mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-11-30 19:28:17 +08:00
修改所有的 validate 为 evaluate ; 移动 callback.on_train_end()
This commit is contained in:
parent
b3bc58b0bb
commit
f74b9b6bec
@ -12,6 +12,34 @@ from fastNLP.core.callbacks.callback_events import _SingleEventState
|
||||
class Callback:
|
||||
r"""
|
||||
实际使用的 callback 类,不管是我们 fastNLP 默认提供的一些 callback 类,还是用户自己定制的 callback 类,都应该继承该基类;
|
||||
callback 调用时机顺序大概如下
|
||||
Trainer.__init__():
|
||||
on_after_trainer_initialized()
|
||||
Trainer.run():
|
||||
if num_eval_sanity_batch>0:
|
||||
on_sanity_check_begin() # 如果设置了num_eval_sanity_batch
|
||||
on_sanity_check_end()
|
||||
try:
|
||||
on_train_begin()
|
||||
while cur_epoch_idx < n_epochs:
|
||||
on_train_epoch_begin()
|
||||
while batch_idx_in_epoch<=num_batches_per_epoch:
|
||||
on_fetch_data_begin()
|
||||
on_fetch_data_end()
|
||||
on_train_batch_begin()
|
||||
on_before_backward()
|
||||
on_after_backward()
|
||||
on_before_zero_grad() # 实际调用受到 accumulation_steps 影响
|
||||
on_after_zero_grad() # 实际调用受到 accumulation_steps 影响
|
||||
on_before_optimizers_step() # 实际调用受到 accumulation_steps 影响
|
||||
on_after_optimizers_step() # 实际调用受到 accumulation_steps 影响
|
||||
on_train_batch_end()
|
||||
on_train_epoch_end()
|
||||
except BaseException:
|
||||
self.on_exception()
|
||||
finally:
|
||||
on_train_end()
|
||||
其它 callback 例如 on_evaluate_begin()/on_evaluate_end()将
|
||||
"""
|
||||
|
||||
def on_after_trainer_initialized(self, trainer, driver):
|
||||
@ -221,9 +249,9 @@ class Callback:
|
||||
"""
|
||||
pass
|
||||
|
||||
def on_validate_begin(self, trainer):
|
||||
def on_evaluate_begin(self, trainer):
|
||||
"""
|
||||
在将要进行 validate 时调用。如果是设置的以 step 数量 或 自定义地 决定 validate 的频率,该接口是在 on_train_batch_end 之后
|
||||
在将要进行 evaluate 时调用。如果是设置的以 step 数量 或 自定义地 决定 evaluate 的频率,该接口是在 on_train_batch_end 之后
|
||||
进行调用。如果是以 epoch 数量决定调用,该接口是在 on_train_epoch_end 之后调用。
|
||||
|
||||
:param trainer:
|
||||
@ -231,9 +259,9 @@ class Callback:
|
||||
"""
|
||||
pass
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
"""
|
||||
结束 validate 时调用,并把 validate 的结果传入。
|
||||
结束 evaluate 时调用,并把 evaluate 的结果传入。
|
||||
|
||||
:param trainer:
|
||||
:param results: Evaluate 的结果,一般是个 dict 。
|
||||
|
@ -96,8 +96,8 @@ class Events(EventEnum):
|
||||
on_after_optimizers_step = "on_after_optimizers_step"
|
||||
on_before_zero_grad = "on_before_zero_grad"
|
||||
on_after_zero_grad = "on_after_zero_grad"
|
||||
on_validate_begin = "on_validate_begin"
|
||||
on_validate_end = "on_validate_end"
|
||||
on_evaluate_begin = "on_evaluate_begin"
|
||||
on_evaluate_end = "on_evaluate_end"
|
||||
|
||||
|
||||
class EventsList:
|
||||
|
@ -281,9 +281,9 @@ class CallbackManager:
|
||||
pass
|
||||
|
||||
@_transfer
|
||||
def on_validate_begin(self, trainer):
|
||||
def on_evaluate_begin(self, trainer):
|
||||
pass
|
||||
|
||||
@_transfer
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
pass
|
||||
|
@ -114,7 +114,7 @@ class CheckpointCallback(Callback):
|
||||
if self.topk_saver.topk_queue and trainer.evaluator is None:
|
||||
logger.warning(f"You set `topk={self.topk}`, but `evaluate_dataloaders` is not set in Trainer.")
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
# 如果发生了保存,则返回的 folder 不为 None
|
||||
folder = self.topk_saver.save_topk(trainer, results)
|
||||
|
||||
|
@ -16,13 +16,13 @@ class EarlyStopCallback(HasMonitorCallback):
|
||||
的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结
|
||||
果(字典类型),返回一个 float 值作为 monitor 的结果。
|
||||
:param larger_better: monitor 的值是否是越大越好。
|
||||
:param patience: 多少次 validate 不没有提升就停止。
|
||||
:param patience: 多少次 evaluate 不没有提升就停止。
|
||||
"""
|
||||
super(EarlyStopCallback, self).__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True)
|
||||
self.wait = 0
|
||||
self.patience = patience
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
monitor_value = self.get_monitor_value(results)
|
||||
if monitor_value is None:
|
||||
return
|
||||
@ -32,13 +32,13 @@ class EarlyStopCallback(HasMonitorCallback):
|
||||
self.wait += 1
|
||||
|
||||
def on_fetch_data_begin(self, trainer):
|
||||
# 当是 step validate 的时候,下一步执行的就是这个, 所以在这里检查。
|
||||
# 当是 step evaluate 的时候,下一步执行的就是这个, 所以在这里检查。
|
||||
if self.wait >= self.patience:
|
||||
raise EarlyStopException(f"After {self.wait} validations, no improvement for "
|
||||
f"metric `{self._real_monitor}`")
|
||||
|
||||
def on_train_epoch_begin(self, trainer):
|
||||
# 当是 epoch validate 的时候,下一步执行的就是这个, 所以在这里检查。
|
||||
# 当是 epoch evaluate 的时候,下一步执行的就是这个, 所以在这里检查。
|
||||
if self.wait >= self.patience:
|
||||
raise EarlyStopException(f"After {self.wait} validations, no improvement for "
|
||||
f"metric `{self._real_monitor}`(best value: {self.monitor_value})")
|
||||
|
@ -216,6 +216,6 @@ class ExecuteOnceBetterMonitor(HasMonitorCallback):
|
||||
_check_valid_parameters_number(execute_fn, expected_params=[], fn_name='execute_fn')
|
||||
self.execute_fn = execute_fn
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
if self.is_better_results(results):
|
||||
self.execute_fn()
|
@ -76,7 +76,7 @@ class LoadBestModelCallback(HasMonitorCallback):
|
||||
|
||||
super().on_after_trainer_initialized(trainer, driver)
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
if self.is_better_results(results, keep_if_better=True):
|
||||
if self.real_save_folder:
|
||||
trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict,
|
||||
@ -95,27 +95,14 @@ class LoadBestModelCallback(HasMonitorCallback):
|
||||
self.buffer.seek(0)
|
||||
trainer.load_model(folder=self.buffer, only_state_dict=self.only_state_dict)
|
||||
|
||||
self._delete_after_after(trainer)
|
||||
|
||||
def _delete_after_after(self, trainer):
|
||||
trainer.driver.barrier()
|
||||
|
||||
if self.delete_after_after:
|
||||
if self.real_save_folder and int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0:
|
||||
# 只需要 rank 0 执行删除。
|
||||
if self.real_save_folder:
|
||||
logger.info(f"Deleting {self.real_save_folder}...")
|
||||
shutil.rmtree(self.real_save_folder)
|
||||
try:
|
||||
# 如果是 emtpy 的,就会被删除掉
|
||||
os.rmdir(self.save_folder)
|
||||
except:
|
||||
pass
|
||||
elif hasattr(self, 'buffer'):
|
||||
self.buffer.close()
|
||||
del self.buffer
|
||||
|
||||
def on_exception(self, trainer, exception):
|
||||
if self.delete_after_after:
|
||||
if self.real_save_folder: # 这里,谁处异常,谁删除
|
||||
logger.info(f"Deleting {self.real_save_folder}...")
|
||||
shutil.rmtree(self.real_save_folder)
|
||||
shutil.rmtree(self.real_save_folder, ignore_errors=True)
|
||||
try:
|
||||
# 如果是 emtpy 的,就会被删除掉
|
||||
os.rmdir(self.save_folder)
|
||||
|
@ -31,8 +31,8 @@ class MoreEvaluateCallback(HasMonitorCallback):
|
||||
|
||||
:param dataloaders: 需要评估的数据
|
||||
:param metrics: 使用的 metrics 。
|
||||
:param evaluate_every: 可以为负数、正数和函数;(1) 为负整数时表示每隔几个 epoch validate 一次;(2) 为正整数则表示每隔几个 batch
|
||||
evaluate 一次;(3) 为函数时表示用户自己传入的用于控制 validate 的频率的函数,该函数的应该接受 trainer 对象作为参数,并返回
|
||||
:param evaluate_every: 可以为负数、正数和函数;(1) 为负整数时表示每隔几个 epoch evaluate 一次;(2) 为正整数则表示每隔几个 batch
|
||||
evaluate 一次;(3) 为函数时表示用户自己传入的用于控制 evaluate 的频率的函数,该函数的应该接受 trainer 对象作为参数,并返回
|
||||
一个 bool 值,返回为 True 说明需要进行 evaluate ;将在每个 batch 结束后调用该函数判断是否需要 evaluate 。
|
||||
:param watch_monitor: 这个值用来表示监控的 Trainer 中的 evaluate 结果的,当该值不为 None ,evaluate_every 失效。本参数的
|
||||
意义是,当检测到 Trainer 中 evaluate results 的 {watch_monitor} 的结果更好时,则进行一次 evaluate 。该参数有两种
|
||||
@ -128,7 +128,7 @@ class MoreEvaluateCallback(HasMonitorCallback):
|
||||
results = self.evaluator.run(num_eval_batch_per_dl=self.num_eval_sanity_batch)
|
||||
self.topk_saver.get_monitor_value(results)
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
if self.is_better_results(results, keep_if_better=True):
|
||||
results = self.evaluator.run()
|
||||
self.topk_saver.save_topk(trainer, results)
|
||||
@ -137,8 +137,8 @@ class MoreEvaluateCallback(HasMonitorCallback):
|
||||
if self.watch_monitor is not None:
|
||||
return
|
||||
if isinstance(self.evaluate_every, int) and self.evaluate_every < 0:
|
||||
validate_every = -self.evaluate_every
|
||||
if trainer.cur_epoch_idx % validate_every == 0:
|
||||
evaluate_every = -self.evaluate_every
|
||||
if trainer.cur_epoch_idx % evaluate_every == 0:
|
||||
results = self.evaluator.run()
|
||||
self.topk_saver.save_topk(trainer, results)
|
||||
|
||||
|
@ -100,7 +100,7 @@ class RichCallback(ProgressCallback):
|
||||
self.progress_bar.update(self.task2id['epoch'], description=f'Epoch:{trainer.cur_epoch_idx}',
|
||||
advance=self.epoch_bar_update_advance, refresh=True)
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
if len(results)==0:
|
||||
return
|
||||
rule_style = ''
|
||||
@ -122,9 +122,6 @@ class RichCallback(ProgressCallback):
|
||||
else:
|
||||
self.progress_bar.print(results)
|
||||
|
||||
def on_exception(self, trainer, exception):
|
||||
self.clear_tasks()
|
||||
|
||||
def clear_tasks(self):
|
||||
for key, taskid in self.task2id.items():
|
||||
self.progress_bar.destroy_task(taskid)
|
||||
@ -178,7 +175,7 @@ class RawTextCallback(ProgressCallback):
|
||||
f'finished {round(trainer.global_forward_batches/trainer.total_batches*100, 2)}%.'
|
||||
logger.info(text)
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
if len(results)==0:
|
||||
return
|
||||
base_text = f'Eval. results on Epoch:{trainer.cur_epoch_idx}, Batch:{trainer.batch_idx_in_epoch}'
|
||||
|
@ -43,7 +43,7 @@ class TrainBatchLoop(Loop):
|
||||
|
||||
trainer.check_batch_step_fn()
|
||||
trainer.on_train_batch_end()
|
||||
trainer.step_validate()
|
||||
trainer.step_evaluate()
|
||||
trainer.batch_idx_in_epoch = 0
|
||||
|
||||
@staticmethod
|
||||
|
@ -339,11 +339,11 @@ class Trainer(TrainerEventTrigger):
|
||||
self.num_batches_per_epoch = len(self.dataloader)
|
||||
self.total_batches = self.num_batches_per_epoch * self.n_epochs
|
||||
self.global_forward_batches = self.num_batches_per_epoch * self.cur_epoch_idx + self.batch_idx_in_epoch
|
||||
self.on_train_begin()
|
||||
self.driver.barrier()
|
||||
self.driver.zero_grad(self.set_grad_to_none)
|
||||
|
||||
try:
|
||||
self.on_train_begin()
|
||||
self.driver.barrier()
|
||||
self.driver.zero_grad(self.set_grad_to_none)
|
||||
while self.cur_epoch_idx < self.n_epochs:
|
||||
# 这个是防止在 Trainer.load 之后还没结束当前 epoch 又继续 save
|
||||
self.start_batch_idx_in_epoch = self.trainer_state.batch_idx_in_epoch
|
||||
@ -356,10 +356,8 @@ class Trainer(TrainerEventTrigger):
|
||||
self.cur_epoch_idx += 1
|
||||
self.on_train_epoch_end()
|
||||
self.driver.barrier()
|
||||
self.epoch_validate()
|
||||
self.epoch_evaluate()
|
||||
self.driver.barrier()
|
||||
self.on_train_end()
|
||||
self.driver.barrier()
|
||||
|
||||
except EarlyStopException as e:
|
||||
logger.info(f"Catch early stop exception: {e.msg}.")
|
||||
@ -373,17 +371,20 @@ class Trainer(TrainerEventTrigger):
|
||||
self.driver.on_exception()
|
||||
self.on_exception(e)
|
||||
raise e
|
||||
finally:
|
||||
self.on_train_end()
|
||||
self.driver.barrier()
|
||||
|
||||
def _set_num_eval_batch_per_dl(self, num_eval_batch_per_dl):
|
||||
def _validate_fn(trainer: Trainer, validate_fn: Callable) -> None:
|
||||
trainer.on_validate_begin()
|
||||
_validate_res: dict = validate_fn()
|
||||
trainer.on_validate_end(_validate_res)
|
||||
def _evaluate_fn(trainer: Trainer, evaluate_fn: Callable) -> None:
|
||||
trainer.on_evaluate_begin()
|
||||
_evaluate_res: dict = evaluate_fn()
|
||||
trainer.on_evaluate_end(_evaluate_res)
|
||||
|
||||
if self.evaluator is not None:
|
||||
self.run_evaluate = partial(_validate_fn, self, partial(self.evaluator.run, num_eval_batch_per_dl))
|
||||
self.run_evaluate = partial(_evaluate_fn, self, partial(self.evaluator.run, num_eval_batch_per_dl))
|
||||
|
||||
def step_validate(self):
|
||||
def step_evaluate(self):
|
||||
"""
|
||||
在每个 batch 结束后调用,根据设置执行 evaluate 。
|
||||
|
||||
@ -396,7 +397,7 @@ class Trainer(TrainerEventTrigger):
|
||||
elif self.evaluate_every > 0 and self.global_forward_batches % self.evaluate_every == 0:
|
||||
self.run_evaluate()
|
||||
|
||||
def epoch_validate(self):
|
||||
def epoch_evaluate(self):
|
||||
"""
|
||||
在每个 epoch 结束后调用,根据设置执行 evaluate 。
|
||||
|
||||
@ -404,8 +405,8 @@ class Trainer(TrainerEventTrigger):
|
||||
"""
|
||||
if self.evaluator is not None:
|
||||
if isinstance(self.evaluate_every, int) and self.evaluate_every < 0:
|
||||
validate_every = -self.evaluate_every
|
||||
if self.cur_epoch_idx % validate_every == 0:
|
||||
evaluate_every = -self.evaluate_every
|
||||
if self.cur_epoch_idx % evaluate_every == 0:
|
||||
self.run_evaluate()
|
||||
|
||||
def add_callback_fn(self, event: Optional[Union[Events, EventsList]], fn: Callable):
|
||||
|
@ -81,12 +81,12 @@ class TrainerEventTrigger:
|
||||
def on_after_zero_grad(self, optimizers):
|
||||
self.callback_manager.on_after_zero_grad(self, optimizers)
|
||||
|
||||
def on_validate_begin(self):
|
||||
self.callback_manager.on_validate_begin(self)
|
||||
def on_evaluate_begin(self):
|
||||
self.callback_manager.on_evaluate_begin(self)
|
||||
|
||||
def on_validate_end(self, results):
|
||||
def on_evaluate_end(self, results):
|
||||
self.trainer_state.save_on_this_step = True
|
||||
self.callback_manager.on_validate_end(self, results)
|
||||
self.callback_manager.on_evaluate_end(self, results)
|
||||
|
||||
|
||||
class _TruncatedDataLoader:
|
||||
@ -126,8 +126,8 @@ class _TruncatedDataLoader:
|
||||
return getattr(self.dataloader, item)
|
||||
|
||||
|
||||
def check_evaluate_every(validate_every):
|
||||
if not callable(validate_every) and (not isinstance(validate_every, int) or validate_every == 0):
|
||||
def check_evaluate_every(evaluate_every):
|
||||
if not callable(evaluate_every) and (not isinstance(evaluate_every, int) or evaluate_every == 0):
|
||||
raise ValueError("Parameter 'evaluate_every' should be set to 'int' type and either < 0 or > 0.")
|
||||
if callable(validate_every):
|
||||
_check_valid_parameters_number(validate_every, expected_params=['trainer'])
|
||||
if callable(evaluate_every):
|
||||
_check_valid_parameters_number(evaluate_every, expected_params=['trainer'])
|
||||
|
@ -63,7 +63,7 @@ class JittorDriver(Driver):
|
||||
|
||||
def check_evaluator_mode(self, mode: str):
|
||||
model = self.unwrap_model()
|
||||
if mode == "validate":
|
||||
if mode == "evaluate":
|
||||
if not hasattr(model, "evaluate_step"):
|
||||
if hasattr(model, "test_step"):
|
||||
logger.warning_once(
|
||||
|
@ -173,6 +173,19 @@ class FastNLPLogger(logging.Logger, metaclass=LoggerSingleton):
|
||||
kwargs["extra"] = extra
|
||||
return kwargs
|
||||
|
||||
def setLevel(self, level) -> None:
|
||||
"""
|
||||
设置当前 logger 以及其 handler 的 log 级别
|
||||
|
||||
:param level:
|
||||
:return:
|
||||
"""
|
||||
if isinstance(level, str):
|
||||
level = level.upper()
|
||||
super().setLevel(level)
|
||||
for handler in self.handlers:
|
||||
handler.setLevel(level)
|
||||
|
||||
|
||||
def _get_level(level):
|
||||
if not isinstance(level, int):
|
||||
|
@ -38,7 +38,7 @@ class RecordMetricCallback(Callback):
|
||||
self.metric_threshold = metric_threshold
|
||||
self.metric_begin_value = None
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
self.metric = results[self.monitor]
|
||||
if self.metric_begin_value is None:
|
||||
self.metric_begin_value = self.metric
|
||||
@ -113,11 +113,11 @@ class RecordTrainerEventTriggerCallback(Callback):
|
||||
def on_after_zero_grad(self, trainer, optimizers):
|
||||
print("on_after_zero_grad")
|
||||
|
||||
def on_validate_begin(self, trainer):
|
||||
print("on_validate_begin")
|
||||
def on_evaluate_begin(self, trainer):
|
||||
print("on_evaluate_begin")
|
||||
|
||||
def on_validate_end(self, trainer, results):
|
||||
print("on_validate_end")
|
||||
def on_evaluate_end(self, trainer, results):
|
||||
print("on_evaluate_end")
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user