Merge pull request #4 from choosewhatulike/paper-implement

Implementation of Hierarchical Attention Networks for Document Classification
This commit is contained in:
Coet 2018-06-24 15:07:41 +08:00 committed by GitHub
commit f5d858e7d2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 408 additions and 0 deletions

View File

@ -0,0 +1,36 @@
## Introduction
This is the implementation of [Hierarchical Attention Networks for Document Classification](https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf) paper in PyTorch.
* Dataset is 600k documents extracted from [Yelp 2018](https://www.yelp.com/dataset) customer reviews
* Use [NLTK](http://www.nltk.org/) and [Stanford CoreNLP](https://stanfordnlp.github.io/CoreNLP/) to tokenize documents and sentences
* Both CPU & GPU support
* The best accuracy is 71%, reaching the same performance in the paper
## Requirement
* python 3.6
* pytorch = 0.3.0
* numpy
* gensim
* nltk
* coreNLP
## Parameters
According to the paper and experiment, I set model parameters:
|word embedding dimension|GRU hidden size|GRU layer|word/sentence context vector dimension|
|---|---|---|---|
|200|50|1|100|
And the training parameters:
|Epoch|learning rate|momentum|batch size|
|---|---|---|---|
|3|0.01|0.9|64|
## Run
1. Prepare dataset. Download the [data set](https://www.yelp.com/dataset), and unzip the custom reviews as a file. Use preprocess.py to transform file into data set foe model input.
2. Train the model. Word enbedding of train data in 'yelp.word2vec'. The model will trained and autosaved in 'model.dict'
```
python train
```
3. Test the model.
```
python evaluate
```

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,44 @@
from model import *
from train import *
def evaluate(net, dataset, bactch_size=64, use_cuda=False):
dataloader = DataLoader(dataset, batch_size=bactch_size, collate_fn=collate, num_workers=0)
count = 0
if use_cuda:
net.cuda()
for i, batch_samples in enumerate(dataloader):
x, y = batch_samples
doc_list = []
for sample in x:
doc = []
for sent_vec in sample:
if use_cuda:
sent_vec = sent_vec.cuda()
doc.append(Variable(sent_vec, volatile=True))
doc_list.append(pack_sequence(doc))
if use_cuda:
y = y.cuda()
predicts = net(doc_list)
p, idx = torch.max(predicts, dim=1)
idx = idx.data
count += torch.sum(torch.eq(idx, y))
return count
if __name__ == '__main__':
'''
Evaluate the performance of model
'''
from gensim.models import Word2Vec
import gensim
from gensim import models
embed_model = Word2Vec.load('yelp.word2vec')
embedding = Embedding_layer(embed_model.wv, embed_model.wv.vector_size)
del embed_model
net = HAN(input_size=200, output_size=5,
word_hidden_size=50, word_num_layers=1, word_context_size=100,
sent_hidden_size=50, sent_num_layers=1, sent_context_size=100)
net.load_state_dict(torch.load('model.dict'))
test_dataset = YelpDocSet('reviews', 199, 4, embedding)
correct = evaluate(net, test_dataset, True)
print('accuracy {}'.format(correct/len(test_dataset)))

View File

@ -0,0 +1,110 @@
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
def pack_sequence(tensor_seq, padding_value=0.0):
if len(tensor_seq) <= 0:
return
length = [v.size(0) for v in tensor_seq]
max_len = max(length)
size = [len(tensor_seq), max_len]
size.extend(list(tensor_seq[0].size()[1:]))
ans = torch.Tensor(*size).fill_(padding_value)
if tensor_seq[0].data.is_cuda:
ans = ans.cuda()
ans = Variable(ans)
for i, v in enumerate(tensor_seq):
ans[i, :length[i], :] = v
return ans
class HAN(nn.Module):
def __init__(self, input_size, output_size,
word_hidden_size, word_num_layers, word_context_size,
sent_hidden_size, sent_num_layers, sent_context_size):
super(HAN, self).__init__()
self.word_layer = AttentionNet(input_size,
word_hidden_size,
word_num_layers,
word_context_size)
self.sent_layer = AttentionNet(2* word_hidden_size,
sent_hidden_size,
sent_num_layers,
sent_context_size)
self.output_layer = nn.Linear(2* sent_hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, batch_doc):
# input is a sequence of matrix
doc_vec_list = []
for doc in batch_doc:
sent_mat = self.word_layer(doc) # doc's dim (num_sent, seq_len, word_dim)
doc_vec_list.append(sent_mat) # sent_mat's dim (num_sent, vec_dim)
doc_vec = self.sent_layer(pack_sequence(doc_vec_list))
output = self.softmax(self.output_layer(doc_vec))
return output
class AttentionNet(nn.Module):
def __init__(self, input_size, gru_hidden_size, gru_num_layers, context_vec_size):
super(AttentionNet, self).__init__()
self.input_size = input_size
self.gru_hidden_size = gru_hidden_size
self.gru_num_layers = gru_num_layers
self.context_vec_size = context_vec_size
# Encoder
self.gru = nn.GRU(input_size=input_size,
hidden_size=gru_hidden_size,
num_layers=gru_num_layers,
batch_first=True,
bidirectional=True)
# Attention
self.fc = nn.Linear(2* gru_hidden_size, context_vec_size)
self.tanh = nn.Tanh()
self.softmax = nn.Softmax(dim=1)
# context vector
self.context_vec = nn.Parameter(torch.Tensor(context_vec_size, 1))
self.context_vec.data.uniform_(-0.1, 0.1)
def forward(self, inputs):
# GRU part
h_t, hidden = self.gru(inputs) # inputs's dim (batch_size, seq_len, word_dim)
u = self.tanh(self.fc(h_t))
# Attention part
alpha = self.softmax(torch.matmul(u, self.context_vec)) # u's dim (batch_size, seq_len, context_vec_size)
output = torch.bmm(torch.transpose(h_t, 1, 2), alpha) # alpha's dim (batch_size, seq_len, 1)
return torch.squeeze(output, dim=2) # output's dim (batch_size, 2*hidden_size, 1)
if __name__ == '__main__':
'''
Test the model correctness
'''
import numpy as np
use_cuda = True
net = HAN(input_size=200, output_size=5,
word_hidden_size=50, word_num_layers=1, word_context_size=100,
sent_hidden_size=50, sent_num_layers=1, sent_context_size=100)
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
criterion = nn.NLLLoss()
test_time = 10
batch_size = 64
if use_cuda:
net.cuda()
print('test training')
for step in range(test_time):
x_data = [torch.randn(np.random.randint(1,10), 200, 200) for i in range(batch_size)]
y_data = torch.LongTensor([np.random.randint(0, 5) for i in range(batch_size)])
if use_cuda:
x_data = [x_i.cuda() for x_i in x_data]
y_data = y_data.cuda()
x = [Variable(x_i) for x_i in x_data]
y = Variable(y_data)
predict = net(x)
loss = criterion(predict, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(loss.data[0])

View File

@ -0,0 +1,51 @@
''''
Tokenize yelp dataset's documents using stanford core nlp
'''
import pickle
import json
import nltk
from nltk.tokenize import stanford
import os
input_filename = 'review.json'
# config for stanford core nlp
os.environ['JAVAHOME'] = 'D:\\java\\bin\\java.exe'
path_to_jar = 'E:\\College\\fudanNLP\\stanford-corenlp-full-2018-02-27\\stanford-corenlp-3.9.1.jar'
tokenizer = stanford.CoreNLPTokenizer()
in_dirname = 'review'
out_dirname = 'reviews'
f = open(input_filename, encoding='utf-8')
samples = []
j = 0
for i, line in enumerate(f.readlines()):
review = json.loads(line)
samples.append((review['stars'], review['text']))
if (i+1) % 5000 == 0:
print(i)
pickle.dump(samples, open(in_dirname + '/samples%d.pkl'%j, 'wb'))
j += 1
samples = []
pickle.dump(samples, open(in_dirname + '/samples%d.pkl'%j, 'wb'))
# samples = pickle.load(open(out_dirname + '/samples0.pkl', 'rb'))
# print(samples[0])
for fn in os.listdir(in_dirname):
print(fn)
precessed = []
for stars, text in pickle.load(open(os.path.join(in_dirname, fn), 'rb')):
tokens = []
sents = nltk.tokenize.sent_tokenize(text)
for s in sents:
tokens.append(tokenizer.tokenize(s))
precessed.append((stars, tokens))
# print(tokens)
if len(precessed) % 100 == 0:
print(len(precessed))
pickle.dump(precessed, open(os.path.join(out_dirname, fn), 'wb'))

View File

@ -0,0 +1,167 @@
import os
import pickle
import nltk
import numpy as np
import torch
from model import *
class SentIter:
def __init__(self, dirname, count):
self.dirname = dirname
self.count = int(count)
def __iter__(self):
for f in os.listdir(self.dirname)[:self.count]:
with open(os.path.join(self.dirname, f), 'rb') as f:
for y, x in pickle.load(f):
for sent in x:
yield sent
def train_word_vec():
# load data
dirname = 'reviews'
sents = SentIter(dirname, 238)
# define model and train
model = models.Word2Vec(size=200, sg=0, workers=4, min_count=5)
model.build_vocab(sents)
model.train(sents, total_examples=model.corpus_count, epochs=10)
model.save('yelp.word2vec')
print(model.wv.similarity('woman', 'man'))
print(model.wv.similarity('nice', 'awful'))
class Embedding_layer:
def __init__(self, wv, vector_size):
self.wv = wv
self.vector_size = vector_size
def get_vec(self, w):
try:
v = self.wv[w]
except KeyError as e:
v = np.random.randn(self.vector_size)
return v
from torch.utils.data import DataLoader, Dataset
class YelpDocSet(Dataset):
def __init__(self, dirname, start_file, num_files, embedding):
self.dirname = dirname
self.num_files = num_files
self._files = os.listdir(dirname)[start_file:start_file + num_files]
self.embedding = embedding
self._cache = [(-1, None) for i in range(5)]
def get_doc(self, n):
file_id = n // 5000
idx = file_id % 5
if self._cache[idx][0] != file_id:
with open(os.path.join(self.dirname, self._files[file_id]), 'rb') as f:
self._cache[idx] = (file_id, pickle.load(f))
y, x = self._cache[idx][1][n % 5000]
sents = []
for s_list in x:
sents.append(' '.join(s_list))
x = '\n'.join(sents)
return x, y-1
def __len__(self):
return len(self._files)*5000
def __getitem__(self, n):
file_id = n // 5000
idx = file_id % 5
if self._cache[idx][0] != file_id:
print('load {} to {}'.format(file_id, idx))
with open(os.path.join(self.dirname, self._files[file_id]), 'rb') as f:
self._cache[idx] = (file_id, pickle.load(f))
y, x = self._cache[idx][1][n % 5000]
doc = []
for sent in x:
if len(sent) == 0:
continue
sent_vec = []
for word in sent:
vec = self.embedding.get_vec(word)
sent_vec.append(vec.tolist())
sent_vec = torch.Tensor(sent_vec)
doc.append(sent_vec)
if len(doc) == 0:
doc = [torch.zeros(1,200)]
return doc, y-1
def collate(iterable):
y_list = []
x_list = []
for x, y in iterable:
y_list.append(y)
x_list.append(x)
return x_list, torch.LongTensor(y_list)
def train(net, dataset, num_epoch, batch_size, print_size=10, use_cuda=False):
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
criterion = nn.NLLLoss()
dataloader = DataLoader(dataset,
batch_size=batch_size,
collate_fn=collate,
num_workers=0)
running_loss = 0.0
if use_cuda:
net.cuda()
print('start training')
for epoch in range(num_epoch):
for i, batch_samples in enumerate(dataloader):
x, y = batch_samples
doc_list = []
for sample in x:
doc = []
for sent_vec in sample:
if use_cuda:
sent_vec = sent_vec.cuda()
doc.append(Variable(sent_vec))
doc_list.append(pack_sequence(doc))
if use_cuda:
y = y.cuda()
y = Variable(y)
predict = net(doc_list)
loss = criterion(predict, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.data[0]
if i % print_size == print_size-1:
print('{}, {}'.format(i+1, running_loss/print_size))
running_loss = 0.0
torch.save(net.state_dict(), 'model.dict')
torch.save(net.state_dict(), 'model.dict')
if __name__ == '__main__':
'''
Train process
'''
from gensim.models import Word2Vec
import gensim
from gensim import models
train_word_vec()
embed_model = Word2Vec.load('yelp.word2vec')
embedding = Embedding_layer(embed_model.wv, embed_model.wv.vector_size)
del embed_model
start_file = 0
dataset = YelpDocSet('reviews', start_file, 120-start_file, embedding)
print('training data size {}'.format(len(dataset)))
net = HAN(input_size=200, output_size=5,
word_hidden_size=50, word_num_layers=1, word_context_size=100,
sent_hidden_size=50, sent_num_layers=1, sent_context_size=100)
try:
net.load_state_dict(torch.load('model.dict'))
print("last time trained model has loaded")
except Exception:
print("cannot load model, train the inital model")
train(net, dataset, num_epoch=5, batch_size=64, use_cuda=True)