@magic_argv_env_context
|
||||
def test_device_out_of_range(driver, device):
|
||||
"""
|
||||
测试传入的device超过范围的情况
|
||||
|
@ -2,7 +2,7 @@ import pytest
|
||||
from pathlib import Path
|
||||
|
||||
from fastNLP.core.drivers.torch_driver.single_device import TorchSingleDriver
|
||||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler
|
||||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler
|
||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset
|
||||
from tests.helpers.datasets.paddle_data import PaddleNormalDataset
|
||||
@ -17,7 +17,7 @@ if _NEED_IMPORT_PADDLE:
|
||||
|
||||
def dataloader_with_randombatchsampler(dataset, batch_size, shuffle, drop_last):
|
||||
"""
|
||||
建立一个 batch_sampler 为 RandomBatchSampler 的 dataloader
|
||||
建立一个 batch_sampler 为 ReproduceBatchSampler 的 dataloader
|
||||
"""
|
||||
if shuffle:
|
||||
sampler = torch.utils.data.RandomSampler(dataset)
|
||||
@ -25,7 +25,7 @@ def dataloader_with_randombatchsampler(dataset, batch_size, shuffle, drop_last):
|
||||
sampler = torch.utils.data.SequentialSampler(dataset)
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_sampler=RandomBatchSampler(
|
||||
batch_sampler=ReproduceBatchSampler(
|
||||
BatchSampler(
|
||||
sampler, batch_size=batch_size, drop_last=drop_last
|
||||
),
|
||||
@ -306,7 +306,7 @@ class TestTorchDriverFunctions:
|
||||
res = TorchSingleDriver.get_dataloader_args(dataloader)
|
||||
|
||||
assert isinstance(res.dataset, TorchNormalDataset)
|
||||
assert isinstance(res.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(res.batch_sampler, ReproduceBatchSampler)
|
||||
if shuffle:
|
||||
assert isinstance(res.sampler, torch.utils.data.RandomSampler)
|
||||
else:
|
||||
@ -401,7 +401,7 @@ class TestSetDistReproDataloader:
|
||||
"""
|
||||
测试 set_dist_repro_dataloader 参数 `reproducible` 为 True 时的表现
|
||||
当dist为字符串时,此时应该返回新的 dataloader,且如果原 sampler 为 torch.utils.data.RandomSampler(shuffle=True),
|
||||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 RandomBatchSampler
|
||||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 ReproduceBatchSampler
|
||||
"""
|
||||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=True)
|
||||
@ -414,7 +414,7 @@ class TestSetDistReproDataloader:
|
||||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler)
|
||||
else:
|
||||
# 此时会替换 batch_sampler
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler)
|
||||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size
|
||||
assert replaced_loader.drop_last == dataloader.drop_last
|
||||
@ -428,11 +428,11 @@ class TestSetDistReproDataloader:
|
||||
应该返回新的 dataloader,并将 batch_sampler 替换为 dist 对应的 Sampler
|
||||
"""
|
||||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle)
|
||||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4, drop_last=False), 4, False)
|
||||
dist = ReproduceBatchSampler(BatchSampler(self.dataset, batch_size=4, drop_last=False), 4, False)
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert replaced_loader.batch_sampler is dist
|
||||
|
||||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)
|
||||
@ -466,7 +466,7 @@ class TestSetDistReproDataloader:
|
||||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=False)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
|
||||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size
|
||||
assert replaced_loader.drop_last == dataloader.drop_last
|
||||
@ -502,14 +502,14 @@ class TestSetDistReproDataloader:
|
||||
if idx >= num_consumed_batches:
|
||||
break
|
||||
already_seen_idx.update(batch)
|
||||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler):
|
||||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler):
|
||||
sampler_states = replaced_loader.batch_sampler.state_dict()
|
||||
else:
|
||||
sampler_states = replaced_loader.batch_sampler.sampler.state_dict()
|
||||
|
||||
# 重新加载,应该可以输出剩下的内容,且对于 TorchNormalDataset 来说,排序后应该是一个 range
|
||||
left_idxes = set()
|
||||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler):
|
||||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler):
|
||||
batch_size = replaced_loader.batch_sampler.batch_size
|
||||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size
|
||||
# 重新改造 dataloader
|
||||
@ -613,7 +613,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):
|
||||
# 2. 检查 batch_sampler 是否被正确地加载和替换
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert replaced_loader.batch_sampler is dataloader.batch_sampler
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"]
|
||||
assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4
|
||||
|
||||
|
@ -30,7 +30,7 @@ class SequenceDataSet:
|
||||
|
||||
|
||||
def check_replace_sampler(driver):
|
||||
# dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,RandomBatchSampler
|
||||
# dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,ReproduceBatchSampler
|
||||
# reproducible 是 True 和 False
|
||||
|
||||
# 需要 check 返回的 sampler 和 dataloader 都不同了
|
||||
|
@ -4,7 +4,7 @@ from fastNLP.core.drivers.torch_driver.utils import (
|
||||
replace_batch_sampler,
|
||||
replace_sampler,
|
||||
)
|
||||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler
|
||||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler
|
||||
from torch.utils.data import DataLoader, BatchSampler
|
||||
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset
|
||||
@ -14,12 +14,12 @@ from tests.helpers.datasets.torch_data import TorchNormalDataset
|
||||
def test_replace_batch_sampler():
|
||||
dataset = TorchNormalDataset(10)
|
||||
dataloader = DataLoader(dataset, batch_size=32)
|
||||
batch_sampler = RandomBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False)
|
||||
batch_sampler = ReproduceBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False)
|
||||
|
||||
replaced_loader = replace_batch_sampler(dataloader, batch_sampler)
|
||||
|
||||
assert not (replaced_loader is dataloader)
|
||||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler)
|
||||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler)
|
||||
assert isinstance(replaced_loader.dataset, TorchNormalDataset)
|
||||
assert len(replaced_loader.dataset) == len(dataset)
|
||||
assert replaced_loader.batch_sampler.batch_size == 16
|
||||
|
@ -7,15 +7,20 @@ import copy
|
||||
import socket
|
||||
import pytest
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed
|
||||
from torch.multiprocessing import Pool, set_start_method
|
||||
|
||||
from sklearn.metrics import accuracy_score as sklearn_accuracy
|
||||
|
||||
from fastNLP.core.dataset import DataSet
|
||||
from fastNLP.core.metrics.accuracy import Accuracy
|
||||
from fastNLP.core.metrics.metric import Metric
|
||||
from .utils import find_free_network_port, setup_ddp, _assert_allclose
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
import torch.distributed
|
||||
from torch.multiprocessing import Pool, set_start_method
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method
|
||||
|
||||
set_start_method("spawn", force=True)
|
||||
|
||||
@ -26,7 +31,7 @@ pool = None
|
||||
|
||||
def _test(local_rank: int,
|
||||
world_size: int,
|
||||
device: torch.device,
|
||||
device: "torch.device",
|
||||
dataset: DataSet,
|
||||
metric_class: Type[Metric],
|
||||
metric_kwargs: Dict[str, Any],
|
||||
|
@ -2,18 +2,23 @@ from functools import partial
|
||||
import copy
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import numpy as np
|
||||
from torch.multiprocessing import Pool, set_start_method
|
||||
|
||||
from fastNLP.core.metrics import ClassifyFPreRecMetric
|
||||
from fastNLP.core.dataset import DataSet
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
from .utils import find_free_network_port, setup_ddp
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
from torch.multiprocessing import Pool, set_start_method
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method
|
||||
|
||||
set_start_method("spawn", force=True)
|
||||
|
||||
|
||||
def _test(local_rank: int, world_size: int, device: torch.device,
|
||||
def _test(local_rank: int, world_size: int, device: "torch.device",
|
||||
dataset: DataSet, metric_class, metric_kwargs, metric_result):
|
||||
metric = metric_class(**metric_kwargs)
|
||||
# dataset 也类似(每个进程有自己的一个)
|
||||
|
@ -5,16 +5,21 @@ import os, sys
|
||||
import copy
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
import numpy as np
|
||||
import socket
|
||||
from torch.multiprocessing import Pool, set_start_method
|
||||
|
||||
# from multiprocessing import Pool, set_start_method
|
||||
from fastNLP.core.vocabulary import Vocabulary
|
||||
from fastNLP.core.metrics import SpanFPreRecMetric
|
||||
from fastNLP.core.dataset import DataSet
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
from .utils import find_free_network_port, setup_ddp
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
import torch.distributed
|
||||
from torch.multiprocessing import Pool, set_start_method
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method
|
||||
|
||||
set_start_method("spawn", force=True)
|
||||
|
||||
@ -44,7 +49,7 @@ pool = None
|
||||
|
||||
def _test(local_rank: int,
|
||||
world_size: int,
|
||||
device: torch.device,
|
||||
device: "torch.device",
|
||||
dataset: DataSet,
|
||||
metric_class,
|
||||
metric_kwargs,
|
||||
|
@ -2,9 +2,11 @@ import os, sys
|
||||
import socket
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from torch import distributed
|
||||
import numpy as np
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
from torch import distributed
|
||||
|
||||
|
||||
def setup_ddp(rank: int, world_size: int, master_port: int) -> None:
|
||||
|
@ -1,161 +1,131 @@
|
||||
from array import array
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from itertools import chain
|
||||
from copy import deepcopy
|
||||
from array import array
|
||||
|
||||
from fastNLP.core.samplers import RandomBatchSampler, BucketedBatchSampler
|
||||
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset
|
||||
from tests.helpers.datasets.normal_data import NormalSampler, NormalBatchSampler
|
||||
from fastNLP.core.samplers import ReproduceBatchSampler, BucketedBatchSampler, RandomBatchSampler
|
||||
|
||||
#
|
||||
# class TestReproducibleBatchSampler:
|
||||
# # TODO 拆分测试,在这里只测试一个东西
|
||||
# def test_torch_dataloader_1(self):
|
||||
# import torch
|
||||
# from torch.utils.data import DataLoader
|
||||
# # no shuffle
|
||||
# before_batch_size = 7
|
||||
# dataset = TorchNormalDataset(num_of_data=100)
|
||||
# dataloader = DataLoader(dataset, batch_size=before_batch_size)
|
||||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
#
|
||||
# forward_steps = 3
|
||||
# iter_dataloader = iter(dataloader)
|
||||
# for _ in range(forward_steps):
|
||||
# next(iter_dataloader)
|
||||
#
|
||||
# # 1. 保存状态
|
||||
# _get_re_batchsampler = dataloader.batch_sampler
|
||||
# assert isinstance(_get_re_batchsampler, RandomBatchSampler)
|
||||
# state = _get_re_batchsampler.state_dict()
|
||||
# assert state == {"index_list": array("I", list(range(100))), "num_consumed_samples": forward_steps*before_batch_size,
|
||||
# "sampler_type": "RandomBatchSampler"}
|
||||
#
|
||||
# # 2. 断点重训,重新生成一个 dataloader;
|
||||
# # 不改变 batch_size;
|
||||
# dataloader = DataLoader(dataset, batch_size=before_batch_size)
|
||||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
# re_batchsampler.load_state_dict(state)
|
||||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
#
|
||||
# real_res = []
|
||||
# supposed_res = (torch.tensor(list(range(21, 28))), torch.tensor(list(range(28, 35))))
|
||||
# forward_steps = 2
|
||||
# iter_dataloader = iter(dataloader)
|
||||
# for _ in range(forward_steps):
|
||||
# real_res.append(next(iter_dataloader))
|
||||
#
|
||||
# for i in range(forward_steps):
|
||||
# assert all(real_res[i] == supposed_res[i])
|
||||
#
|
||||
# # 改变 batch_size;
|
||||
# after_batch_size = 3
|
||||
# dataloader = DataLoader(dataset, batch_size=after_batch_size)
|
||||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
# re_batchsampler.load_state_dict(state)
|
||||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
#
|
||||
# real_res = []
|
||||
# supposed_res = (torch.tensor(list(range(21, 24))), torch.tensor(list(range(24, 27))))
|
||||
# forward_steps = 2
|
||||
# iter_dataloader = iter(dataloader)
|
||||
# for _ in range(forward_steps):
|
||||
# real_res.append(next(iter_dataloader))
|
||||
#
|
||||
# for i in range(forward_steps):
|
||||
# assert all(real_res[i] == supposed_res[i])
|
||||
#
|
||||
# # 断点重训的第二轮是否是一个完整的 dataloader;
|
||||
# # 先把断点重训所在的那一个 epoch 跑完;
|
||||
# begin_idx = 27
|
||||
# while True:
|
||||
# try:
|
||||
# data = next(iter_dataloader)
|
||||
# _batch_size = len(data)
|
||||
# assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size))))
|
||||
# begin_idx += _batch_size
|
||||
# except StopIteration:
|
||||
# break
|
||||
#
|
||||
# # 开始新的一轮;
|
||||
# begin_idx = 0
|
||||
# iter_dataloader = iter(dataloader)
|
||||
# while True:
|
||||
# try:
|
||||
# data = next(iter_dataloader)
|
||||
# _batch_size = len(data)
|
||||
# assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size))))
|
||||
# begin_idx += _batch_size
|
||||
# except StopIteration:
|
||||
# break
|
||||
#
|
||||
# def test_torch_dataloader_2(self):
|
||||
# # 测试新的一轮的 index list 是重新生成的,而不是沿用上一轮的;
|
||||
# from torch.utils.data import DataLoader
|
||||
# # no shuffle
|
||||
# before_batch_size = 7
|
||||
# dataset = TorchNormalDataset(num_of_data=100)
|
||||
# # 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
|
||||
# dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
|
||||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
#
|
||||
# # 将一轮的所有数据保存下来,看是否恢复的是正确的;
|
||||
# all_supposed_data = []
|
||||
# forward_steps = 3
|
||||
# iter_dataloader = iter(dataloader)
|
||||
# for _ in range(forward_steps):
|
||||
# all_supposed_data.extend(next(iter_dataloader).tolist())
|
||||
#
|
||||
# # 1. 保存状态
|
||||
# _get_re_batchsampler = dataloader.batch_sampler
|
||||
# assert isinstance(_get_re_batchsampler, RandomBatchSampler)
|
||||
# state = _get_re_batchsampler.state_dict()
|
||||
#
|
||||
# # 2. 断点重训,重新生成一个 dataloader;
|
||||
# # 不改变 batch_size;
|
||||
# dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
|
||||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
# re_batchsampler.load_state_dict(state)
|
||||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
#
|
||||
# # 先把这一轮的数据过完;
|
||||
# pre_index_list = dataloader.batch_sampler.state_dict()["index_list"]
|
||||
# while True:
|
||||
# try:
|
||||
# all_supposed_data.extend(next(iter_dataloader).tolist())
|
||||
# except StopIteration:
|
||||
# break
|
||||
# assert all_supposed_data == list(pre_index_list)
|
||||
#
|
||||
# # 重新开启新的一轮;
|
||||
# for _ in range(3):
|
||||
# iter_dataloader = iter(dataloader)
|
||||
# res = []
|
||||
# while True:
|
||||
# try:
|
||||
# res.append(next(iter_dataloader))
|
||||
# except StopIteration:
|
||||
# break
|
||||
#
|
||||
# def test_3(self):
|
||||
# import torch
|
||||
# from torch.utils.data import DataLoader
|
||||
# before_batch_size = 7
|
||||
# dataset = TorchNormalDataset(num_of_data=100)
|
||||
# # 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
|
||||
# dataloader = DataLoader(dataset, batch_size=before_batch_size)
|
||||
#
|
||||
# for idx, data in enumerate(dataloader):
|
||||
# if idx > 3:
|
||||
# break
|
||||
#
|
||||
# iterator = iter(dataloader)
|
||||
# for each in iterator:
|
||||
# pass
|
||||
|
||||
class TestReproducibleBatchSampler:
|
||||
def test_1(self):
|
||||
sampler = NormalSampler(num_of_data=100) # 这里是否是 batchsampler 不影响;
|
||||
|
||||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, batch_size=4, drop_last=False)
|
||||
|
||||
forward_steps = 3
|
||||
iterator = iter(reproduce_batch_sampler)
|
||||
i = 0
|
||||
while i < forward_steps:
|
||||
next(iterator)
|
||||
i += 1
|
||||
|
||||
# 保存状态;
|
||||
state = reproduce_batch_sampler.state_dict()
|
||||
|
||||
assert state == {"index_list": array("I", list(range(100))),
|
||||
"num_consumed_samples": forward_steps * 4,
|
||||
"sampler_type": "ReproduceBatchSampler"}
|
||||
|
||||
# 重新生成一个 batchsampler 然后加载状态;
|
||||
sampler = NormalSampler(num_of_data=100) # 这里是否是 batchsampler 不影响;
|
||||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, batch_size=4, drop_last=False)
|
||||
reproduce_batch_sampler.load_state_dict(state)
|
||||
|
||||
real_res = []
|
||||
supposed_res = (list(range(12, 16)), list(range(16, 20)))
|
||||
forward_steps = 2
|
||||
iter_dataloader = iter(reproduce_batch_sampler)
|
||||
for _ in range(forward_steps):
|
||||
real_res.append(next(iter_dataloader))
|
||||
|
||||
for i in range(forward_steps):
|
||||
assert supposed_res[i] == real_res[i]
|
||||
|
||||
# 改变 batchsize;
|
||||
sampler = NormalSampler(num_of_data=100) # 这里是否是 batchsampler 不影响;
|
||||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, batch_size=7, drop_last=False)
|
||||
reproduce_batch_sampler.load_state_dict(state)
|
||||
|
||||
real_res = []
|
||||
supposed_res = (list(range(12, 19)), list(range(19, 26)))
|
||||
forward_steps = 2
|
||||
iter_dataloader = iter(reproduce_batch_sampler)
|
||||
for _ in range(forward_steps):
|
||||
real_res.append(next(iter_dataloader))
|
||||
|
||||
for i in range(forward_steps):
|
||||
assert supposed_res[i] == real_res[i]
|
||||
|
||||
# 断点重训的第二轮是否是一个完整的 dataloader;
|
||||
# 先把断点重训所在的那一个 epoch 跑完;
|
||||
begin_idx = 26
|
||||
while True:
|
||||
try:
|
||||
data = next(iter_dataloader)
|
||||
_batch_size = len(data)
|
||||
assert data == list(range(begin_idx, begin_idx + _batch_size))
|
||||
begin_idx += _batch_size
|
||||
except StopIteration:
|
||||
break
|
||||
|
||||
# 开始新的一轮;
|
||||
begin_idx = 0
|
||||
iter_dataloader = iter(reproduce_batch_sampler)
|
||||
while True:
|
||||
try:
|
||||
data = next(iter_dataloader)
|
||||
_batch_size = len(data)
|
||||
assert data == list(range(begin_idx, begin_idx + _batch_size))
|
||||
begin_idx += _batch_size
|
||||
except StopIteration:
|
||||
break
|
||||
|
||||
def test_2(self):
|
||||
|
||||
# 测试新的一轮的 index list 是重新生成的,而不是沿用上一轮的;
|
||||
before_batch_size = 7
|
||||
sampler = NormalSampler(num_of_data=100)
|
||||
# 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
|
||||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, before_batch_size, drop_last=False)
|
||||
|
||||
# 将一轮的所有数据保存下来,看是否恢复的是正确的;
|
||||
all_supposed_data = []
|
||||
forward_steps = 3
|
||||
iter_dataloader = iter(reproduce_batch_sampler)
|
||||
for _ in range(forward_steps):
|
||||
all_supposed_data.extend(next(iter_dataloader))
|
||||
|
||||
# 1. 保存状态
|
||||
state = reproduce_batch_sampler.state_dict()
|
||||
|
||||
# 2. 断点重训,重新生成一个 dataloader;
|
||||
# 不改变 batch_size;
|
||||
sampler = NormalSampler(num_of_data=100, shuffle=True)
|
||||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, before_batch_size, drop_last=False)
|
||||
reproduce_batch_sampler.load_state_dict(state)
|
||||
|
||||
# 先把这一轮的数据过完;
|
||||
pre_index_list = reproduce_batch_sampler.state_dict()["index_list"]
|
||||
iter_dataloader = iter(reproduce_batch_sampler)
|
||||
while True:
|
||||
try:
|
||||
all_supposed_data.extend(next(iter_dataloader))
|
||||
except StopIteration:
|
||||
break
|
||||
assert all_supposed_data == list(pre_index_list)
|
||||
|
||||
# 重新开启新的一轮;
|
||||
for _ in range(3):
|
||||
iter_dataloader = iter(reproduce_batch_sampler)
|
||||
res = []
|
||||
while True:
|
||||
try:
|
||||
res.extend(next(iter_dataloader))
|
||||
except StopIteration:
|
||||
break
|
||||
assert res != all_supposed_data
|
||||
|
||||
|
||||
class DatasetWithVaryLength:
|
||||
@ -511,3 +481,313 @@ class TestBucketedBatchSampler:
|
||||
already_seen_set.update(batch)
|
||||
|
||||
assert len(already_seen_set)==len(dataset) if drop_last is False else len(already_seen_set)<=len(dataset)
|
||||
|
||||
|
||||
class TestRandomBatchSampler:
|
||||
@pytest.mark.parametrize('shuffle', [True, False])
|
||||
@pytest.mark.parametrize('drop_last', [True, False])
|
||||
@pytest.mark.parametrize('num', [2, 7, 14, 15, 70, 71])
|
||||
def test_single_num_batch(self, shuffle, drop_last, num):
|
||||
# 数量不够不报错
|
||||
for num in [2, 7, 14, 15, 70, 71]:
|
||||
dataset = DatasetWithVaryLength(num_of_data=num)
|
||||
before_batch_size = 7
|
||||
re_batchsampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size,
|
||||
drop_last=drop_last,
|
||||
shuffle=shuffle)
|
||||
count = len(list(iter(re_batchsampler)))
|
||||
if drop_last:
|
||||
assert count==num//before_batch_size, num
|
||||
else:
|
||||
assert count==(num+before_batch_size-1)//before_batch_size, num
|
||||
|
||||
@pytest.mark.parametrize('shuffle', [True, False])
|
||||
@pytest.mark.parametrize('drop_last', [True, False])
|
||||
def test_single(self, shuffle, drop_last):
|
||||
|
||||
before_batch_size = 7
|
||||
num_batch_per_bucket = 4 # 那么任意 batch 内的长度差值不应该超过4
|
||||
|
||||
dataset = DatasetWithVaryLength(num_of_data=1000)
|
||||
re_batchsampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size,
|
||||
drop_last=drop_last,
|
||||
shuffle=shuffle)
|
||||
re_batchsampler.set_epoch(0)
|
||||
forward_steps = 10
|
||||
iterator = iter(re_batchsampler)
|
||||
already_generate_indices = set()
|
||||
for _ in range(forward_steps):
|
||||
batch = next(iterator)
|
||||
already_generate_indices.update(batch)
|
||||
|
||||
# 1. 保存状态
|
||||
state = re_batchsampler.state_dict()
|
||||
|
||||
# 2. 断点重训,继续训练
|
||||
re_batchsampler2 = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size,
|
||||
drop_last=drop_last,
|
||||
shuffle=shuffle)
|
||||
re_batchsampler2.load_state_dict(state)
|
||||
re_batchsampler2.set_epoch(0)
|
||||
new_already_generate_indices = set()
|
||||
mask = np.ones(len(dataset), dtype=bool)
|
||||
mask[list(already_generate_indices)] = 0
|
||||
indices = np.arange(len(dataset))[mask]
|
||||
max_diff = -1
|
||||
for i in range(len(indices)-before_batch_size * num_batch_per_bucket):
|
||||
max_diff = max(max_diff, indices[i+before_batch_size * num_batch_per_bucket]-indices[i])
|
||||
for batch in re_batchsampler2:
|
||||
for b in batch:
|
||||
assert b not in already_generate_indices
|
||||
new_already_generate_indices.update(batch)
|
||||
if drop_last is False:
|
||||
assert len(new_already_generate_indices.union(already_generate_indices))==len(dataset)
|
||||
|
||||
# 改变 batch_size;
|
||||
after_batch_size = 3
|
||||
re_batchsampler3 = RandomBatchSampler(dataset, length=dataset.data, batch_size=after_batch_size,
|
||||
drop_last=drop_last,
|
||||
shuffle=shuffle)
|
||||
re_batchsampler3.load_state_dict(state)
|
||||
re_batchsampler3.set_epoch(0)
|
||||
count = 0
|
||||
|
||||
mask = np.ones(len(dataset), dtype=bool)
|
||||
mask[list(already_generate_indices)] = 0
|
||||
indices = np.arange(len(dataset))[mask]
|
||||
|
||||
for batch in re_batchsampler3:
|
||||
for b in batch:
|
||||
assert b not in already_generate_indices
|
||||
already_generate_indices.update(batch)
|
||||
count += 1
|
||||
if count > 5:
|
||||
break
|
||||
|
||||
# 再 save ,不允许再上个epoch没结束继续sample
|
||||
after_batch_size = 5
|
||||
with pytest.raises(RuntimeError):
|
||||
state = re_batchsampler3.state_dict()
|
||||
|
||||
for batch in re_batchsampler3: # consume all, 这样才能save
|
||||
pass
|
||||
|
||||
already_generate_indices = set()
|
||||
count = 0
|
||||
for batch in re_batchsampler3: # 重新开始
|
||||
for b in batch:
|
||||
assert b not in already_generate_indices
|
||||
already_generate_indices.update(batch)
|
||||
count += 1
|
||||
if count > 5:
|
||||
break
|
||||
|
||||
state = re_batchsampler3.state_dict()
|
||||
# 这里的 drop_last 为 False,需要最终是所有 sample
|
||||
re_batchsampler4 = RandomBatchSampler(dataset, length=dataset.data, batch_size=after_batch_size,
|
||||
drop_last=False,
|
||||
shuffle=shuffle)
|
||||
re_batchsampler4.load_state_dict(state)
|
||||
re_batchsampler4.set_epoch(0)
|
||||
|
||||
mask = np.ones(len(dataset), dtype=bool)
|
||||
mask[list(already_generate_indices)] = 0
|
||||
for batch in re_batchsampler4:
|
||||
for b in batch:
|
||||
assert b not in already_generate_indices
|
||||
already_generate_indices.update(batch)
|
||||
|
||||
assert len(already_generate_indices) == len(dataset)
|
||||
|
||||
@pytest.mark.parametrize('shuffle', [True, False])
|
||||
@pytest.mark.parametrize('drop_last', [True, False])
|
||||
@pytest.mark.parametrize('pad', [True, False])
|
||||
def test_multi(self, shuffle, drop_last, pad):
|
||||
# def test_multi(self, shuffle=True, drop_last=False, pad=False):
|
||||
|
||||
# no shuffle
|
||||
num_replica = 2
|
||||
dataset = DatasetWithVaryLength(num_of_data=1000)
|
||||
batch_size = 5
|
||||
num_batch_per_bucket = 10
|
||||
lengths = []
|
||||
rank0_already_seen_indexes = None
|
||||
max_diff = num_batch_per_bucket * batch_size * num_replica
|
||||
for rank in range(num_replica):
|
||||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size = batch_size,
|
||||
shuffle = shuffle, drop_last=drop_last)
|
||||
sampler.set_epoch(0)
|
||||
sampler.set_distributed(num_replica, rank=rank, pad=pad)
|
||||
lengths.append(len(sampler))
|
||||
already_seen_indexes = set()
|
||||
repeat_count = 0
|
||||
for batch in sampler:
|
||||
for b in batch:
|
||||
repeat_count += int(b in already_seen_indexes)
|
||||
if rank0_already_seen_indexes: # 不能交叉出现
|
||||
assert b not in rank0_already_seen_indexes
|
||||
already_seen_indexes.update(batch)
|
||||
if rank0_already_seen_indexes is None:
|
||||
rank0_already_seen_indexes = already_seen_indexes
|
||||
if pad: # 应该允许重复一次
|
||||
assert repeat_count<=1
|
||||
else:
|
||||
assert repeat_count==0
|
||||
|
||||
assert len(set(lengths))==1, lengths # 每个进程的batch数量一致
|
||||
|
||||
# 多进程的保存
|
||||
already_seen_indexes = set()
|
||||
for rank in range(num_replica):
|
||||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size = batch_size,
|
||||
shuffle = shuffle, drop_last=drop_last)
|
||||
sampler.set_epoch(0)
|
||||
sampler.set_distributed(num_replica, rank=rank, pad=pad)
|
||||
lengths.append(len(sampler))
|
||||
count = 0
|
||||
for batch in sampler:
|
||||
already_seen_indexes.update(batch)
|
||||
if count>5:
|
||||
break
|
||||
count += 1
|
||||
state = sampler.state_dict()
|
||||
|
||||
# 切换成单机
|
||||
new_batch_size = 6
|
||||
num_batch_per_bucket = 3
|
||||
new_sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=new_batch_size,
|
||||
shuffle=shuffle, drop_last=drop_last)
|
||||
new_sampler.load_state_dict(state)
|
||||
repeat_count = 0
|
||||
new_already_seen_indexes = set(list(already_seen_indexes))
|
||||
|
||||
mask = np.ones(len(dataset), dtype=bool)
|
||||
mask[list(already_seen_indexes)] = 0
|
||||
indices = np.arange(len(dataset))[mask]
|
||||
|
||||
for batch in new_sampler:
|
||||
for b in batch:
|
||||
repeat_count += int(b in new_already_seen_indexes)
|
||||
new_already_seen_indexes.update(batch)
|
||||
if pad: # 应该允许重复一次
|
||||
assert repeat_count <= 1
|
||||
else:
|
||||
assert repeat_count == 0
|
||||
if drop_last is False: # 如果没有drop应该相等
|
||||
assert len(new_already_seen_indexes)==len(dataset)
|
||||
|
||||
# 测试替换卡的数量。
|
||||
num_replica = 3
|
||||
new_sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=new_batch_size,
|
||||
shuffle=shuffle, drop_last=drop_last)
|
||||
new_sampler.set_epoch(0)
|
||||
new_sampler.load_state_dict(state)
|
||||
new_sampler.set_distributed(num_replicas=num_replica, rank=1, pad=pad)
|
||||
repeat_count = 0
|
||||
|
||||
mask = np.ones(len(dataset), dtype=bool)
|
||||
mask[list(already_seen_indexes)] = 0
|
||||
indices = np.arange(len(dataset))[mask]
|
||||
|
||||
for batch in new_sampler:
|
||||
for b in batch:
|
||||
repeat_count += int(b in already_seen_indexes)
|
||||
if pad: # 应该允许重复一次
|
||||
assert repeat_count <= 1
|
||||
else:
|
||||
assert repeat_count == 0
|
||||
|
||||
@pytest.mark.parametrize('shuffle', [True, False])
|
||||
@pytest.mark.parametrize('drop_last', [True, False])
|
||||
@pytest.mark.parametrize('pad', [True, False])
|
||||
@pytest.mark.parametrize('num_samples', [13, 100, 623, 1000])
|
||||
@pytest.mark.parametrize('num_replicas', [2, 3])
|
||||
def test_multi_same_bucket(self, shuffle, drop_last, pad, num_samples, num_replicas):
|
||||
# def test_multi_same_bucket(self, shuffle=True, drop_last=True, pad=True, num_samples=623, num_replicas=2):
|
||||
dataset = DatasetWithVaryLength(num_of_data=num_samples)
|
||||
batch_size = 6
|
||||
if num_replicas*batch_size > num_samples:
|
||||
return
|
||||
num_batch_per_bucket = 10
|
||||
samplers = []
|
||||
lengths = []
|
||||
for i in range(num_replicas):
|
||||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size,
|
||||
shuffle=shuffle, drop_last=drop_last)
|
||||
sampler.set_distributed(num_replicas, rank=i, pad=pad)
|
||||
sampler.set_epoch(0)
|
||||
samplers.append(sampler)
|
||||
lengths.append(len(list(iter(sampler))))
|
||||
assert len(set(lengths))==1
|
||||
|
||||
@pytest.mark.parametrize('shuffle', [True, False])
|
||||
@pytest.mark.parametrize('drop_last', [True, False])
|
||||
@pytest.mark.parametrize('pad', [True, False])
|
||||
@pytest.mark.parametrize('num_samples', [13, 100, 623, 1000])
|
||||
@pytest.mark.parametrize('num_replicas', [1, 2, 3])
|
||||
def test_multi_save_load(self, shuffle, drop_last, pad, num_samples, num_replicas):
|
||||
"""
|
||||
测试是否能够正确地恢复使用过的(forward)数据
|
||||
|
||||
:return:
|
||||
"""
|
||||
batch_size = 6
|
||||
dataset = DatasetWithVaryLength(num_of_data=num_samples)
|
||||
samplers = []
|
||||
num_consumed_samples_array = list(range(0, num_samples+num_replicas, num_replicas))
|
||||
for i in range(num_replicas):
|
||||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size,
|
||||
shuffle=shuffle, drop_last=drop_last)
|
||||
|
||||
sampler.set_distributed(num_replicas=num_replicas, rank=i, pad=pad)
|
||||
samplers.append(sampler)
|
||||
count = 0
|
||||
already_seen_sets = [set()]
|
||||
already_seen_set = set()
|
||||
for batchs in zip(*samplers):
|
||||
batch = chain(*batchs)
|
||||
already_seen_set.update(batch)
|
||||
already_seen_sets.append(deepcopy(already_seen_set))
|
||||
count += 1
|
||||
if count > 3:
|
||||
break
|
||||
states = samplers[0].state_dict()
|
||||
for i in range(len(already_seen_sets)):
|
||||
states['num_consumed_samples'] = num_consumed_samples_array[i]
|
||||
sampler = BucketedBatchSampler(dataset, length=dataset.data, batch_size=batch_size+1,
|
||||
shuffle=shuffle, drop_last=drop_last)
|
||||
sampler.set_epoch(0)
|
||||
already_seen_set = deepcopy(already_seen_sets[i])
|
||||
for batch in sampler:
|
||||
already_seen_set.update(batch)
|
||||
assert len(already_seen_set) == len(dataset) if drop_last is False else len(already_seen_set) <= len(
|
||||
dataset)
|
||||
|
||||
# 测试保存之后再次保存
|
||||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size + 1,
|
||||
shuffle=shuffle,
|
||||
drop_last=drop_last)
|
||||
sampler.set_epoch(0)
|
||||
states['num_consumed_samples'] = num_consumed_samples_array[2]
|
||||
if len(already_seen_sets)<3:
|
||||
return
|
||||
already_seen_set = already_seen_sets[2]
|
||||
count = 0
|
||||
for batch in sampler:
|
||||
already_seen_set.update(batch)
|
||||
count += 1
|
||||
if count > 6:
|
||||
break
|
||||
|
||||
states = sampler.state_dict()
|
||||
num_consumed_samples_array = list(range(len(dataset)))
|
||||
states['num_consumed_samples'] = num_consumed_samples_array[count]
|
||||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size//2,
|
||||
shuffle=shuffle,
|
||||
drop_last=drop_last)
|
||||
sampler.load_state_dict(states)
|
||||
sampler.set_epoch(0)
|
||||
for batch in sampler:
|
||||
already_seen_set.update(batch)
|
||||
|
||||
assert len(already_seen_set)==len(dataset) if drop_last is False else len(already_seen_set)<=len(dataset)
|
||||
|
141
tests/core/samplers/test_reproducible_batch_sampler_torch.py
Normal file
141
tests/core/samplers/test_reproducible_batch_sampler_torch.py
Normal file
@ -0,0 +1,141 @@
|
||||
from array import array
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import pytest
|
||||
|
||||
from fastNLP.core.samplers import ReproduceBatchSampler
|
||||
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler
|
||||
from tests.helpers.datasets.torch_data import TorchNormalDataset
|
||||
|
||||
|
||||
@pytest.mark.torch
|
||||
class TestReproducibleBatchSamplerTorch:
|
||||
def test_torch_dataloader_1(self):
|
||||
# no shuffle
|
||||
before_batch_size = 7
|
||||
dataset = TorchNormalDataset(num_of_data=100)
|
||||
dataloader = DataLoader(dataset, batch_size=before_batch_size)
|
||||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
|
||||
forward_steps = 3
|
||||
iter_dataloader = iter(dataloader)
|
||||
for _ in range(forward_steps):
|
||||
next(iter_dataloader)
|
||||
|
||||
# 1. 保存状态
|
||||
_get_re_batchsampler = dataloader.batch_sampler
|
||||
assert isinstance(_get_re_batchsampler, ReproduceBatchSampler)
|
||||
state = _get_re_batchsampler.state_dict()
|
||||
assert state == {"index_list": array("I", list(range(100))), "num_consumed_samples": forward_steps*before_batch_size,
|
||||
"sampler_type": "ReproduceBatchSampler"}
|
||||
|
||||
# 2. 断点重训,重新生成一个 dataloader;
|
||||
# 不改变 batch_size;
|
||||
dataloader = DataLoader(dataset, batch_size=before_batch_size)
|
||||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
re_batchsampler.load_state_dict(state)
|
||||
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
|
||||
real_res = []
|
||||
supposed_res = (torch.tensor(list(range(21, 28))), torch.tensor(list(range(28, 35))))
|
||||
forward_steps = 2
|
||||
iter_dataloader = iter(dataloader)
|
||||
for _ in range(forward_steps):
|
||||
real_res.append(next(iter_dataloader))
|
||||
|
||||
for i in range(forward_steps):
|
||||
assert all(real_res[i] == supposed_res[i])
|
||||
|
||||
# 改变 batch_size;
|
||||
after_batch_size = 3
|
||||
dataloader = DataLoader(dataset, batch_size=after_batch_size)
|
||||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
re_batchsampler.load_state_dict(state)
|
||||
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
|
||||
real_res = []
|
||||
supposed_res = (torch.tensor(list(range(21, 24))), torch.tensor(list(range(24, 27))))
|
||||
forward_steps = 2
|
||||
iter_dataloader = iter(dataloader)
|
||||
for _ in range(forward_steps):
|
||||
real_res.append(next(iter_dataloader))
|
||||
|
||||
for i in range(forward_steps):
|
||||
assert all(real_res[i] == supposed_res[i])
|
||||
|
||||
# 断点重训的第二轮是否是一个完整的 dataloader;
|
||||
# 先把断点重训所在的那一个 epoch 跑完;
|
||||
begin_idx = 27
|
||||
while True:
|
||||
try:
|
||||
data = next(iter_dataloader)
|
||||
_batch_size = len(data)
|
||||
assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size))))
|
||||
begin_idx += _batch_size
|
||||
except StopIteration:
|
||||
break
|
||||
|
||||
# 开始新的一轮;
|
||||
begin_idx = 0
|
||||
iter_dataloader = iter(dataloader)
|
||||
while True:
|
||||
try:
|
||||
data = next(iter_dataloader)
|
||||
_batch_size = len(data)
|
||||
assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size))))
|
||||
begin_idx += _batch_size
|
||||
except StopIteration:
|
||||
break
|
||||
|
||||
def test_torch_dataloader_2(self):
|
||||
# 测试新的一轮的 index list 是重新生成的,而不是沿用上一轮的;
|
||||
from torch.utils.data import DataLoader
|
||||
before_batch_size = 7
|
||||
dataset = TorchNormalDataset(num_of_data=100)
|
||||
# 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
|
||||
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
|
||||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
|
||||
# 将一轮的所有数据保存下来,看是否恢复的是正确的;
|
||||
all_supposed_data = []
|
||||
forward_steps = 3
|
||||
iter_dataloader = iter(dataloader)
|
||||
for _ in range(forward_steps):
|
||||
all_supposed_data.extend(next(iter_dataloader).tolist())
|
||||
|
||||
# 1. 保存状态
|
||||
_get_re_batchsampler = dataloader.batch_sampler
|
||||
assert isinstance(_get_re_batchsampler, ReproduceBatchSampler)
|
||||
state = _get_re_batchsampler.state_dict()
|
||||
|
||||
# 2. 断点重训,重新生成一个 dataloader;
|
||||
# 不改变 batch_size;
|
||||
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
|
||||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
|
||||
re_batchsampler.load_state_dict(state)
|
||||
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
|
||||
|
||||
iter_dataloader = iter(dataloader)
|
||||
# 先把这一轮的数据过完;
|
||||
pre_index_list = dataloader.batch_sampler.state_dict()["index_list"]
|
||||
while True:
|
||||
try:
|
||||
all_supposed_data.extend(next(iter_dataloader).tolist())
|
||||
except StopIteration:
|
||||
break
|
||||
assert all_supposed_data == list(pre_index_list)
|
||||
|
||||
# 重新开启新的一轮;
|
||||
for _ in range(3):
|
||||
iter_dataloader = iter(dataloader)
|
||||
res = []
|
||||
while True:
|
||||
try:
|
||||
res.extend(next(iter_dataloader).tolist())
|
||||
except StopIteration:
|
||||
break
|
||||
assert res != all_supposed_data
|
||||
|
@ -3,6 +3,7 @@ import pytest
|
||||
import subprocess
|
||||
from io import StringIO
|
||||
import sys
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../..'))
|
||||
|
||||
from fastNLP.core.utils.cache_results import cache_results
|
||||
from fastNLP.core import rank_zero_rm
|
||||
|
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import pytest
|
||||
|
||||
from fastNLP.envs.set_backend import dump_fastnlp_backend
|
||||
from tests.helpers.utils import Capturing
|
||||
@ -9,7 +10,7 @@ def test_dump_fastnlp_envs():
|
||||
filepath = None
|
||||
try:
|
||||
with Capturing() as output:
|
||||
dump_fastnlp_backend()
|
||||
dump_fastnlp_backend(backend="torch")
|
||||
filepath = os.path.join(os.path.expanduser('~'), '.fastNLP', 'envs', os.environ['CONDA_DEFAULT_ENV']+'.json')
|
||||
assert filepath in output[0]
|
||||
assert os.path.exists(filepath)
|
||||
|
@ -1,7 +1,9 @@
|
||||
import torch
|
||||
from copy import deepcopy
|
||||
|
||||
from fastNLP.core.callbacks.callback import Callback
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
|
||||
|
||||
class RecordAccumulationStepsCallback_Torch(Callback):
|
||||
|
@ -1,13 +1,25 @@
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
|
||||
class NormalIterator:
|
||||
def __init__(self, num_of_data=1000):
|
||||
class NormalSampler:
|
||||
def __init__(self, num_of_data=1000, shuffle=False):
|
||||
self._num_of_data = num_of_data
|
||||
self._data = list(range(num_of_data))
|
||||
if shuffle:
|
||||
random.shuffle(self._data)
|
||||
self.shuffle = shuffle
|
||||
self._index = 0
|
||||
self.need_reinitialize = False
|
||||
|
||||
def __iter__(self):
|
||||
if self.need_reinitialize:
|
||||
self._index = 0
|
||||
if self.shuffle:
|
||||
random.shuffle(self._data)
|
||||
else:
|
||||
self.need_reinitialize = True
|
||||
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
@ -15,12 +27,45 @@ class NormalIterator:
|
||||
raise StopIteration
|
||||
_data = self._data[self._index]
|
||||
self._index += 1
|
||||
return self._data
|
||||
return _data
|
||||
|
||||
def __len__(self):
|
||||
return self._num_of_data
|
||||
|
||||
|
||||
class NormalBatchSampler:
|
||||
def __init__(self, sampler, batch_size: int, drop_last: bool) -> None:
|
||||
# Since collections.abc.Iterable does not check for `__getitem__`, which
|
||||
# is one way for an object to be an iterable, we don't do an `isinstance`
|
||||
# check here.
|
||||
if not isinstance(batch_size, int) or isinstance(batch_size, bool) or \
|
||||
batch_size <= 0:
|
||||
raise ValueError("batch_size should be a positive integer value, "
|
||||
"but got batch_size={}".format(batch_size))
|
||||
if not isinstance(drop_last, bool):
|
||||
raise ValueError("drop_last should be a boolean value, but got "
|
||||
"drop_last={}".format(drop_last))
|
||||
self.sampler = sampler
|
||||
self.batch_size = batch_size
|
||||
self.drop_last = drop_last
|
||||
|
||||
def __iter__(self):
|
||||
batch = []
|
||||
for idx in self.sampler:
|
||||
batch.append(idx)
|
||||
if len(batch) == self.batch_size:
|
||||
yield batch
|
||||
batch = []
|
||||
if len(batch) > 0 and not self.drop_last:
|
||||
yield batch
|
||||
|
||||
def __len__(self) -> int:
|
||||
if self.drop_last:
|
||||
return len(self.sampler) // self.batch_size
|
||||
else:
|
||||
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
|
||||
|
||||
|
||||
class RandomDataset:
|
||||
def __init__(self, num_data=10):
|
||||
self.data = np.random.rand(num_data)
|
||||
@ -29,4 +74,7 @@ class RandomDataset:
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.data[item]
|
||||
return self.data[item]
|
||||
|
||||
|
||||
|
||||
|
@ -1,7 +1,11 @@
|
||||
import torch
|
||||
from functools import reduce
|
||||
from torch.utils.data import Dataset, DataLoader, DistributedSampler
|
||||
from torch.utils.data.sampler import SequentialSampler, BatchSampler
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
from torch.utils.data import Dataset, DataLoader, DistributedSampler
|
||||
from torch.utils.data.sampler import SequentialSampler, BatchSampler
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as Dataset
|
||||
|
||||
|
||||
class TorchNormalDataset(Dataset):
|
||||
|
@ -1,9 +1,14 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
|
||||
if _NEED_IMPORT_TORCH:
|
||||
import torch
|
||||
from torch.nn import Module
|
||||
import torch.nn as nn
|
||||
else:
|
||||
from fastNLP.core.utils.dummy_class import DummyClass as Module
|
||||
|
||||
|
||||
# 1. 最为基础的分类模型
|
||||
class TorchNormalModel_Classification_1(nn.Module):
|
||||
class TorchNormalModel_Classification_1(Module):
|
||||
"""
|
||||
单独实现 train_step 和 evaluate_step;
|
||||
"""
|
||||
@ -38,7 +43,7 @@ class TorchNormalModel_Classification_1(nn.Module):
|
||||
return {"preds": x, "target": y}
|
||||
|
||||
|
||||
class TorchNormalModel_Classification_2(nn.Module):
|
||||
class TorchNormalModel_Classification_2(Module):
|
||||
"""
|
||||
只实现一个 forward 函数,来测试用户自己在外面初始化 DDP 的场景;
|
||||
"""
|
||||
@ -62,7 +67,7 @@ class TorchNormalModel_Classification_2(nn.Module):
|
||||
return {"loss": loss, "preds": x, "target": y}
|
||||
|
||||
|
||||
class TorchNormalModel_Classification_3(nn.Module):
|
||||
class TorchNormalModel_Classification_3(Module):
|
||||
"""
|
||||
只实现一个 forward 函数,来测试用户自己在外面初始化 DDP 的场景;
|
||||
关闭 auto_param_call,forward 只有一个 batch 参数;
|
||||
|
6
tests/pytest.ini
Normal file
6
tests/pytest.ini
Normal file
@ -0,0 +1,6 @@
|
||||
[pytest]
|
||||
markers =
|
||||
torch
|
||||
paddle
|
||||
jittor
|
||||
torchpaddle
|
Loading…
Reference in New Issue
Block a user