diff --git a/fastNLP/core/README.md b/fastNLP/core/README.md deleted file mode 100644 index 8b137891..00000000 --- a/fastNLP/core/README.md +++ /dev/null @@ -1 +0,0 @@ - diff --git a/fastNLP/core/action.py b/fastNLP/core/action.py index ef595cbb..c6cf2d63 100644 --- a/fastNLP/core/action.py +++ b/fastNLP/core/action.py @@ -4,88 +4,6 @@ import numpy as np import torch -class Action(object): - """Operations shared by Trainer, Tester, or Inference. - - This is designed for reducing replicate codes. - - make_batch: produce a min-batch of data. @staticmethod - - pad: padding method used in sequence modeling. @staticmethod - - mode: change network mode for either train or test. (for PyTorch) @staticmethod - """ - - def __init__(self): - super(Action, self).__init__() - - @staticmethod - def make_batch(iterator, use_cuda, output_length=True, max_len=None): - """Batch and Pad data. - - :param iterator: an iterator, (object that implements __next__ method) which returns the next sample. - :param use_cuda: bool, whether to use GPU - :param output_length: bool, whether to output the original length of the sequence before padding. (default: True) - :param max_len: int, maximum sequence length. Longer sequences will be clipped. (default: None) - :return : - - if output_length is True, - (batch_x, seq_len): tuple of two elements - batch_x: list. Each entry is a list of features of a sample. [batch_size, max_len] - seq_len: list. The length of the pre-padded sequence, if output_length is True. - batch_y: list. Each entry is a list of labels of a sample. [batch_size, num_labels] - - if output_length is False, - batch_x: list. Each entry is a list of features of a sample. [batch_size, max_len] - batch_y: list. Each entry is a list of labels of a sample. [batch_size, num_labels] - """ - for batch in iterator: - batch_x = [sample[0] for sample in batch] - batch_y = [sample[1] for sample in batch] - - batch_x = Action.pad(batch_x) - # pad batch_y only if it is a 2-level list - if len(batch_y) > 0 and isinstance(batch_y[0], list): - batch_y = Action.pad(batch_y) - - # convert list to tensor - batch_x = convert_to_torch_tensor(batch_x, use_cuda) - batch_y = convert_to_torch_tensor(batch_y, use_cuda) - - # trim data to max_len - if max_len is not None and batch_x.size(1) > max_len: - batch_x = batch_x[:, :max_len] - - if output_length: - seq_len = [len(x) for x in batch_x] - yield (batch_x, seq_len), batch_y - else: - yield batch_x, batch_y - - @staticmethod - def pad(batch, fill=0): - """ Pad a mini-batch of sequence samples to maximum length of this batch. - - :param batch: list of list - :param fill: word index to pad, default 0. - :return batch: a padded mini-batch - """ - max_length = max([len(x) for x in batch]) - for idx, sample in enumerate(batch): - if len(sample) < max_length: - batch[idx] = sample + ([fill] * (max_length - len(sample))) - return batch - - @staticmethod - def mode(model, is_test=False): - """Train mode or Test mode. This is for PyTorch currently. - - :param model: a PyTorch model - :param is_test: bool, whether in test mode or not. - """ - if is_test: - model.eval() - else: - model.train() - - def convert_to_torch_tensor(data_list, use_cuda): """Convert lists into (cuda) Tensors. @@ -168,19 +86,7 @@ class BaseSampler(object): """ - def __init__(self, data_set): - """ - - :param data_set: multi-level list, of shape [num_example, *] - - """ - self.data_set_length = len(data_set) - self.data = data_set - - def __len__(self): - return self.data_set_length - - def __iter__(self): + def __call__(self, *args, **kwargs): raise NotImplementedError @@ -189,16 +95,8 @@ class SequentialSampler(BaseSampler): """ - def __init__(self, data_set): - """ - - :param data_set: multi-level list - - """ - super(SequentialSampler, self).__init__(data_set) - - def __iter__(self): - return iter(self.data) + def __call__(self, data_set): + return list(range(len(data_set))) class RandomSampler(BaseSampler): @@ -206,17 +104,9 @@ class RandomSampler(BaseSampler): """ - def __init__(self, data_set): - """ + def __call__(self, data_set): + return list(np.random.permutation(len(data_set))) - :param data_set: multi-level list - - """ - super(RandomSampler, self).__init__(data_set) - self.order = np.random.permutation(self.data_set_length) - - def __iter__(self): - return iter((self.data[idx] for idx in self.order)) class Batchifier(object): @@ -252,6 +142,7 @@ class BucketBatchifier(Batchifier): """Partition all samples into multiple buckets, each of which contains sentences of approximately the same length. In sampling, first random choose a bucket. Then sample data from it. The number of buckets is decided dynamically by the variance of sentence lengths. + TODO: merge it into Batch """ def __init__(self, data_set, batch_size, num_buckets, drop_last=True, sampler=None): diff --git a/fastNLP/core/batch.py b/fastNLP/core/batch.py new file mode 100644 index 00000000..0a5e9712 --- /dev/null +++ b/fastNLP/core/batch.py @@ -0,0 +1,126 @@ +from collections import defaultdict + +import torch + +from fastNLP.core.dataset import DataSet +from fastNLP.core.field import TextField, LabelField +from fastNLP.core.instance import Instance + + +class Batch(object): + """Batch is an iterable object which iterates over mini-batches. + + :: + for batch_x, batch_y in Batch(data_set): + + """ + + def __init__(self, dataset, batch_size, sampler, use_cuda): + self.dataset = dataset + self.batch_size = batch_size + self.sampler = sampler + self.use_cuda = use_cuda + self.idx_list = None + self.curidx = 0 + + def __iter__(self): + self.idx_list = self.sampler(self.dataset) + self.curidx = 0 + self.lengths = self.dataset.get_length() + return self + + def __next__(self): + """ + + :return batch_x: dict of (str: torch.LongTensor), which means (field name: tensor of shape [batch_size, padding_length]) + batch_x also contains an item (str: list of int) about origin lengths, + which means ("field_name_origin_len": origin lengths). + E.g. + :: + {'text': tensor([[ 0, 1, 2, 3, 0, 0, 0], 4, 5, 2, 6, 7, 8, 9]]), 'text_origin_len': [4, 7]}) + + batch_y: dict of (str: torch.LongTensor), which means (field name: tensor of shape [batch_size, padding_length]) + All tensors in both batch_x and batch_y will be cuda tensors if use_cuda is True. + The names of fields are defined in preprocessor's convert_to_dataset method. + + """ + if self.curidx >= len(self.idx_list): + raise StopIteration + else: + endidx = min(self.curidx + self.batch_size, len(self.idx_list)) + padding_length = {field_name: max(field_length[self.curidx: endidx]) + for field_name, field_length in self.lengths.items()} + origin_lengths = {field_name: field_length[self.curidx: endidx] + for field_name, field_length in self.lengths.items()} + + batch_x, batch_y = defaultdict(list), defaultdict(list) + for idx in range(self.curidx, endidx): + x, y = self.dataset.to_tensor(idx, padding_length) + for name, tensor in x.items(): + batch_x[name].append(tensor) + for name, tensor in y.items(): + batch_y[name].append(tensor) + + batch_origin_length = {} + # combine instances into a batch + for batch in (batch_x, batch_y): + for name, tensor_list in batch.items(): + if self.use_cuda: + batch[name] = torch.stack(tensor_list, dim=0).cuda() + else: + batch[name] = torch.stack(tensor_list, dim=0) + + # add origin lengths in batch_x + for name, tensor in batch_x.items(): + if self.use_cuda: + batch_origin_length[name + "_origin_len"] = torch.LongTensor(origin_lengths[name]).cuda() + else: + batch_origin_length[name + "_origin_len"] = torch.LongTensor(origin_lengths[name]) + batch_x.update(batch_origin_length) + + self.curidx += endidx + return batch_x, batch_y + + +if __name__ == "__main__": + """simple running example + """ + texts = ["i am a cat", + "this is a test of new batch", + "haha" + ] + labels = [0, 1, 0] + + # prepare vocabulary + vocab = {} + for text in texts: + for tokens in text.split(): + if tokens not in vocab: + vocab[tokens] = len(vocab) + print("vocabulary: ", vocab) + + # prepare input dataset + data = DataSet() + for text, label in zip(texts, labels): + x = TextField(text.split(), False) + y = LabelField(label, is_target=True) + ins = Instance(text=x, label=y) + data.append(ins) + + # use vocabulary to index data + data.index_field("text", vocab) + + + # define naive sampler for batch class + class SeqSampler: + def __call__(self, dataset): + return list(range(len(dataset))) + + + # use batch to iterate dataset + data_iterator = Batch(data, 2, SeqSampler(), False) + for epoch in range(1): + for batch_x, batch_y in data_iterator: + print(batch_x) + print(batch_y) + # do stuff diff --git a/fastNLP/core/dataset.py b/fastNLP/core/dataset.py new file mode 100644 index 00000000..bb1a1890 --- /dev/null +++ b/fastNLP/core/dataset.py @@ -0,0 +1,111 @@ +from collections import defaultdict + +from fastNLP.core.field import TextField +from fastNLP.core.instance import Instance + + +def create_dataset_from_lists(str_lists: list, word_vocab: dict, has_target: bool = False, label_vocab: dict = None): + if has_target is True: + if label_vocab is None: + raise RuntimeError("Must provide label vocabulary to transform labels.") + return create_labeled_dataset_from_lists(str_lists, word_vocab, label_vocab) + else: + return create_unlabeled_dataset_from_lists(str_lists, word_vocab) + + +def create_labeled_dataset_from_lists(str_lists, word_vocab, label_vocab): + """Create an DataSet instance that contains labels. + + :param str_lists: list of list of strings, [num_examples, 2, *]. + :: + [ + [[word_11, word_12, ...], [label_11, label_12, ...]], + ... + ] + + :param word_vocab: dict of (str: int), which means (word: index). + :param label_vocab: dict of (str: int), which means (word: index). + :return data_set: a DataSet instance. + + """ + data_set = DataSet() + for example in str_lists: + word_seq, label_seq = example[0], example[1] + x = TextField(word_seq, is_target=False) + y = TextField(label_seq, is_target=True) + data_set.append(Instance(word_seq=x, label_seq=y)) + data_set.index_field("word_seq", word_vocab) + data_set.index_field("label_seq", label_vocab) + return data_set + + +def create_unlabeled_dataset_from_lists(str_lists, word_vocab): + """Create an DataSet instance that contains no labels. + + :param str_lists: list of list of strings, [num_examples, *]. + :: + [ + [word_11, word_12, ...], + ... + ] + + :param word_vocab: dict of (str: int), which means (word: index). + :return data_set: a DataSet instance. + + """ + data_set = DataSet() + for word_seq in str_lists: + x = TextField(word_seq, is_target=False) + data_set.append(Instance(word_seq=x)) + data_set.index_field("word_seq", word_vocab) + return data_set + + +class DataSet(list): + """A DataSet object is a list of Instance objects. + + """ + def __init__(self, name="", instances=None): + """ + + :param name: str, the name of the dataset. (default: "") + :param instances: list of Instance objects. (default: None) + + """ + list.__init__([]) + self.name = name + if instances is not None: + self.extend(instances) + + def index_all(self, vocab): + for ins in self: + ins.index_all(vocab) + + def index_field(self, field_name, vocab): + for ins in self: + ins.index_field(field_name, vocab) + + def to_tensor(self, idx: int, padding_length: dict): + """Convert an instance in a dataset to tensor. + + :param idx: int, the index of the instance in the dataset. + :param padding_length: int + :return tensor_x: dict of (str: torch.LongTensor), which means (field name: tensor of shape [padding_length, ]) + tensor_y: dict of (str: torch.LongTensor), which means (field name: tensor of shape [padding_length, ]) + + """ + ins = self[idx] + return ins.to_tensor(padding_length) + + def get_length(self): + """Fetch lengths of all fields in all instances in a dataset. + + :return lengths: dict of (str: list). The str is the field name. + The list contains lengths of this field in all instances. + + """ + lengths = defaultdict(list) + for ins in self: + for field_name, field_length in ins.get_length().items(): + lengths[field_name].append(field_length) + return lengths diff --git a/fastNLP/core/field.py b/fastNLP/core/field.py new file mode 100644 index 00000000..f5347bd6 --- /dev/null +++ b/fastNLP/core/field.py @@ -0,0 +1,93 @@ +import torch + + +class Field(object): + """A field defines a data type. + + """ + + def __init__(self, is_target: bool): + self.is_target = is_target + + def index(self, vocab): + raise NotImplementedError + + def get_length(self): + raise NotImplementedError + + def to_tensor(self, padding_length): + raise NotImplementedError + + +class TextField(Field): + def __init__(self, text, is_target): + """ + :param text: list of strings + :param is_target: bool + """ + super(TextField, self).__init__(is_target) + self.text = text + self._index = None + + def index(self, vocab): + if self._index is None: + self._index = [vocab[c] for c in self.text] + else: + raise RuntimeError("Replicate indexing of this field.") + return self._index + + def get_length(self): + """Fetch the length of the text field. + + :return length: int, the length of the text. + + """ + return len(self.text) + + def to_tensor(self, padding_length: int): + """Convert text field to tensor. + + :param padding_length: int + :return tensor: torch.LongTensor, of shape [padding_length, ] + """ + pads = [] + if self._index is None: + raise RuntimeError("Indexing not done before to_tensor in TextField.") + if padding_length > self.get_length(): + pads = [0] * (padding_length - self.get_length()) + return torch.LongTensor(self._index + pads) + + +class LabelField(Field): + def __init__(self, label, is_target=True): + super(LabelField, self).__init__(is_target) + self.label = label + self._index = None + + def get_length(self): + """Fetch the length of the label field. + + :return length: int, the length of the label, always 1. + """ + return 1 + + def index(self, vocab): + if self._index is None: + self._index = vocab[self.label] + return self._index + + def to_tensor(self, padding_length): + if self._index is None: + if isinstance(self.label, int): + return torch.LongTensor([self.label]) + elif isinstance(self.label, str): + raise RuntimeError("Field {} not indexed. Call index method.".format(self.label)) + else: + raise RuntimeError( + "Not support type for LabelField. Expect str or int, got {}.".format(type(self.label))) + else: + return torch.LongTensor([self._index]) + + +if __name__ == "__main__": + tf = TextField("test the code".split(), is_target=False) diff --git a/fastNLP/core/instance.py b/fastNLP/core/instance.py new file mode 100644 index 00000000..32f95197 --- /dev/null +++ b/fastNLP/core/instance.py @@ -0,0 +1,53 @@ +class Instance(object): + """An instance which consists of Fields is an example in the DataSet. + + """ + + def __init__(self, **fields): + self.fields = fields + self.has_index = False + self.indexes = {} + + def add_field(self, field_name, field): + self.fields[field_name] = field + + def get_length(self): + """Fetch the length of all fields in the instance. + + :return length: dict of (str: int), which means (field name: field length). + + """ + length = {name: field.get_length() for name, field in self.fields.items()} + return length + + def index_field(self, field_name, vocab): + """use `vocab` to index certain field + """ + self.indexes[field_name] = self.fields[field_name].index(vocab) + + def index_all(self, vocab): + """use `vocab` to index all fields + """ + if self.has_index: + print("error") + return self.indexes + indexes = {name: field.index(vocab) for name, field in self.fields.items()} + self.indexes = indexes + return indexes + + def to_tensor(self, padding_length: dict): + """Convert instance to tensor. + + :param padding_length: dict of (str: int), which means (field name: padding_length of this field) + :return tensor_x: dict of (str: torch.LongTensor), which means (field name: tensor of shape [padding_length, ]) + tensor_y: dict of (str: torch.LongTensor), which means (field name: tensor of shape [padding_length, ]) + If is_target is False for all fields, tensor_y would be an empty dict. + """ + tensor_x = {} + tensor_y = {} + for name, field in self.fields.items(): + if field.is_target: + tensor_y[name] = field.to_tensor(padding_length[name]) + else: + tensor_x[name] = field.to_tensor(padding_length[name]) + return tensor_x, tensor_y diff --git a/fastNLP/core/loss.py b/fastNLP/core/loss.py index 8d866bbf..8a0eedd7 100644 --- a/fastNLP/core/loss.py +++ b/fastNLP/core/loss.py @@ -37,5 +37,7 @@ class Loss(object): """ if loss_name == "cross_entropy": return torch.nn.CrossEntropyLoss() + elif loss_name == 'nll': + return torch.nn.NLLLoss() else: raise NotImplementedError diff --git a/fastNLP/core/predictor.py b/fastNLP/core/predictor.py index d04a6ef0..802661ef 100644 --- a/fastNLP/core/predictor.py +++ b/fastNLP/core/predictor.py @@ -1,53 +1,10 @@ import numpy as np import torch -from fastNLP.core.action import Batchifier, SequentialSampler -from fastNLP.core.action import convert_to_torch_tensor -from fastNLP.core.preprocess import load_pickle, DEFAULT_UNKNOWN_LABEL -from fastNLP.modules import utils - - -def make_batch(iterator, use_cuda, output_length=False, max_len=None, min_len=None): - """Batch and Pad data, only for Inference. - - :param iterator: An iterable object that returns a list of indices representing a mini-batch of samples. - :param use_cuda: bool, whether to use GPU - :param output_length: bool, whether to output the original length of the sequence before padding. (default: False) - :param max_len: int, maximum sequence length. Longer sequences will be clipped. (default: None) - :param min_len: int, minimum sequence length. Shorter sequences will be padded. (default: None) - :return: - """ - for batch_x in iterator: - batch_x = pad(batch_x) - # convert list to tensor - batch_x = convert_to_torch_tensor(batch_x, use_cuda) - - # trim data to max_len - if max_len is not None and batch_x.size(1) > max_len: - batch_x = batch_x[:, :max_len] - if min_len is not None and batch_x.size(1) < min_len: - pad_tensor = torch.zeros(batch_x.size(0), min_len - batch_x.size(1)).to(batch_x) - batch_x = torch.cat((batch_x, pad_tensor), 1) - - if output_length: - seq_len = [len(x) for x in batch_x] - yield tuple([batch_x, seq_len]) - else: - yield batch_x - - -def pad(batch, fill=0): - """ Pad a mini-batch of sequence samples to maximum length of this batch. - - :param batch: list of list - :param fill: word index to pad, default 0. - :return batch: a padded mini-batch - """ - max_length = max([len(x) for x in batch]) - for idx, sample in enumerate(batch): - if len(sample) < max_length: - batch[idx] = sample + ([fill] * (max_length - len(sample))) - return batch +from fastNLP.core.action import SequentialSampler +from fastNLP.core.batch import Batch +from fastNLP.core.dataset import create_dataset_from_lists +from fastNLP.core.preprocess import load_pickle class Predictor(object): @@ -59,11 +16,17 @@ class Predictor(object): Currently, Predictor does not support GPU. """ - def __init__(self, pickle_path): + def __init__(self, pickle_path, task): + """ + + :param pickle_path: str, the path to the pickle files. + :param task: str, specify which task the predictor will perform. One of ("seq_label", "text_classify"). + + """ self.batch_size = 1 self.batch_output = [] - self.iterator = None self.pickle_path = pickle_path + self._task = task # one of ("seq_label", "text_classify") self.index2label = load_pickle(self.pickle_path, "id2class.pkl") self.word2index = load_pickle(self.pickle_path, "word2id.pkl") @@ -71,19 +34,19 @@ class Predictor(object): """Perform inference using the trained model. :param network: a PyTorch model (cpu) - :param data: list of list of strings + :param data: list of list of strings, [num_examples, seq_len] :return: list of list of strings, [num_examples, tag_seq_length] """ - # transform strings into indices + # transform strings into DataSet object data = self.prepare_input(data) # turn on the testing mode; clean up the history self.mode(network, test=True) self.batch_output.clear() - data_iterator = iter(Batchifier(SequentialSampler(data), self.batch_size, drop_last=False)) + data_iterator = Batch(data, batch_size=self.batch_size, sampler=SequentialSampler(), use_cuda=False) - for batch_x in self.make_batch(data_iterator, use_cuda=False): + for batch_x, _ in data_iterator: with torch.no_grad(): prediction = self.data_forward(network, batch_x) @@ -99,103 +62,61 @@ class Predictor(object): def data_forward(self, network, x): """Forward through network.""" - raise NotImplementedError - - def make_batch(self, iterator, use_cuda): - raise NotImplementedError + y = network(**x) + if self._task == "seq_label": + y = network.prediction(y) + return y def prepare_input(self, data): - """Transform two-level list of strings into that of index. + """Transform two-level list of strings into an DataSet object. + In the training pipeline, this is done by Preprocessor. But in inference time, we do not call Preprocessor. - :param data: + :param data: list of list of strings. + :: [ [word_11, word_12, ...], [word_21, word_22, ...], ... ] - :return data_index: list of list of int. + + :return data_set: a DataSet instance. """ assert isinstance(data, list) - data_index = [] - default_unknown_index = self.word2index[DEFAULT_UNKNOWN_LABEL] - for example in data: - data_index.append([self.word2index.get(w, default_unknown_index) for w in example]) - return data_index + return create_dataset_from_lists(data, self.word2index, has_target=False) def prepare_output(self, data): """Transform list of batch outputs into strings.""" - raise NotImplementedError + if self._task == "seq_label": + return self._seq_label_prepare_output(data) + elif self._task == "text_classify": + return self._text_classify_prepare_output(data) + else: + raise NotImplementedError("Unknown task type {}".format(self._task)) - -class SeqLabelInfer(Predictor): - """ - Inference on sequence labeling models. - """ - - def __init__(self, pickle_path): - super(SeqLabelInfer, self).__init__(pickle_path) - - def data_forward(self, network, inputs): - """ - This is only for sequence labeling with CRF decoder. - :param network: a PyTorch model - :param inputs: tuple of (x, seq_len) - x: Tensor of shape [batch_size, max_len], where max_len is the maximum length of the mini-batch - after padding. - seq_len: list of int, the lengths of sequences before padding. - :return prediction: Tensor of shape [batch_size, max_len] - """ - if not isinstance(inputs[1], list) and isinstance(inputs[0], list): - raise RuntimeError("output_length must be true for sequence modeling.") - # unpack the returned value from make_batch - x, seq_len = inputs[0], inputs[1] - batch_size, max_len = x.size(0), x.size(1) - mask = utils.seq_mask(seq_len, max_len) - mask = mask.byte().view(batch_size, max_len) - y = network(x) - prediction = network.prediction(y, mask) - return torch.Tensor(prediction) - - def make_batch(self, iterator, use_cuda): - return make_batch(iterator, use_cuda, output_length=True) - - def prepare_output(self, batch_outputs): - """Transform list of batch outputs into strings. - - :param batch_outputs: list of 2-D Tensor, shape [num_batch, batch-size, tag_seq_length]. - :return results: 2-D list of strings, shape [num_examples, tag_seq_length] - """ + def _seq_label_prepare_output(self, batch_outputs): results = [] for batch in batch_outputs: for example in np.array(batch): results.append([self.index2label[int(x)] for x in example]) return results - -class ClassificationInfer(Predictor): - """ - Inference on Classification models. - """ - - def __init__(self, pickle_path): - super(ClassificationInfer, self).__init__(pickle_path) - - def data_forward(self, network, x): - """Forward through network.""" - logits = network(x) - return logits - - def make_batch(self, iterator, use_cuda): - return make_batch(iterator, use_cuda, output_length=False, min_len=5) - - def prepare_output(self, batch_outputs): - """ - Transform list of batch outputs into strings. - :param batch_outputs: list of 2-D Tensor, of shape [num_batch, batch-size, num_classes]. - :return results: list of strings - """ + def _text_classify_prepare_output(self, batch_outputs): results = [] for batch_out in batch_outputs: idx = np.argmax(batch_out.detach().numpy(), axis=-1) results.extend([self.index2label[i] for i in idx]) return results + + +class SeqLabelInfer(Predictor): + def __init__(self, pickle_path): + print( + "[FastNLP Warning] SeqLabelInfer will be deprecated. Please use Predictor with argument 'task'='seq_label'.") + super(SeqLabelInfer, self).__init__(pickle_path, "seq_label") + + +class ClassificationInfer(Predictor): + def __init__(self, pickle_path): + print( + "[FastNLP Warning] ClassificationInfer will be deprecated. Please use Predictor with argument 'task'='text_classify'.") + super(ClassificationInfer, self).__init__(pickle_path, "text_classify") diff --git a/fastNLP/core/preprocess.py b/fastNLP/core/preprocess.py index f8142c36..b5d348e6 100644 --- a/fastNLP/core/preprocess.py +++ b/fastNLP/core/preprocess.py @@ -3,6 +3,10 @@ import os import numpy as np +from fastNLP.core.dataset import DataSet +from fastNLP.core.field import TextField, LabelField +from fastNLP.core.instance import Instance + DEFAULT_PADDING_LABEL = '' # dict index = 0 DEFAULT_UNKNOWN_LABEL = '' # dict index = 1 DEFAULT_RESERVED_LABEL = ['', @@ -84,7 +88,7 @@ class BasePreprocess(object): return len(self.label2index) def run(self, train_dev_data, test_data=None, pickle_path="./", train_dev_split=0, cross_val=False, n_fold=10): - """Main preprocessing pipeline. + """Main pre-processing pipeline. :param train_dev_data: three-level list, with either single label or multiple labels in a sample. :param test_data: three-level list, with either single label or multiple labels in a sample. (optional) @@ -92,7 +96,9 @@ class BasePreprocess(object): :param train_dev_split: float, between [0, 1]. The ratio of training data used as validation set. :param cross_val: bool, whether to do cross validation. :param n_fold: int, the number of folds of cross validation. Only useful when cross_val is True. - :return results: a tuple of datasets after preprocessing. + :return results: multiple datasets after pre-processing. If test_data is provided, return one more dataset. + If train_dev_split > 0, return one more dataset - the dev set. If cross_val is True, each dataset + is a list of DataSet objects; Otherwise, each dataset is a DataSet object. """ if pickle_exist(pickle_path, "word2id.pkl") and pickle_exist(pickle_path, "class2id.pkl"): @@ -111,68 +117,87 @@ class BasePreprocess(object): index2label = self.build_reverse_dict(self.label2index) save_pickle(index2label, pickle_path, "id2class.pkl") - data_train = [] - data_dev = [] + train_set = [] + dev_set = [] if not cross_val: if not pickle_exist(pickle_path, "data_train.pkl"): - data_train.extend(self.to_index(train_dev_data)) if train_dev_split > 0 and not pickle_exist(pickle_path, "data_dev.pkl"): - split = int(len(data_train) * train_dev_split) - data_dev = data_train[: split] - data_train = data_train[split:] - save_pickle(data_dev, pickle_path, "data_dev.pkl") + split = int(len(train_dev_data) * train_dev_split) + data_dev = train_dev_data[: split] + data_train = train_dev_data[split:] + train_set = self.convert_to_dataset(data_train, self.word2index, self.label2index) + dev_set = self.convert_to_dataset(data_dev, self.word2index, self.label2index) + + save_pickle(dev_set, pickle_path, "data_dev.pkl") print("{} of the training data is split for validation. ".format(train_dev_split)) - save_pickle(data_train, pickle_path, "data_train.pkl") + else: + train_set = self.convert_to_dataset(train_dev_data, self.word2index, self.label2index) + save_pickle(train_set, pickle_path, "data_train.pkl") else: - data_train = load_pickle(pickle_path, "data_train.pkl") + train_set = load_pickle(pickle_path, "data_train.pkl") if pickle_exist(pickle_path, "data_dev.pkl"): - data_dev = load_pickle(pickle_path, "data_dev.pkl") + dev_set = load_pickle(pickle_path, "data_dev.pkl") else: # cross_val is True if not pickle_exist(pickle_path, "data_train_0.pkl"): # cross validation - data_idx = self.to_index(train_dev_data) - data_cv = self.cv_split(data_idx, n_fold) + data_cv = self.cv_split(train_dev_data, n_fold) for i, (data_train_cv, data_dev_cv) in enumerate(data_cv): + data_train_cv = self.convert_to_dataset(data_train_cv, self.word2index, self.label2index) + data_dev_cv = self.convert_to_dataset(data_dev_cv, self.word2index, self.label2index) save_pickle( data_train_cv, pickle_path, "data_train_{}.pkl".format(i)) save_pickle( data_dev_cv, pickle_path, "data_dev_{}.pkl".format(i)) - data_train.append(data_train_cv) - data_dev.append(data_dev_cv) + train_set.append(data_train_cv) + dev_set.append(data_dev_cv) print("{}-fold cross validation.".format(n_fold)) else: for i in range(n_fold): data_train_cv = load_pickle(pickle_path, "data_train_{}.pkl".format(i)) data_dev_cv = load_pickle(pickle_path, "data_dev_{}.pkl".format(i)) - data_train.append(data_train_cv) - data_dev.append(data_dev_cv) + train_set.append(data_train_cv) + dev_set.append(data_dev_cv) # prepare test data if provided - data_test = [] + test_set = [] if test_data is not None: if not pickle_exist(pickle_path, "data_test.pkl"): - data_test = self.to_index(test_data) - save_pickle(data_test, pickle_path, "data_test.pkl") + test_set = self.convert_to_dataset(test_data, self.word2index, self.label2index) + save_pickle(test_set, pickle_path, "data_test.pkl") # return preprocessed results - results = [data_train] + results = [train_set] if cross_val or train_dev_split > 0: - results.append(data_dev) + results.append(dev_set) if test_data: - results.append(data_test) + results.append(test_set) if len(results) == 1: return results[0] else: return tuple(results) def build_dict(self, data): - raise NotImplementedError + label2index = DEFAULT_WORD_TO_INDEX.copy() + word2index = DEFAULT_WORD_TO_INDEX.copy() + for example in data: + for word in example[0]: + if word not in word2index: + word2index[word] = len(word2index) + label = example[1] + if isinstance(label, str): + # label is a string + if label not in label2index: + label2index[label] = len(label2index) + elif isinstance(label, list): + # label is a list of strings + for single_label in label: + if single_label not in label2index: + label2index[single_label] = len(label2index) + return word2index, label2index - def to_index(self, data): - raise NotImplementedError def build_reverse_dict(self, word_dict): id2word = {word_dict[w]: w for w in word_dict} @@ -186,11 +211,23 @@ class BasePreprocess(object): return data_train, data_dev def cv_split(self, data, n_fold): - """Split data for cross validation.""" + """Split data for cross validation. + + :param data: list of string + :param n_fold: int + :return data_cv: + + :: + [ + (data_train, data_dev), # 1st fold + (data_train, data_dev), # 2nd fold + ... + ] + + """ data_copy = data.copy() np.random.shuffle(data_copy) fold_size = round(len(data_copy) / n_fold) - data_cv = [] for i in range(n_fold - 1): start = i * fold_size @@ -202,154 +239,72 @@ class BasePreprocess(object): data_dev = data_copy[start:] data_train = data_copy[:start] data_cv.append((data_train, data_dev)) - return data_cv + def convert_to_dataset(self, data, vocab, label_vocab): + """Convert list of indices into a DataSet object. + + :param data: list. Entries are strings. + :param vocab: a dict, mapping string (token) to index (int). + :param label_vocab: a dict, mapping string (label) to index (int). + :return data_set: a DataSet object + """ + use_word_seq = False + use_label_seq = False + use_label_str = False + + # construct a DataSet object and fill it with Instances + data_set = DataSet() + for example in data: + words, label = example[0], example[1] + instance = Instance() + + if isinstance(words, list): + x = TextField(words, is_target=False) + instance.add_field("word_seq", x) + use_word_seq = True + else: + raise NotImplementedError("words is a {}".format(type(words))) + + if isinstance(label, list): + y = TextField(label, is_target=True) + instance.add_field("label_seq", y) + use_label_seq = True + elif isinstance(label, str): + y = LabelField(label, is_target=True) + instance.add_field("label", y) + use_label_str = True + else: + raise NotImplementedError("label is a {}".format(type(label))) + data_set.append(instance) + + # convert strings to indices + if use_word_seq: + data_set.index_field("word_seq", vocab) + if use_label_seq: + data_set.index_field("label_seq", label_vocab) + if use_label_str: + data_set.index_field("label", label_vocab) + + return data_set + class SeqLabelPreprocess(BasePreprocess): - """Preprocess pipeline, including building mapping from words to index, from index to words, - from labels/classes to index, from index to labels/classes. - data of three-level list which have multiple labels in each sample. - :: - - [ - [ [word_11, word_12, ...], [label_1, label_1, ...] ], - [ [word_21, word_22, ...], [label_2, label_1, ...] ], - ... - ] - - """ - def __init__(self): + super(SeqLabelPreprocess, self).__init__() - def build_dict(self, data): - """Add new words with indices into self.word_dict, new labels with indices into self.label_dict. - - :param data: three-level list - :: - - [ - [ [word_11, word_12, ...], [label_1, label_1, ...] ], - [ [word_21, word_22, ...], [label_2, label_1, ...] ], - ... - ] - - :return word2index: dict of {str, int} - label2index: dict of {str, int} - """ - # In seq labeling, both word seq and label seq need to be padded to the same length in a mini-batch. - label2index = DEFAULT_WORD_TO_INDEX.copy() - word2index = DEFAULT_WORD_TO_INDEX.copy() - for example in data: - for word, label in zip(example[0], example[1]): - if word not in word2index: - word2index[word] = len(word2index) - if label not in label2index: - label2index[label] = len(label2index) - return word2index, label2index - - def to_index(self, data): - """Convert word strings and label strings into indices. - - :param data: three-level list - :: - - [ - [ [word_11, word_12, ...], [label_1, label_1, ...] ], - [ [word_21, word_22, ...], [label_2, label_1, ...] ], - ... - ] - - :return data_index: the same shape as data, but each string is replaced by its corresponding index - """ - data_index = [] - for example in data: - word_list = [] - label_list = [] - for word, label in zip(example[0], example[1]): - word_list.append(self.word2index.get(word, DEFAULT_WORD_TO_INDEX[DEFAULT_UNKNOWN_LABEL])) - label_list.append(self.label2index.get(label, DEFAULT_WORD_TO_INDEX[DEFAULT_UNKNOWN_LABEL])) - data_index.append([word_list, label_list]) - return data_index class ClassPreprocess(BasePreprocess): - """ Preprocess pipeline for classification datasets. - Preprocess pipeline, including building mapping from words to index, from index to words, - from labels/classes to index, from index to labels/classes. - design for data of three-level list which has a single label in each sample. - :: - - [ - [ [word_11, word_12, ...], label_1 ], - [ [word_21, word_22, ...], label_2 ], - ... - ] - - """ - def __init__(self): super(ClassPreprocess, self).__init__() - def build_dict(self, data): - """Build vocabulary.""" - # build vocabulary from scratch if nothing exists - word2index = DEFAULT_WORD_TO_INDEX.copy() - label2index = DEFAULT_WORD_TO_INDEX.copy() - - # collect every word and label - for sent, label in data: - if len(sent) <= 1: - continue - - if label not in label2index: - label2index[label] = len(label2index) - - for word in sent: - if word not in word2index: - word2index[word] = len(word2index) - return word2index, label2index - - def to_index(self, data): - """Convert word strings and label strings into indices. - - :param data: three-level list - :: - - [ - [ [word_11, word_12, ...], label_1 ], - [ [word_21, word_22, ...], label_2 ], - ... - ] - - :return data_index: the same shape as data, but each string is replaced by its corresponding index - """ - data_index = [] - for example in data: - word_list = [] - # example[0] is the word list, example[1] is the single label - for word in example[0]: - word_list.append(self.word2index.get(word, DEFAULT_WORD_TO_INDEX[DEFAULT_UNKNOWN_LABEL])) - label_index = self.label2index.get(example[1], DEFAULT_WORD_TO_INDEX[DEFAULT_UNKNOWN_LABEL]) - data_index.append([word_list, label_index]) - return data_index - - -def infer_preprocess(pickle_path, data): - """Preprocess over inference data. Transform three-level list of strings into that of index. - :: - - [ - [word_11, word_12, ...], - [word_21, word_22, ...], - ... - ] - - """ - word2index = load_pickle(pickle_path, "word2id.pkl") - data_index = [] - for example in data: - data_index.append([word2index.get(w, DEFAULT_UNKNOWN_LABEL) for w in example]) - return data_index +if __name__ == "__main__": + p = BasePreprocess() + train_dev_data = [[["I", "am", "a", "good", "student", "."], "0"], + [["You", "are", "pretty", "."], "1"] + ] + training_set = p.run(train_dev_data) + print(training_set) diff --git a/fastNLP/core/tester.py b/fastNLP/core/tester.py index bcb6ba8c..aaa96283 100644 --- a/fastNLP/core/tester.py +++ b/fastNLP/core/tester.py @@ -1,9 +1,8 @@ import numpy as np import torch -from fastNLP.core.action import Action -from fastNLP.core.action import RandomSampler, Batchifier -from fastNLP.modules import utils +from fastNLP.core.action import RandomSampler +from fastNLP.core.batch import Batch from fastNLP.saver.logger import create_logger logger = create_logger(__name__, "./train_test.log") @@ -35,16 +34,16 @@ class BaseTester(object): """ "required_args" is the collection of arguments that users must pass to Trainer explicitly. This is used to warn users of essential settings in the training. - Obviously, "required_args" is the subset of "default_args". - The value in "default_args" to the keys in "required_args" is simply for type check. + Specially, "required_args" does not have default value, so they have nothing to do with "default_args". """ - # add required arguments here - required_args = {} + required_args = {"task" # one of ("seq_label", "text_classify") + } for req_key in required_args: if req_key not in kwargs: logger.error("Tester lacks argument {}".format(req_key)) raise ValueError("Tester lacks argument {}".format(req_key)) + self._task = kwargs["task"] for key in default_args: if key in kwargs: @@ -79,14 +78,14 @@ class BaseTester(object): self._model = network # turn on the testing mode; clean up the history - self.mode(network, test=True) + self.mode(network, is_test=True) self.eval_history.clear() self.batch_output.clear() - iterator = iter(Batchifier(RandomSampler(dev_data), self.batch_size, drop_last=False)) + data_iterator = Batch(dev_data, self.batch_size, sampler=RandomSampler(), use_cuda=self.use_cuda) step = 0 - for batch_x, batch_y in self.make_batch(iterator): + for batch_x, batch_y in data_iterator: with torch.no_grad(): prediction = self.data_forward(network, batch_x) eval_results = self.evaluate(prediction, batch_y) @@ -102,17 +101,22 @@ class BaseTester(object): print(self.make_eval_output(prediction, eval_results)) step += 1 - def mode(self, model, test): + def mode(self, model, is_test=False): """Train mode or Test mode. This is for PyTorch currently. :param model: a PyTorch model - :param test: bool, whether in test mode. + :param is_test: bool, whether in test mode or not. + """ - Action.mode(model, test) + if is_test: + model.eval() + else: + model.train() def data_forward(self, network, x): """A forward pass of the model. """ - raise NotImplementedError + y = network(**x) + return y def evaluate(self, predict, truth): """Compute evaluation metrics. @@ -121,7 +125,38 @@ class BaseTester(object): :param truth: Tensor :return eval_results: can be anything. It will be stored in self.eval_history """ - raise NotImplementedError + if "label_seq" in truth: + truth = truth["label_seq"] + elif "label" in truth: + truth = truth["label"] + else: + raise NotImplementedError("Unknown key {} in batch_y.".format(truth.keys())) + + if self._task == "seq_label": + return self._seq_label_evaluate(predict, truth) + elif self._task == "text_classify": + return self._text_classify_evaluate(predict, truth) + else: + raise NotImplementedError("Unknown task type {}.".format(self._task)) + + def _seq_label_evaluate(self, predict, truth): + batch_size, max_len = predict.size(0), predict.size(1) + loss = self._model.loss(predict, truth) / batch_size + prediction = self._model.prediction(predict) + # pad prediction to equal length + for pred in prediction: + if len(pred) < max_len: + pred += [0] * (max_len - len(pred)) + results = torch.Tensor(prediction).view(-1, ) + + # make sure "results" is in the same device as "truth" + results = results.to(truth) + accuracy = torch.sum(results == truth.view((-1,))).to(torch.float) / results.shape[0] + return [float(loss), float(accuracy)] + + def _text_classify_evaluate(self, y_logit, y_true): + y_prob = torch.nn.functional.softmax(y_logit, dim=-1) + return [y_prob, y_true] @property def metrics(self): @@ -131,7 +166,27 @@ class BaseTester(object): :return : variable number of outputs """ - raise NotImplementedError + if self._task == "seq_label": + return self._seq_label_metrics + elif self._task == "text_classify": + return self._text_classify_metrics + else: + raise NotImplementedError("Unknown task type {}.".format(self._task)) + + @property + def _seq_label_metrics(self): + batch_loss = np.mean([x[0] for x in self.eval_history]) + batch_accuracy = np.mean([x[1] for x in self.eval_history]) + return batch_loss, batch_accuracy + + @property + def _text_classify_metrics(self): + y_prob, y_true = zip(*self.eval_history) + y_prob = torch.cat(y_prob, dim=0) + y_pred = torch.argmax(y_prob, dim=-1) + y_true = torch.cat(y_true, dim=0) + acc = float(torch.sum(y_pred == y_true)) / len(y_true) + return y_true.cpu().numpy(), y_prob.cpu().numpy(), acc def show_metrics(self): """Customize evaluation outputs in Trainer. @@ -140,10 +195,8 @@ class BaseTester(object): :return print_str: str """ - raise NotImplementedError - - def make_batch(self, iterator): - raise NotImplementedError + loss, accuracy = self.metrics + return "dev loss={:.2f}, accuracy={:.2f}".format(loss, accuracy) def make_eval_output(self, predictions, eval_results): """Customize Tester outputs. @@ -152,108 +205,20 @@ class BaseTester(object): :param eval_results: Tensor :return: str, to be printed. """ - raise NotImplementedError + return self.show_metrics() + class SeqLabelTester(BaseTester): - """Tester for sequence labeling. - - """ - def __init__(self, **test_args): - """ - :param test_args: a dict-like object that has __getitem__ method, can be accessed by "test_args["key_str"]" - """ + test_args.update({"task": "seq_label"}) + print( + "[FastNLP Warning] SeqLabelTester will be deprecated. Please use Tester with argument 'task'='seq_label'.") super(SeqLabelTester, self).__init__(**test_args) - self.max_len = None - self.mask = None - self.seq_len = None - - def data_forward(self, network, inputs): - """This is only for sequence labeling with CRF decoder. - - :param network: a PyTorch model - :param inputs: tuple of (x, seq_len) - x: Tensor of shape [batch_size, max_len], where max_len is the maximum length of the mini-batch - after padding. - seq_len: list of int, the lengths of sequences before padding. - :return y: Tensor of shape [batch_size, max_len] - """ - if not isinstance(inputs, tuple): - raise RuntimeError("output_length must be true for sequence modeling.") - # unpack the returned value from make_batch - x, seq_len = inputs[0], inputs[1] - batch_size, max_len = x.size(0), x.size(1) - mask = utils.seq_mask(seq_len, max_len) - mask = mask.byte().view(batch_size, max_len) - if torch.cuda.is_available() and self.use_cuda: - mask = mask.cuda() - self.mask = mask - self.seq_len = seq_len - y = network(x) - return y - - def evaluate(self, predict, truth): - """Compute metrics (or loss). - - :param predict: Tensor, [batch_size, max_len, tag_size] - :param truth: Tensor, [batch_size, max_len] - :return: - """ - batch_size, max_len = predict.size(0), predict.size(1) - loss = self._model.loss(predict, truth, self.mask) / batch_size - - prediction = self._model.prediction(predict, self.mask) - results = torch.Tensor(prediction).view(-1, ) - # make sure "results" is in the same device as "truth" - results = results.to(truth) - accuracy = torch.sum(results == truth.view((-1,))).to(torch.float) / results.shape[0] - return [float(loss), float(accuracy)] - - def metrics(self): - batch_loss = np.mean([x[0] for x in self.eval_history]) - batch_accuracy = np.mean([x[1] for x in self.eval_history]) - return batch_loss, batch_accuracy - - def show_metrics(self): - """This is called by Trainer to print evaluation on dev set. - - :return print_str: str - """ - loss, accuracy = self.metrics() - return "dev loss={:.2f}, accuracy={:.2f}".format(loss, accuracy) - - def make_batch(self, iterator): - return Action.make_batch(iterator, use_cuda=self.use_cuda, output_length=True) class ClassificationTester(BaseTester): - """Tester for classification.""" - def __init__(self, **test_args): - """ - :param test_args: a dict-like object that has __getitem__ method. - can be accessed by "test_args["key_str"]" - """ + test_args.update({"task": "seq_label"}) + print( + "[FastNLP Warning] ClassificationTester will be deprecated. Please use Tester with argument 'task'='text_classify'.") super(ClassificationTester, self).__init__(**test_args) - - def make_batch(self, iterator, max_len=None): - return Action.make_batch(iterator, use_cuda=self.use_cuda, max_len=max_len) - - def data_forward(self, network, x): - """Forward through network.""" - logits = network(x) - return logits - - def evaluate(self, y_logit, y_true): - """Return y_pred and y_true.""" - y_prob = torch.nn.functional.softmax(y_logit, dim=-1) - return [y_prob, y_true] - - def metrics(self): - """Compute accuracy.""" - y_prob, y_true = zip(*self.eval_history) - y_prob = torch.cat(y_prob, dim=0) - y_pred = torch.argmax(y_prob, dim=-1) - y_true = torch.cat(y_true, dim=0) - acc = float(torch.sum(y_pred == y_true)) / len(y_true) - return y_true.cpu().numpy(), y_prob.cpu().numpy(), acc diff --git a/fastNLP/core/trainer.py b/fastNLP/core/trainer.py index 523a1763..e638fdde 100644 --- a/fastNLP/core/trainer.py +++ b/fastNLP/core/trainer.py @@ -4,15 +4,13 @@ import time from datetime import timedelta import torch -import tensorboardX from tensorboardX import SummaryWriter -from fastNLP.core.action import Action -from fastNLP.core.action import RandomSampler, Batchifier +from fastNLP.core.action import RandomSampler +from fastNLP.core.batch import Batch from fastNLP.core.loss import Loss from fastNLP.core.optimizer import Optimizer from fastNLP.core.tester import SeqLabelTester, ClassificationTester -from fastNLP.modules import utils from fastNLP.saver.logger import create_logger from fastNLP.saver.model_saver import ModelSaver @@ -50,16 +48,16 @@ class BaseTrainer(object): """ "required_args" is the collection of arguments that users must pass to Trainer explicitly. This is used to warn users of essential settings in the training. - Obviously, "required_args" is the subset of "default_args". - The value in "default_args" to the keys in "required_args" is simply for type check. + Specially, "required_args" does not have default value, so they have nothing to do with "default_args". """ - # add required arguments here - required_args = {} + required_args = {"task" # one of ("seq_label", "text_classify") + } for req_key in required_args: if req_key not in kwargs: logger.error("Trainer lacks argument {}".format(req_key)) raise ValueError("Trainer lacks argument {}".format(req_key)) + self._task = kwargs["task"] for key in default_args: if key in kwargs: @@ -90,13 +88,14 @@ class BaseTrainer(object): self._optimizer_proto = default_args["optimizer"] self._summary_writer = SummaryWriter(self.pickle_path + 'tensorboard_logs') self._graph_summaried = False + self._best_accuracy = 0.0 def train(self, network, train_data, dev_data=None): """General Training Procedure :param network: a model - :param train_data: three-level list, the training set. - :param dev_data: three-level list, the validation data (optional) + :param train_data: a DataSet instance, the training data + :param dev_data: a DataSet instance, the validation data (optional) """ # transfer model to gpu if available if torch.cuda.is_available() and self.use_cuda: @@ -126,9 +125,10 @@ class BaseTrainer(object): logger.info("training epoch {}".format(epoch)) # turn on network training mode - self.mode(network, test=False) + self.mode(network, is_test=False) # prepare mini-batch iterator - data_iterator = iter(Batchifier(RandomSampler(train_data), self.batch_size, drop_last=False)) + data_iterator = Batch(train_data, batch_size=self.batch_size, sampler=RandomSampler(), + use_cuda=self.use_cuda) logger.info("prepared data iterator") # one forward and backward pass @@ -157,7 +157,7 @@ class BaseTrainer(object): - epoch: int, """ step = 0 - for batch_x, batch_y in self.make_batch(data_iterator): + for batch_x, batch_y in data_iterator: prediction = self.data_forward(network, batch_x) @@ -166,10 +166,6 @@ class BaseTrainer(object): self.update() self._summary_writer.add_scalar("loss", loss.item(), global_step=step) - if not self._graph_summaried: - self._summary_writer.add_graph(network, batch_x) - self._graph_summaried = True - if kwargs["n_print"] > 0 and step % kwargs["n_print"] == 0: end = time.time() diff = timedelta(seconds=round(end - kwargs["start"])) @@ -204,11 +200,17 @@ class BaseTrainer(object): network_copy = copy.deepcopy(network) self.train(network_copy, train_data_cv[i], dev_data_cv[i]) - def make_batch(self, iterator): - raise NotImplementedError + def mode(self, model, is_test=False): + """Train mode or Test mode. This is for PyTorch currently. - def mode(self, network, test): - Action.mode(network, test) + :param model: a PyTorch model + :param is_test: bool, whether in test mode or not. + + """ + if is_test: + model.eval() + else: + model.train() def define_optimizer(self): """Define framework-specific optimizer specified by the models. @@ -224,7 +226,20 @@ class BaseTrainer(object): self._optimizer.step() def data_forward(self, network, x): - raise NotImplementedError + if self._task == "seq_label": + y = network(x["word_seq"], x["word_seq_origin_len"]) + elif self._task == "text_classify": + y = network(x["word_seq"]) + else: + raise NotImplementedError("Unknown task type {}.".format(self._task)) + + if not self._graph_summaried: + if self._task == "seq_label": + self._summary_writer.add_graph(network, (x["word_seq"], x["word_seq_origin_len"]), verbose=False) + elif self._task == "text_classify": + self._summary_writer.add_graph(network, x["word_seq"], verbose=False) + self._graph_summaried = True + return y def grad_backward(self, loss): """Compute gradient with link rules. @@ -243,6 +258,13 @@ class BaseTrainer(object): :param truth: ground truth label vector :return: a scalar """ + if "label_seq" in truth: + truth = truth["label_seq"] + elif "label" in truth: + truth = truth["label"] + truth = truth.view((-1,)) + else: + raise NotImplementedError("Unknown key {} in batch_y.".format(truth.keys())) return self._loss_func(predict, truth) def define_loss(self): @@ -270,7 +292,12 @@ class BaseTrainer(object): :param validator: a Tester instance :return: bool, True means current results on dev set is the best. """ - raise NotImplementedError + loss, accuracy = validator.metrics + if accuracy > self._best_accuracy: + self._best_accuracy = accuracy + return True + else: + return False def save_model(self, network, model_name): """Save this model with such a name. @@ -291,55 +318,11 @@ class SeqLabelTrainer(BaseTrainer): """Trainer for Sequence Labeling """ - def __init__(self, **kwargs): + kwargs.update({"task": "seq_label"}) + print( + "[FastNLP Warning] SeqLabelTrainer will be deprecated. Please use Trainer with argument 'task'='seq_label'.") super(SeqLabelTrainer, self).__init__(**kwargs) - # self.vocab_size = kwargs["vocab_size"] - # self.num_classes = kwargs["num_classes"] - self.max_len = None - self.mask = None - self.best_accuracy = 0.0 - - def data_forward(self, network, inputs): - if not isinstance(inputs, tuple): - raise RuntimeError("output_length must be true for sequence modeling. Receive {}".format(type(inputs[0]))) - # unpack the returned value from make_batch - x, seq_len = inputs[0], inputs[1] - - batch_size, max_len = x.size(0), x.size(1) - mask = utils.seq_mask(seq_len, max_len) - mask = mask.byte().view(batch_size, max_len) - - if torch.cuda.is_available() and self.use_cuda: - mask = mask.cuda() - self.mask = mask - - y = network(x) - return y - - def get_loss(self, predict, truth): - """Compute loss given prediction and ground truth. - - :param predict: prediction label vector, [batch_size, max_len, tag_size] - :param truth: ground truth label vector, [batch_size, max_len] - :return loss: a scalar - """ - batch_size, max_len = predict.size(0), predict.size(1) - assert truth.shape == (batch_size, max_len) - - loss = self._model.loss(predict, truth, self.mask) - return loss - - def best_eval_result(self, validator): - loss, accuracy = validator.metrics() - if accuracy > self.best_accuracy: - self.best_accuracy = accuracy - return True - else: - return False - - def make_batch(self, iterator): - return Action.make_batch(iterator, output_length=True, use_cuda=self.use_cuda) def _create_validator(self, valid_args): return SeqLabelTester(**valid_args) @@ -349,33 +332,10 @@ class ClassificationTrainer(BaseTrainer): """Trainer for text classification.""" def __init__(self, **train_args): + train_args.update({"task": "text_classify"}) + print( + "[FastNLP Warning] ClassificationTrainer will be deprecated. Please use Trainer with argument 'task'='text_classify'.") super(ClassificationTrainer, self).__init__(**train_args) - self.iterator = None - self.loss_func = None - self.optimizer = None - self.best_accuracy = 0 - - def data_forward(self, network, x): - """Forward through network.""" - logits = network(x) - return logits - - def make_batch(self, iterator): - return Action.make_batch(iterator, output_length=False, use_cuda=self.use_cuda) - - def get_acc(self, y_logit, y_true): - """Compute accuracy.""" - y_pred = torch.argmax(y_logit, dim=-1) - return int(torch.sum(y_true == y_pred)) / len(y_true) - - def best_eval_result(self, validator): - _, _, accuracy = validator.metrics() - if accuracy > self.best_accuracy: - self.best_accuracy = accuracy - return True - else: - return False - def _create_validator(self, valid_args): return ClassificationTester(**valid_args) diff --git a/fastNLP/models/cnn_text_classification.py b/fastNLP/models/cnn_text_classification.py index fc7388a5..15a65221 100644 --- a/fastNLP/models/cnn_text_classification.py +++ b/fastNLP/models/cnn_text_classification.py @@ -35,8 +35,12 @@ class CNNText(torch.nn.Module): self.dropout = nn.Dropout(drop_prob) self.fc = encoder.linear.Linear(sum(kernel_nums), num_classes) - def forward(self, x): - x = self.embed(x) # [N,L] -> [N,L,C] + def forward(self, word_seq): + """ + :param word_seq: torch.LongTensor, [batch_size, seq_len] + :return x: torch.LongTensor, [batch_size, num_classes] + """ + x = self.embed(word_seq) # [N,L] -> [N,L,C] x = self.conv_pool(x) # [N,L,C] -> [N,C] x = self.dropout(x) x = self.fc(x) # [N,C] -> [N, N_class] diff --git a/fastNLP/models/sequence_modeling.py b/fastNLP/models/sequence_modeling.py index 5addc73e..c2bcc693 100644 --- a/fastNLP/models/sequence_modeling.py +++ b/fastNLP/models/sequence_modeling.py @@ -4,6 +4,20 @@ from fastNLP.models.base_model import BaseModel from fastNLP.modules import decoder, encoder +def seq_mask(seq_len, max_len): + """Create a mask for the sequences. + + :param seq_len: list or torch.LongTensor + :param max_len: int + :return mask: torch.LongTensor + """ + if isinstance(seq_len, list): + seq_len = torch.LongTensor(seq_len) + mask = [torch.ge(seq_len, i + 1) for i in range(max_len)] + mask = torch.stack(mask, 1) + return mask + + class SeqLabeling(BaseModel): """ PyTorch Network for sequence labeling @@ -20,13 +34,17 @@ class SeqLabeling(BaseModel): self.Rnn = encoder.lstm.Lstm(word_emb_dim, hidden_dim) self.Linear = encoder.linear.Linear(hidden_dim, num_classes) self.Crf = decoder.CRF.ConditionalRandomField(num_classes) + self.mask = None - def forward(self, x): + def forward(self, word_seq, word_seq_origin_len): """ - :param x: LongTensor, [batch_size, mex_len] + :param word_seq: LongTensor, [batch_size, mex_len] + :param word_seq_origin_len: LongTensor, [batch_size,], the origin lengths of the sequences. :return y: [batch_size, mex_len, tag_size] """ - x = self.Embedding(x) + self.mask = self.make_mask(word_seq, word_seq_origin_len) + + x = self.Embedding(word_seq) # [batch_size, max_len, word_emb_dim] x = self.Rnn(x) # [batch_size, max_len, hidden_size * direction] @@ -34,27 +52,34 @@ class SeqLabeling(BaseModel): # [batch_size, max_len, num_classes] return x - def loss(self, x, y, mask): + def loss(self, x, y): """ Negative log likelihood loss. :param x: Tensor, [batch_size, max_len, tag_size] :param y: Tensor, [batch_size, max_len] - :param mask: ByteTensor, [batch_size, ,max_len] :return loss: a scalar Tensor """ x = x.float() y = y.long() - total_loss = self.Crf(x, y, mask) + assert x.shape[:2] == y.shape + assert y.shape == self.mask.shape + total_loss = self.Crf(x, y, self.mask) return torch.mean(total_loss) - def prediction(self, x, mask): + def make_mask(self, x, seq_len): + batch_size, max_len = x.size(0), x.size(1) + mask = seq_mask(seq_len, max_len) + mask = mask.byte().view(batch_size, max_len) + mask = mask.to(x) + return mask + + def prediction(self, x): """ :param x: FloatTensor, [batch_size, max_len, tag_size] - :param mask: ByteTensor, [batch_size, max_len] :return prediction: list of [decode path(list)] """ - tag_seq = self.Crf.viterbi_decode(x, mask) + tag_seq = self.Crf.viterbi_decode(x, self.mask) return tag_seq @@ -81,14 +106,17 @@ class AdvSeqLabel(SeqLabeling): self.Crf = decoder.CRF.ConditionalRandomField(num_classes) - def forward(self, x): + def forward(self, word_seq, word_seq_origin_len): """ - :param x: LongTensor, [batch_size, mex_len] + :param word_seq: LongTensor, [batch_size, mex_len] + :param word_seq_origin_len: list of int. :return y: [batch_size, mex_len, tag_size] """ - batch_size = x.size(0) - max_len = x.size(1) - x = self.Embedding(x) + self.mask = self.make_mask(word_seq, word_seq_origin_len) + + batch_size = word_seq.size(0) + max_len = word_seq.size(1) + x = self.Embedding(word_seq) # [batch_size, max_len, word_emb_dim] x = self.Rnn(x) # [batch_size, max_len, hidden_size * direction] diff --git a/fastNLP/modules/aggregation/self_attention.py b/fastNLP/modules/aggregation/self_attention.py index aeaef4db..4155d708 100644 --- a/fastNLP/modules/aggregation/self_attention.py +++ b/fastNLP/modules/aggregation/self_attention.py @@ -1,8 +1,10 @@ import torch import torch.nn as nn from torch.autograd import Variable +import torch.nn.functional as F +from fastNLP.modules.utils import initial_parameter class SelfAttention(nn.Module): """ Self Attention Module. @@ -13,13 +15,18 @@ class SelfAttention(nn.Module): num_vec: int, the number of encoded vectors """ - def __init__(self, input_size, dim=10, num_vec=10): + def __init__(self, input_size, dim=10, num_vec=10 ,drop = 0.5 ,initial_method =None): super(SelfAttention, self).__init__() - self.W_s1 = nn.Parameter(torch.randn(dim, input_size), requires_grad=True) - self.W_s2 = nn.Parameter(torch.randn(num_vec, dim), requires_grad=True) + # self.W_s1 = nn.Parameter(torch.randn(dim, input_size), requires_grad=True) + # self.W_s2 = nn.Parameter(torch.randn(num_vec, dim), requires_grad=True) + self.attention_hops = num_vec + + self.ws1 = nn.Linear(input_size, dim, bias=False) + self.ws2 = nn.Linear(dim, num_vec, bias=False) + self.drop = nn.Dropout(drop) self.softmax = nn.Softmax(dim=2) self.tanh = nn.Tanh() - + initial_parameter(self, initial_method) def penalization(self, A): """ compute the penalization term for attention module @@ -32,11 +39,33 @@ class SelfAttention(nn.Module): M = M.view(M.size(0), -1) return torch.sum(M ** 2, dim=1) - def forward(self, x): - inter = self.tanh(torch.matmul(self.W_s1, torch.transpose(x, 1, 2))) - A = self.softmax(torch.matmul(self.W_s2, inter)) - out = torch.matmul(A, x) - out = out.view(out.size(0), -1) - penalty = self.penalization(A) - return out, penalty + def forward(self, outp ,inp): + # the following code can not be use because some word are padding ,these is not such module! + + # inter = self.tanh(torch.matmul(self.W_s1, torch.transpose(x, 1, 2))) # [] + # A = self.softmax(torch.matmul(self.W_s2, inter)) + # out = torch.matmul(A, x) + # out = out.view(out.size(0), -1) + # penalty = self.penalization(A) + # return out, penalty + outp = outp.contiguous() + size = outp.size() # [bsz, len, nhid] + + compressed_embeddings = outp.view(-1, size[2]) # [bsz*len, nhid*2] + transformed_inp = torch.transpose(inp, 0, 1).contiguous() # [bsz, len] + transformed_inp = transformed_inp.view(size[0], 1, size[1]) # [bsz, 1, len] + concatenated_inp = [transformed_inp for i in range(self.attention_hops)] + concatenated_inp = torch.cat(concatenated_inp, 1) # [bsz, hop, len] + + hbar = self.tanh(self.ws1(self.drop(compressed_embeddings))) # [bsz*len, attention-unit] + attention = self.ws2(hbar).view(size[0], size[1], -1) # [bsz, len, hop] + attention = torch.transpose(attention, 1, 2).contiguous() # [bsz, hop, len] + penalized_alphas = attention + ( + -10000 * (concatenated_inp == 0).float()) + # [bsz, hop, len] + [bsz, hop, len] + attention = self.softmax(penalized_alphas.view(-1, size[1])) # [bsz*hop, len] + attention = attention.view(size[0], self.attention_hops, size[1]) # [bsz, hop, len] + return torch.bmm(attention, outp), attention # output --> [baz ,hop ,nhid] + + diff --git a/fastNLP/modules/decoder/CRF.py b/fastNLP/modules/decoder/CRF.py index e6327ec0..991927da 100644 --- a/fastNLP/modules/decoder/CRF.py +++ b/fastNLP/modules/decoder/CRF.py @@ -1,6 +1,7 @@ import torch from torch import nn +from fastNLP.modules.utils import initial_parameter def log_sum_exp(x, dim=-1): max_value, _ = x.max(dim=dim, keepdim=True) @@ -19,7 +20,7 @@ def seq_len_to_byte_mask(seq_lens): class ConditionalRandomField(nn.Module): - def __init__(self, tag_size, include_start_end_trans=True): + def __init__(self, tag_size, include_start_end_trans=True ,initial_method = None): """ :param tag_size: int, num of tags :param include_start_end_trans: bool, whether to include start/end tag @@ -35,8 +36,8 @@ class ConditionalRandomField(nn.Module): self.start_scores = nn.Parameter(torch.randn(tag_size)) self.end_scores = nn.Parameter(torch.randn(tag_size)) - self.reset_parameter() - + # self.reset_parameter() + initial_parameter(self, initial_method) def reset_parameter(self): nn.init.xavier_normal_(self.transition_m) if self.include_start_end_trans: diff --git a/fastNLP/modules/decoder/MLP.py b/fastNLP/modules/decoder/MLP.py index c70aa0e9..b8fb95f0 100644 --- a/fastNLP/modules/decoder/MLP.py +++ b/fastNLP/modules/decoder/MLP.py @@ -1,8 +1,8 @@ import torch import torch.nn as nn - +from fastNLP.modules.utils import initial_parameter class MLP(nn.Module): - def __init__(self, size_layer, num_class=2, activation='relu'): + def __init__(self, size_layer, num_class=2, activation='relu' , initial_method = None): """Multilayer Perceptrons as a decoder Args: @@ -36,7 +36,7 @@ class MLP(nn.Module): self.hidden_active = activation else: raise ValueError("should set activation correctly: {}".format(activation)) - + initial_parameter(self, initial_method ) def forward(self, x): for layer in self.hiddens: x = self.hidden_active(layer(x)) diff --git a/fastNLP/modules/encoder/char_embedding.py b/fastNLP/modules/encoder/char_embedding.py index 72680e5b..1da63947 100644 --- a/fastNLP/modules/encoder/char_embedding.py +++ b/fastNLP/modules/encoder/char_embedding.py @@ -1,11 +1,12 @@ import torch import torch.nn.functional as F from torch import nn +# from torch.nn.init import xavier_uniform - +from fastNLP.modules.utils import initial_parameter class ConvCharEmbedding(nn.Module): - def __init__(self, char_emb_size=50, feature_maps=(40, 30, 30), kernels=(3, 4, 5)): + def __init__(self, char_emb_size=50, feature_maps=(40, 30, 30), kernels=(3, 4, 5),initial_method = None): """ Character Level Word Embedding :param char_emb_size: the size of character level embedding. Default: 50 @@ -20,6 +21,8 @@ class ConvCharEmbedding(nn.Module): nn.Conv2d(1, feature_maps[i], kernel_size=(char_emb_size, kernels[i]), bias=True, padding=(0, 4)) for i in range(len(kernels))]) + initial_parameter(self,initial_method) + def forward(self, x): """ :param x: [batch_size * sent_length, word_length, char_emb_size] @@ -53,7 +56,7 @@ class LSTMCharEmbedding(nn.Module): :param hidden_size: int, the number of hidden units. Default: equal to char_emb_size. """ - def __init__(self, char_emb_size=50, hidden_size=None): + def __init__(self, char_emb_size=50, hidden_size=None , initial_method= None): super(LSTMCharEmbedding, self).__init__() self.hidden_size = char_emb_size if hidden_size is None else hidden_size @@ -62,7 +65,7 @@ class LSTMCharEmbedding(nn.Module): num_layers=1, bias=True, batch_first=True) - + initial_parameter(self, initial_method) def forward(self, x): """ :param x:[ n_batch*n_word, word_length, char_emb_size] diff --git a/fastNLP/modules/encoder/conv.py b/fastNLP/modules/encoder/conv.py index 06a31dd8..68536e5d 100644 --- a/fastNLP/modules/encoder/conv.py +++ b/fastNLP/modules/encoder/conv.py @@ -6,6 +6,7 @@ import torch.nn as nn from torch.nn.init import xavier_uniform_ # import torch.nn.functional as F +from fastNLP.modules.utils import initial_parameter class Conv(nn.Module): """ @@ -15,7 +16,7 @@ class Conv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, - groups=1, bias=True, activation='relu'): + groups=1, bias=True, activation='relu',initial_method = None ): super(Conv, self).__init__() self.conv = nn.Conv1d( in_channels=in_channels, @@ -26,7 +27,7 @@ class Conv(nn.Module): dilation=dilation, groups=groups, bias=bias) - xavier_uniform_(self.conv.weight) + # xavier_uniform_(self.conv.weight) activations = { 'relu': nn.ReLU(), @@ -37,6 +38,7 @@ class Conv(nn.Module): raise Exception( 'Should choose activation function from: ' + ', '.join([x for x in activations])) + initial_parameter(self, initial_method) def forward(self, x): x = torch.transpose(x, 1, 2) # [N,L,C] -> [N,C,L] diff --git a/fastNLP/modules/encoder/conv_maxpool.py b/fastNLP/modules/encoder/conv_maxpool.py index f666e7f9..7aa897cf 100644 --- a/fastNLP/modules/encoder/conv_maxpool.py +++ b/fastNLP/modules/encoder/conv_maxpool.py @@ -5,7 +5,7 @@ import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.init import xavier_uniform_ - +from fastNLP.modules.utils import initial_parameter class ConvMaxpool(nn.Module): """ @@ -14,7 +14,7 @@ class ConvMaxpool(nn.Module): def __init__(self, in_channels, out_channels, kernel_sizes, stride=1, padding=0, dilation=1, - groups=1, bias=True, activation='relu'): + groups=1, bias=True, activation='relu',initial_method = None ): super(ConvMaxpool, self).__init__() # convolution @@ -47,6 +47,8 @@ class ConvMaxpool(nn.Module): raise Exception( "Undefined activation function: choose from: relu") + initial_parameter(self, initial_method) + def forward(self, x): # [N,L,C] -> [N,C,L] x = torch.transpose(x, 1, 2) diff --git a/fastNLP/modules/encoder/linear.py b/fastNLP/modules/encoder/linear.py index 9582d9f9..a7c5f6c3 100644 --- a/fastNLP/modules/encoder/linear.py +++ b/fastNLP/modules/encoder/linear.py @@ -1,6 +1,6 @@ import torch.nn as nn - +from fastNLP.modules.utils import initial_parameter class Linear(nn.Module): """ Linear module @@ -12,10 +12,10 @@ class Linear(nn.Module): bidirectional : If True, becomes a bidirectional RNN """ - def __init__(self, input_size, output_size, bias=True): + def __init__(self, input_size, output_size, bias=True,initial_method = None ): super(Linear, self).__init__() self.linear = nn.Linear(input_size, output_size, bias) - + initial_parameter(self, initial_method) def forward(self, x): x = self.linear(x) return x diff --git a/fastNLP/modules/encoder/lstm.py b/fastNLP/modules/encoder/lstm.py index bed6c276..5af09f29 100644 --- a/fastNLP/modules/encoder/lstm.py +++ b/fastNLP/modules/encoder/lstm.py @@ -1,6 +1,6 @@ import torch.nn as nn - +from fastNLP.modules.utils import initial_parameter class Lstm(nn.Module): """ LSTM module @@ -13,11 +13,13 @@ class Lstm(nn.Module): bidirectional : If True, becomes a bidirectional RNN. Default: False. """ - def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0, bidirectional=False): + def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0, bidirectional=False , initial_method = None): super(Lstm, self).__init__() self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=True, batch_first=True, dropout=dropout, bidirectional=bidirectional) - + initial_parameter(self, initial_method) def forward(self, x): x, _ = self.lstm(x) return x +if __name__ == "__main__": + lstm = Lstm(10) diff --git a/fastNLP/modules/encoder/masked_rnn.py b/fastNLP/modules/encoder/masked_rnn.py index 76f828a9..c1ef15d0 100644 --- a/fastNLP/modules/encoder/masked_rnn.py +++ b/fastNLP/modules/encoder/masked_rnn.py @@ -4,7 +4,7 @@ import torch import torch.nn as nn import torch.nn.functional as F - +from fastNLP.modules.utils import initial_parameter def MaskedRecurrent(reverse=False): def forward(input, hidden, cell, mask, train=True, dropout=0): """ @@ -192,7 +192,7 @@ def AutogradMaskedStep(num_layers=1, dropout=0, train=True, lstm=False): class MaskedRNNBase(nn.Module): def __init__(self, Cell, input_size, hidden_size, num_layers=1, bias=True, batch_first=False, - layer_dropout=0, step_dropout=0, bidirectional=False, **kwargs): + layer_dropout=0, step_dropout=0, bidirectional=False, initial_method = None , **kwargs): """ :param Cell: :param input_size: @@ -226,7 +226,7 @@ class MaskedRNNBase(nn.Module): cell = self.Cell(layer_input_size, hidden_size, self.bias, **kwargs) self.all_cells.append(cell) self.add_module('cell%d' % (layer * num_directions + direction), cell) # Max的代码写得真好看 - + initial_parameter(self, initial_method) def reset_parameters(self): for cell in self.all_cells: cell.reset_parameters() diff --git a/fastNLP/modules/encoder/variational_rnn.py b/fastNLP/modules/encoder/variational_rnn.py index b08bdd2d..fb75fabb 100644 --- a/fastNLP/modules/encoder/variational_rnn.py +++ b/fastNLP/modules/encoder/variational_rnn.py @@ -6,6 +6,7 @@ import torch.nn.functional as F from torch.nn._functions.thnn import rnnFusedPointwise as fusedBackend from torch.nn.parameter import Parameter +from fastNLP.modules.utils import initial_parameter def default_initializer(hidden_size): stdv = 1.0 / math.sqrt(hidden_size) @@ -172,7 +173,7 @@ def AutogradVarMaskedStep(num_layers=1, lstm=False): class VarMaskedRNNBase(nn.Module): def __init__(self, Cell, input_size, hidden_size, num_layers=1, bias=True, batch_first=False, - dropout=(0, 0), bidirectional=False, initializer=None, **kwargs): + dropout=(0, 0), bidirectional=False, initializer=None,initial_method = None, **kwargs): super(VarMaskedRNNBase, self).__init__() self.Cell = Cell @@ -193,7 +194,7 @@ class VarMaskedRNNBase(nn.Module): cell = self.Cell(layer_input_size, hidden_size, self.bias, p=dropout, initializer=initializer, **kwargs) self.all_cells.append(cell) self.add_module('cell%d' % (layer * num_directions + direction), cell) - + initial_parameter(self, initial_method) def reset_parameters(self): for cell in self.all_cells: cell.reset_parameters() @@ -284,7 +285,7 @@ class VarFastLSTMCell(VarRNNCellBase): \end{array} """ - def __init__(self, input_size, hidden_size, bias=True, p=(0.5, 0.5), initializer=None): + def __init__(self, input_size, hidden_size, bias=True, p=(0.5, 0.5), initializer=None,initial_method =None): super(VarFastLSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size @@ -311,7 +312,7 @@ class VarFastLSTMCell(VarRNNCellBase): self.p_hidden = p_hidden self.noise_in = None self.noise_hidden = None - + initial_parameter(self, initial_method) def reset_parameters(self): for weight in self.parameters(): if weight.dim() == 1: diff --git a/fastNLP/modules/utils.py b/fastNLP/modules/utils.py index 442944e7..22139668 100644 --- a/fastNLP/modules/utils.py +++ b/fastNLP/modules/utils.py @@ -2,8 +2,8 @@ from collections import defaultdict import numpy as np import torch - - +import torch.nn.init as init +import torch.nn as nn def mask_softmax(matrix, mask): if mask is None: result = torch.nn.functional.softmax(matrix, dim=-1) @@ -11,6 +11,51 @@ def mask_softmax(matrix, mask): raise NotImplementedError return result +def initial_parameter(net ,initial_method =None): + + if initial_method == 'xavier_uniform': + init_method = init.xavier_uniform_ + elif initial_method=='xavier_normal': + init_method = init.xavier_normal_ + elif initial_method == 'kaiming_normal' or initial_method =='msra': + init_method = init.kaiming_normal + elif initial_method == 'kaiming_uniform': + init_method = init.kaiming_normal + elif initial_method == 'orthogonal': + init_method = init.orthogonal_ + elif initial_method == 'sparse': + init_method = init.sparse_ + elif initial_method =='normal': + init_method = init.normal_ + elif initial_method =='uniform': + initial_method = init.uniform_ + else: + init_method = init.xavier_normal_ + def weights_init(m): + # classname = m.__class__.__name__ + if isinstance(m, nn.Conv2d) or isinstance(m,nn.Conv1d) or isinstance(m,nn.Conv3d): # for all the cnn + if initial_method != None: + init_method(m.weight.data) + else: + init.xavier_normal_(m.weight.data) + init.normal_(m.bias.data) + elif isinstance(m, nn.LSTM): + for w in m.parameters(): + if len(w.data.size())>1: + init_method(w.data) # weight + else: + init.normal_(w.data) # bias + elif hasattr(m, 'weight') and m.weight.requires_grad: + init_method(m.weight.data) + else: + for w in m.parameters() : + if w.requires_grad: + if len(w.data.size())>1: + init_method(w.data) # weight + else: + init.normal_(w.data) # bias + # print("init else") + net.apply(weights_init) def seq_mask(seq_len, max_len): mask = [torch.ge(torch.LongTensor(seq_len), i + 1) for i in range(max_len)] diff --git a/reproduction/LSTM+self_attention_sentiment_analysis/config.cfg b/reproduction/LSTM+self_attention_sentiment_analysis/config.cfg new file mode 100644 index 00000000..2d31cd0d --- /dev/null +++ b/reproduction/LSTM+self_attention_sentiment_analysis/config.cfg @@ -0,0 +1,13 @@ +[train] +epochs = 30 +batch_size = 32 +pickle_path = "./save/" +validate = true +save_best_dev = true +model_saved_path = "./save/" +rnn_hidden_units = 300 +word_emb_dim = 300 +use_crf = true +use_cuda = false +loss_func = "cross_entropy" +num_classes = 5 \ No newline at end of file diff --git a/reproduction/LSTM+self_attention_sentiment_analysis/main.py b/reproduction/LSTM+self_attention_sentiment_analysis/main.py new file mode 100644 index 00000000..115d9a23 --- /dev/null +++ b/reproduction/LSTM+self_attention_sentiment_analysis/main.py @@ -0,0 +1,80 @@ + +import os + +import torch.nn.functional as F + +from fastNLP.loader.dataset_loader import ClassDatasetLoader as Dataset_loader +from fastNLP.loader.embed_loader import EmbedLoader as EmbedLoader +from fastNLP.loader.config_loader import ConfigSection +from fastNLP.loader.config_loader import ConfigLoader + +from fastNLP.models.base_model import BaseModel + +from fastNLP.core.preprocess import ClassPreprocess as Preprocess +from fastNLP.core.trainer import ClassificationTrainer + +from fastNLP.modules.encoder.embedding import Embedding as Embedding +from fastNLP.modules.encoder.lstm import Lstm +from fastNLP.modules.aggregation.self_attention import SelfAttention +from fastNLP.modules.decoder.MLP import MLP + + +train_data_path = 'small_train_data.txt' +dev_data_path = 'small_dev_data.txt' +# emb_path = 'glove.txt' + +lstm_hidden_size = 300 +embeding_size = 300 +attention_unit = 350 +attention_hops = 10 +class_num = 5 +nfc = 3000 +### data load ### +train_dataset = Dataset_loader(train_data_path) +train_data = train_dataset.load() + +dev_args = Dataset_loader(dev_data_path) +dev_data = dev_args.load() + +###### preprocess #### +preprocess = Preprocess() +word2index, label2index = preprocess.build_dict(train_data) +train_data, dev_data = preprocess.run(train_data, dev_data) + + + +# emb = EmbedLoader(emb_path) +# embedding = emb.load_embedding(emb_dim= embeding_size , emb_file= emb_path ,word_dict= word2index) +### construct vocab ### + +class SELF_ATTENTION_YELP_CLASSIFICATION(BaseModel): + def __init__(self, args=None): + super(SELF_ATTENTION_YELP_CLASSIFICATION,self).__init__() + self.embedding = Embedding(len(word2index) ,embeding_size , init_emb= None ) + self.lstm = Lstm(input_size = embeding_size,hidden_size = lstm_hidden_size ,bidirectional = True) + self.attention = SelfAttention(lstm_hidden_size * 2 ,dim =attention_unit ,num_vec=attention_hops) + self.mlp = MLP(size_layer=[lstm_hidden_size * 2*attention_hops ,nfc ,class_num ] ,num_class=class_num ,) + def forward(self,x): + x_emb = self.embedding(x) + output = self.lstm(x_emb) + after_attention, penalty = self.attention(output,x) + after_attention =after_attention.view(after_attention.size(0),-1) + output = self.mlp(after_attention) + return output + + def loss(self, predict, ground_truth): + print("predict:%s; g:%s" % (str(predict.size()), str(ground_truth.size()))) + print(ground_truth) + return F.cross_entropy(predict, ground_truth) + +train_args = ConfigSection() +ConfigLoader("good path").load_config('config.cfg',{"train": train_args}) +train_args['vocab'] = len(word2index) + + +trainer = ClassificationTrainer(**train_args.data) + +# for k in train_args.__dict__.keys(): +# print(k, train_args[k]) +model = SELF_ATTENTION_YELP_CLASSIFICATION(train_args) +trainer.train(model,train_data , dev_data) diff --git a/setup.py b/setup.py index 25a645c5..a7b5dc46 100644 --- a/setup.py +++ b/setup.py @@ -2,18 +2,18 @@ # coding=utf-8 from setuptools import setup, find_packages -with open('README.md') as f: +with open('README.md', encoding='utf-8') as f: readme = f.read() -with open('LICENSE') as f: +with open('LICENSE', encoding='utf-8') as f: license = f.read() -with open('requirements.txt') as f: +with open('requirements.txt', encoding='utf-8') as f: reqs = f.read() setup( name='fastNLP', - version='0.0.1', + version='0.0.3', description='fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team', long_description=readme, license=license, diff --git a/test/core/test_action.py b/test/core/test_action.py deleted file mode 100644 index 8d0f628b..00000000 --- a/test/core/test_action.py +++ /dev/null @@ -1,17 +0,0 @@ -import unittest - -from fastNLP.core.action import Action, Batchifier, SequentialSampler - - -class TestAction(unittest.TestCase): - def test_case_1(self): - x = [1, 2, 3, 4, 5, 6, 7, 8] - y = [1, 1, 1, 1, 2, 2, 2, 2] - data = [] - for i in range(len(x)): - data.append([[x[i]], [y[i]]]) - data = Batchifier(SequentialSampler(data), batch_size=2, drop_last=False) - action = Action() - for batch_x in action.make_batch(data, use_cuda=False, output_length=True, max_len=None): - print(batch_x) - diff --git a/test/core/test_batch.py b/test/core/test_batch.py new file mode 100644 index 00000000..395aeb2b --- /dev/null +++ b/test/core/test_batch.py @@ -0,0 +1,62 @@ +import unittest + +import torch + +from fastNLP.core.batch import Batch +from fastNLP.core.dataset import DataSet, create_dataset_from_lists +from fastNLP.core.field import TextField, LabelField +from fastNLP.core.instance import Instance + +raw_texts = ["i am a cat", + "this is a test of new batch", + "ha ha", + "I am a good boy .", + "This is the most beautiful girl ." + ] +texts = [text.strip().split() for text in raw_texts] +labels = [0, 1, 0, 0, 1] + +# prepare vocabulary +vocab = {} +for text in texts: + for tokens in text: + if tokens not in vocab: + vocab[tokens] = len(vocab) + + +class TestCase1(unittest.TestCase): + def test(self): + data = DataSet() + for text, label in zip(texts, labels): + x = TextField(text, is_target=False) + y = LabelField(label, is_target=True) + ins = Instance(text=x, label=y) + data.append(ins) + + # use vocabulary to index data + data.index_field("text", vocab) + + # define naive sampler for batch class + class SeqSampler: + def __call__(self, dataset): + return list(range(len(dataset))) + + # use batch to iterate dataset + data_iterator = Batch(data, 2, SeqSampler(), False) + for batch_x, batch_y in data_iterator: + self.assertEqual(len(batch_x), 2) + self.assertTrue(isinstance(batch_x, dict)) + self.assertTrue(isinstance(batch_x["text"], torch.LongTensor)) + self.assertTrue(isinstance(batch_y, dict)) + self.assertTrue(isinstance(batch_y["label"], torch.LongTensor)) + + +class TestCase2(unittest.TestCase): + def test(self): + data = DataSet() + for text in texts: + x = TextField(text, is_target=False) + ins = Instance(text=x) + data.append(ins) + data_set = create_dataset_from_lists(texts, vocab, has_target=False) + self.assertTrue(type(data) == type(data_set)) diff --git a/test/core/test_predictor.py b/test/core/test_predictor.py new file mode 100644 index 00000000..c7ad65d7 --- /dev/null +++ b/test/core/test_predictor.py @@ -0,0 +1,51 @@ +import os +import unittest + +from fastNLP.core.predictor import Predictor +from fastNLP.core.preprocess import save_pickle +from fastNLP.models.sequence_modeling import SeqLabeling + + +class TestPredictor(unittest.TestCase): + def test_seq_label(self): + model_args = { + "vocab_size": 10, + "word_emb_dim": 100, + "rnn_hidden_units": 100, + "num_classes": 5 + } + + infer_data = [ + ['a', 'b', 'c', 'd', 'e'], + ['a', '@', 'c', 'd', 'e'], + ['a', 'b', '#', 'd', 'e'], + ['a', 'b', 'c', '?', 'e'], + ['a', 'b', 'c', 'd', '$'], + ['!', 'b', 'c', 'd', 'e'] + ] + vocab = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9} + + os.system("mkdir save") + save_pickle({0: "0", 1: "1", 2: "2", 3: "3", 4: "4"}, "./save/", "id2class.pkl") + save_pickle(vocab, "./save/", "word2id.pkl") + + model = SeqLabeling(model_args) + predictor = Predictor("./save/", task="seq_label") + + results = predictor.predict(network=model, data=infer_data) + + self.assertTrue(isinstance(results, list)) + self.assertGreater(len(results), 0) + for res in results: + self.assertTrue(isinstance(res, list)) + self.assertEqual(len(res), 5) + self.assertTrue(isinstance(res[0], str)) + + os.system("rm -rf save") + print("pickle path deleted") + + +class TestPredictor2(unittest.TestCase): + def test_text_classify(self): + # TODO + pass diff --git a/test/core/test_preprocess.py b/test/core/test_preprocess.py index bff33ed3..05c04ce9 100644 --- a/test/core/test_preprocess.py +++ b/test/core/test_preprocess.py @@ -1,24 +1,25 @@ import os import unittest +from fastNLP.core.dataset import DataSet from fastNLP.core.preprocess import SeqLabelPreprocess +data = [ + [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], + [['Hello', 'world', '!'], ['a', 'n', '.']], + [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], + [['Hello', 'world', '!'], ['a', 'n', '.']], + [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], + [['Hello', 'world', '!'], ['a', 'n', '.']], + [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], + [['Hello', 'world', '!'], ['a', 'n', '.']], + [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], + [['Hello', 'world', '!'], ['a', 'n', '.']], +] -class TestSeqLabelPreprocess(unittest.TestCase): - def test_case_1(self): - data = [ - [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], - [['Hello', 'world', '!'], ['a', 'n', '.']], - [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], - [['Hello', 'world', '!'], ['a', 'n', '.']], - [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], - [['Hello', 'world', '!'], ['a', 'n', '.']], - [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], - [['Hello', 'world', '!'], ['a', 'n', '.']], - [['Tom', 'and', 'Jerry', '.'], ['n', '&', 'n', '.']], - [['Hello', 'world', '!'], ['a', 'n', '.']], - ] +class TestCase1(unittest.TestCase): + def test(self): if os.path.exists("./save"): for root, dirs, files in os.walk("./save", topdown=False): for name in files: @@ -27,17 +28,45 @@ class TestSeqLabelPreprocess(unittest.TestCase): os.rmdir(os.path.join(root, name)) result = SeqLabelPreprocess().run(train_dev_data=data, train_dev_split=0.4, pickle_path="./save") - result = SeqLabelPreprocess().run(train_dev_data=data, train_dev_split=0.4, - pickle_path="./save") + self.assertEqual(len(result), 2) + self.assertEqual(type(result[0]), DataSet) + self.assertEqual(type(result[1]), DataSet) + + os.system("rm -rf save") + print("pickle path deleted") + + +class TestCase2(unittest.TestCase): + def test(self): if os.path.exists("./save"): for root, dirs, files in os.walk("./save", topdown=False): for name in files: os.remove(os.path.join(root, name)) for name in dirs: os.rmdir(os.path.join(root, name)) - result = SeqLabelPreprocess().run(test_data=data, train_dev_data=data, - pickle_path="./save", train_dev_split=0.4, - cross_val=True) result = SeqLabelPreprocess().run(test_data=data, train_dev_data=data, pickle_path="./save", train_dev_split=0.4, - cross_val=True) + cross_val=False) + self.assertEqual(len(result), 3) + self.assertEqual(type(result[0]), DataSet) + self.assertEqual(type(result[1]), DataSet) + self.assertEqual(type(result[2]), DataSet) + + os.system("rm -rf save") + print("pickle path deleted") + + +class TestCase3(unittest.TestCase): + def test(self): + num_folds = 2 + result = SeqLabelPreprocess().run(test_data=None, train_dev_data=data, + pickle_path="./save", train_dev_split=0.4, + cross_val=True, n_fold=num_folds) + self.assertEqual(len(result), 2) + self.assertEqual(len(result[0]), num_folds) + self.assertEqual(len(result[1]), num_folds) + for data_set in result[0] + result[1]: + self.assertEqual(type(data_set), DataSet) + + os.system("rm -rf save") + print("pickle path deleted") diff --git a/test/core/test_tester.py b/test/core/test_tester.py index e4ccf536..aa277b9a 100644 --- a/test/core/test_tester.py +++ b/test/core/test_tester.py @@ -1,37 +1,55 @@ -from fastNLP.core.preprocess import SeqLabelPreprocess +import os +import unittest + +from fastNLP.core.dataset import DataSet +from fastNLP.core.field import TextField +from fastNLP.core.instance import Instance from fastNLP.core.tester import SeqLabelTester -from fastNLP.loader.config_loader import ConfigSection, ConfigLoader -from fastNLP.loader.dataset_loader import TokenizeDatasetLoader from fastNLP.models.sequence_modeling import SeqLabeling data_name = "pku_training.utf8" pickle_path = "data_for_tests" -def foo(): - loader = TokenizeDatasetLoader("./data_for_tests/cws_pku_utf_8") - train_data = loader.load_pku() +class TestTester(unittest.TestCase): + def test_case_1(self): + model_args = { + "vocab_size": 10, + "word_emb_dim": 100, + "rnn_hidden_units": 100, + "num_classes": 5 + } + valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True, + "save_loss": True, "batch_size": 2, "pickle_path": "./save/", + "use_cuda": False, "print_every_step": 1} - train_args = ConfigSection() - ConfigLoader("config.cfg").load_config("./data_for_tests/config", {"POS": train_args}) + train_data = [ + [['a', 'b', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], + [['a', '@', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], + [['a', 'b', '#', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], + [['a', 'b', 'c', '?', 'e'], ['a', '@', 'c', 'd', 'e']], + [['a', 'b', 'c', 'd', '$'], ['a', '@', 'c', 'd', 'e']], + [['!', 'b', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], + ] + vocab = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9} + label_vocab = {'a': 0, '@': 1, 'c': 2, 'd': 3, 'e': 4} - # Preprocessor - p = SeqLabelPreprocess() - train_data = p.run(train_data) - train_args["vocab_size"] = p.vocab_size - train_args["num_classes"] = p.num_classes + data_set = DataSet() + for example in train_data: + text, label = example[0], example[1] + x = TextField(text, False) + y = TextField(label, is_target=True) + ins = Instance(word_seq=x, label_seq=y) + data_set.append(ins) - model = SeqLabeling(train_args) + data_set.index_field("word_seq", vocab) + data_set.index_field("label_seq", label_vocab) - valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True, - "save_loss": True, "batch_size": 8, "pickle_path": "./data_for_tests/", - "use_cuda": True} - validator = SeqLabelTester(**valid_args) + model = SeqLabeling(model_args) - print("start validation.") - validator.test(model, train_data) - print(validator.show_metrics()) + tester = SeqLabelTester(**valid_args) + tester.test(network=model, dev_data=data_set) + # If this can run, everything is OK. - -if __name__ == "__main__": - foo() + os.system("rm -rf save") + print("pickle path deleted") diff --git a/test/core/test_trainer.py b/test/core/test_trainer.py index 7db861af..c71cd695 100644 --- a/test/core/test_trainer.py +++ b/test/core/test_trainer.py @@ -1,33 +1,54 @@ import os - -import torch.nn as nn import unittest -from fastNLP.core.trainer import SeqLabelTrainer +from fastNLP.core.dataset import DataSet +from fastNLP.core.field import TextField +from fastNLP.core.instance import Instance from fastNLP.core.loss import Loss from fastNLP.core.optimizer import Optimizer +from fastNLP.core.trainer import SeqLabelTrainer from fastNLP.models.sequence_modeling import SeqLabeling + class TestTrainer(unittest.TestCase): def test_case_1(self): - args = {"epochs": 3, "batch_size": 8, "validate": True, "use_cuda": True, "pickle_path": "./save/", + args = {"epochs": 3, "batch_size": 2, "validate": True, "use_cuda": False, "pickle_path": "./save/", "save_best_dev": True, "model_name": "default_model_name.pkl", "loss": Loss(None), "optimizer": Optimizer("Adam", lr=0.001, weight_decay=0), - "vocab_size": 20, + "vocab_size": 10, "word_emb_dim": 100, "rnn_hidden_units": 100, - "num_classes": 3 + "num_classes": 5 } - trainer = SeqLabelTrainer() + trainer = SeqLabelTrainer(**args) + train_data = [ - [[1, 2, 3, 4, 5, 6], [1, 0, 1, 0, 1, 2]], - [[2, 3, 4, 5, 1, 6], [0, 1, 0, 1, 0, 2]], - [[1, 4, 1, 4, 1, 6], [1, 0, 1, 0, 1, 2]], - [[1, 2, 3, 4, 5, 6], [1, 0, 1, 0, 1, 2]], - [[2, 3, 4, 5, 1, 6], [0, 1, 0, 1, 0, 2]], - [[1, 4, 1, 4, 1, 6], [1, 0, 1, 0, 1, 2]], + [['a', 'b', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], + [['a', '@', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], + [['a', 'b', '#', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], + [['a', 'b', 'c', '?', 'e'], ['a', '@', 'c', 'd', 'e']], + [['a', 'b', 'c', 'd', '$'], ['a', '@', 'c', 'd', 'e']], + [['!', 'b', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], ] - dev_data = train_data + vocab = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9} + label_vocab = {'a': 0, '@': 1, 'c': 2, 'd': 3, 'e': 4} + + data_set = DataSet() + for example in train_data: + text, label = example[0], example[1] + x = TextField(text, False) + y = TextField(label, is_target=True) + ins = Instance(word_seq=x, label_seq=y) + data_set.append(ins) + + data_set.index_field("word_seq", vocab) + data_set.index_field("label_seq", label_vocab) + model = SeqLabeling(args) - trainer.train(network=model, train_data=train_data, dev_data=dev_data) \ No newline at end of file + + trainer.train(network=model, train_data=data_set, dev_data=data_set) + # If this can run, everything is OK. + + os.system("rm -rf save") + print("pickle path deleted") diff --git a/test/model/seq_labeling.py b/test/model/seq_labeling.py index 0f7a072b..d7750b17 100644 --- a/test/model/seq_labeling.py +++ b/test/model/seq_labeling.py @@ -15,11 +15,11 @@ from fastNLP.core.optimizer import Optimizer parser = argparse.ArgumentParser() parser.add_argument("-s", "--save", type=str, default="./seq_label/", help="path to save pickle files") -parser.add_argument("-t", "--train", type=str, default="./data_for_tests/people.txt", +parser.add_argument("-t", "--train", type=str, default="../data_for_tests/people.txt", help="path to the training data") -parser.add_argument("-c", "--config", type=str, default="./data_for_tests/config", help="path to the config file") +parser.add_argument("-c", "--config", type=str, default="../data_for_tests/config", help="path to the config file") parser.add_argument("-m", "--model_name", type=str, default="seq_label_model.pkl", help="the name of the model") -parser.add_argument("-i", "--infer", type=str, default="data_for_tests/people_infer.txt", +parser.add_argument("-i", "--infer", type=str, default="../data_for_tests/people_infer.txt", help="data used for inference") args = parser.parse_args() @@ -86,7 +86,7 @@ def train_and_test(): trainer = SeqLabelTrainer( epochs=trainer_args["epochs"], batch_size=trainer_args["batch_size"], - validate=trainer_args["validate"], + validate=False, use_cuda=trainer_args["use_cuda"], pickle_path=pickle_path, save_best_dev=trainer_args["save_best_dev"], @@ -121,7 +121,7 @@ def train_and_test(): # Tester tester = SeqLabelTester(save_output=False, - save_loss=False, + save_loss=True, save_best_dev=False, batch_size=4, use_cuda=False, @@ -139,5 +139,5 @@ def train_and_test(): if __name__ == "__main__": - # train_and_test() - infer() + train_and_test() + # infer() diff --git a/test/model/test_charlm.py b/test/model/test_charlm.py deleted file mode 100644 index e76f6404..00000000 --- a/test/model/test_charlm.py +++ /dev/null @@ -1,8 +0,0 @@ - - -def test_charlm(): - pass - - -if __name__ == "__main__": - test_charlm() diff --git a/test/model/test_seq_label.py b/test/model/test_seq_label.py new file mode 100644 index 00000000..c4ca5476 --- /dev/null +++ b/test/model/test_seq_label.py @@ -0,0 +1,85 @@ +import os + +from fastNLP.core.optimizer import Optimizer +from fastNLP.core.preprocess import SeqLabelPreprocess +from fastNLP.core.tester import SeqLabelTester +from fastNLP.core.trainer import SeqLabelTrainer +from fastNLP.loader.config_loader import ConfigLoader, ConfigSection +from fastNLP.loader.dataset_loader import POSDatasetLoader +from fastNLP.loader.model_loader import ModelLoader +from fastNLP.models.sequence_modeling import SeqLabeling +from fastNLP.saver.model_saver import ModelSaver + +pickle_path = "./seq_label/" +model_name = "seq_label_model.pkl" +config_dir = "test/data_for_tests/config" +data_path = "test/data_for_tests/people.txt" +data_infer_path = "test/data_for_tests/people_infer.txt" + + +def test_training(): + # Config Loader + trainer_args = ConfigSection() + model_args = ConfigSection() + ConfigLoader("_").load_config(config_dir, { + "test_seq_label_trainer": trainer_args, "test_seq_label_model": model_args}) + + # Data Loader + pos_loader = POSDatasetLoader(data_path) + train_data = pos_loader.load_lines() + + # Preprocessor + p = SeqLabelPreprocess() + data_train, data_dev = p.run(train_data, pickle_path=pickle_path, train_dev_split=0.5) + model_args["vocab_size"] = p.vocab_size + model_args["num_classes"] = p.num_classes + + trainer = SeqLabelTrainer( + epochs=trainer_args["epochs"], + batch_size=trainer_args["batch_size"], + validate=False, + use_cuda=False, + pickle_path=pickle_path, + save_best_dev=trainer_args["save_best_dev"], + model_name=model_name, + optimizer=Optimizer("SGD", lr=0.01, momentum=0.9), + ) + + # Model + model = SeqLabeling(model_args) + + # Start training + trainer.train(model, data_train, data_dev) + + # Saver + saver = ModelSaver(os.path.join(pickle_path, model_name)) + saver.save_pytorch(model) + + del model, trainer, pos_loader + + # Define the same model + model = SeqLabeling(model_args) + + # Dump trained parameters into the model + ModelLoader.load_pytorch(model, os.path.join(pickle_path, model_name)) + + # Load test configuration + tester_args = ConfigSection() + ConfigLoader("config.cfg").load_config(config_dir, {"test_seq_label_tester": tester_args}) + + # Tester + tester = SeqLabelTester(save_output=False, + save_loss=True, + save_best_dev=False, + batch_size=4, + use_cuda=False, + pickle_path=pickle_path, + model_name="seq_label_in_test.pkl", + print_every_step=1 + ) + + # Start testing with validation data + tester.test(model, data_dev) + + loss, accuracy = tester.metrics + assert 0 < accuracy < 1 diff --git a/test/model/text_classify.py b/test/model/text_classify.py index 6ff3c059..381a768e 100644 --- a/test/model/text_classify.py +++ b/test/model/text_classify.py @@ -19,9 +19,9 @@ from fastNLP.core.loss import Loss parser = argparse.ArgumentParser() parser.add_argument("-s", "--save", type=str, default="./test_classification/", help="path to save pickle files") -parser.add_argument("-t", "--train", type=str, default="./data_for_tests/text_classify.txt", +parser.add_argument("-t", "--train", type=str, default="../data_for_tests/text_classify.txt", help="path to the training data") -parser.add_argument("-c", "--config", type=str, default="./data_for_tests/config", help="path to the config file") +parser.add_argument("-c", "--config", type=str, default="../data_for_tests/config", help="path to the config file") parser.add_argument("-m", "--model_name", type=str, default="classify_model.pkl", help="the name of the model") args = parser.parse_args() @@ -115,4 +115,4 @@ def train(): if __name__ == "__main__": train() - infer() + # infer()