{ "cells": [ { "cell_type": "markdown", "id": "fdd7ff16", "metadata": {}, "source": [ "# T4. fastNLP 中的预定义模型\n", "\n", "  1   fastNLP 中 modules 的介绍\n", " \n", "    1.1   modules 模块、models 模块 简介\n", "\n", "    1.2   示例一:modules 实现 LSTM 分类\n", "\n", "  2   fastNLP 中 models 的介绍\n", " \n", "    2.1   示例一:models 实现 CNN 分类\n", "\n", "    2.3   示例二:models 实现 BiLSTM 标注" ] }, { "cell_type": "markdown", "id": "d3d65d53", "metadata": {}, "source": [ "## 1. fastNLP 中 modules 模块的介绍\n", "\n", "### 1.1 modules 模块、models 模块 简介\n", "\n", "在`fastNLP 0.8`中,**`modules.torch`路径下定义了一些基于`pytorch`实现的基础模块**\n", "\n", "    包括长短期记忆网络`LSTM`、条件随机场`CRF`、`transformer`的编解码器模块等,详见下表\n", "\n", "|
代码名称
|
简要介绍
|
代码路径
|\n", "|:--|:--|:--|\n", "| `LSTM` | 轻量封装`pytorch`的`LSTM` | `/modules/torch/encoder/lstm.py` |\n", "| `Seq2SeqEncoder` | 序列变换编码器,基类 | `/modules/torch/encoder/seq2seq_encoder.py` |\n", "| `LSTMSeq2SeqEncoder` | 序列变换编码器,基于`LSTM` | `/modules/torch/encoder/seq2seq_encoder.py` |\n", "| `TransformerSeq2SeqEncoder` | 序列变换编码器,基于`transformer` | `/modules/torch/encoder/seq2seq_encoder.py` |\n", "| `StarTransformer` | `Star-Transformer`的编码器部分 | `/modules/torch/encoder/star_transformer.py` |\n", "| `VarRNN` | 实现`Variational Dropout RNN` | `/modules/torch/encoder/variational_rnn.py` |\n", "| `VarLSTM` | 实现`Variational Dropout LSTM` | `/modules/torch/encoder/variational_rnn.py` |\n", "| `VarGRU` | 实现`Variational Dropout GRU` | `/modules/torch/encoder/variational_rnn.py` |\n", "| `ConditionalRandomField` | 条件随机场模型 | `/modules/torch/decoder/crf.py` |\n", "| `Seq2SeqDecoder` | 序列变换解码器,基类 | `/modules/torch/decoder/seq2seq_decoder.py` |\n", "| `LSTMSeq2SeqDecoder` | 序列变换解码器,基于`LSTM` | `/modules/torch/decoder/seq2seq_decoder.py` |\n", "| `TransformerSeq2SeqDecoder` | 序列变换解码器,基于`transformer` | `/modules/torch/decoder/seq2seq_decoder.py` |\n", "| `SequenceGenerator` | 序列生成,封装`Seq2SeqDecoder` | `/models/torch/sequence_labeling.py` |\n", "| `TimestepDropout` | 在每个`timestamp`上`dropout` | `/modules/torch/dropout.py` |" ] }, { "cell_type": "markdown", "id": "89ffcf07", "metadata": {}, "source": [ "  **`models.torch`路径下定义了一些基于`pytorch`、`modules`实现的预定义模型** \n", "\n", "    例如基于`CNN`的分类模型、基于`BiLSTM+CRF`的标注模型、基于[双仿射注意力机制](https://arxiv.org/pdf/1611.01734.pdf)的分析模型\n", "\n", "    基于`modules.torch`中的`LSTM`/`transformer`编/解码器模块的序列变换/生成模型,详见下表\n", "\n", "|
代码名称
|
简要介绍
|
代码路径
|\n", "|:--|:--|:--|\n", "| `BiaffineParser` | 句法分析模型,基于双仿射注意力 | `/models/torch/biaffine_parser.py` |\n", "| `CNNText` | 文本分类模型,基于`CNN` | `/models/torch/cnn_text_classification.py` |\n", "| `Seq2SeqModel` | 序列变换,基类`encoder+decoder` | `/models/torch/seq2seq_model.py` |\n", "| `LSTMSeq2SeqModel` | 序列变换,基于`LSTM` | `/models/torch/seq2seq_model.py` |\n", "| `TransformerSeq2SeqModel` | 序列变换,基于`transformer` | `/models/torch/seq2seq_model.py` |\n", "| `SequenceGeneratorModel` | 封装`Seq2SeqModel`,结合`SequenceGenerator` | `/models/torch/seq2seq_generator.py` |\n", "| `SeqLabeling` | 标注模型,基类`LSTM+FC+CRF` | `/models/torch/sequence_labeling.py` |\n", "| `BiLSTMCRF` | 标注模型,`BiLSTM+FC+CRF` | `/models/torch/sequence_labeling.py` |\n", "| `AdvSeqLabel` | 标注模型,`LN+BiLSTM*2+LN+FC+CRF` | `/models/torch/sequence_labeling.py` |" ] }, { "cell_type": "markdown", "id": "61318354", "metadata": {}, "source": [ "上述`fastNLP`模块,不仅**为入门级用户提供了简单易用的工具**,以解决各种`NLP`任务,或复现相关论文\n", "\n", "  同时**也为专业研究人员提供了便捷可操作的接口**,封装部分代码的同时,也能指定参数修改细节\n", "\n", "  在接下来的`tutorial`中,我们将通过`SST-2`分类和`CoNLL-2003`标注,展示相关模型使用\n", "\n", "注一:**`SST`**,**单句情感分类**数据集,包含电影评论和对应情感极性,1 对应正面情感,0 对应负面情感\n", "\n", "  数据集包括三部分:训练集 67350 条,验证集 873 条,测试集 1821 条,更多参考[下载链接](https://gluebenchmark.com/tasks)\n", "\n", "注二:**`CoNLL-2003`**,**文本语法标注**数据集,包含语句和对应的词性标签`pos_tags`(名动形数量代)\n", "\n", "  语法结构标签`chunk_tags`(主谓宾定状补)、命名实体标签`ner_tags`(人名、组织名、地名、时间等)\n", "\n", "  数据集包括三部分:训练集 14041 条,验证集 3250 条,测试集 3453 条,更多参考[原始论文](https://aclanthology.org/W03-0419.pdf)" ] }, { "cell_type": "markdown", "id": "2a36bbe4", "metadata": {}, "source": [ "### 1.2 示例一:modules 实现 LSTM 分类" ] }, { "cell_type": "code", "execution_count": null, "id": "40e66b21", "metadata": {}, "outputs": [], "source": [ "# import sys\n", "# sys.path.append('..')\n", "\n", "# from fastNLP.io import SST2Pipe # 没有 SST2Pipe 会运行很长时间,并且还会报错\n", "\n", "# databundle = SST2Pipe(tokenizer='raw').process_from_file()\n", "\n", "# dataset = databundle.get_dataset('train')[:6000]\n", "\n", "# dataset.apply_more(lambda ins:{'words': ins['sentence'].lower().split(), 'target': ins['label']}, \n", "# progress_bar=\"tqdm\")\n", "# dataset.delete_field('sentence')\n", "# dataset.delete_field('label')\n", "# dataset.delete_field('idx')\n", "\n", "# from fastNLP import Vocabulary\n", "\n", "# vocab = Vocabulary()\n", "# vocab.from_dataset(dataset, field_name='words')\n", "# vocab.index_dataset(dataset, field_name='words')\n", "\n", "# train_dataset, evaluate_dataset = dataset.split(ratio=0.85)" ] }, { "cell_type": "code", "execution_count": null, "id": "50960476", "metadata": {}, "outputs": [], "source": [ "# from fastNLP import prepare_torch_dataloader\n", "\n", "# train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n", "# evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)" ] }, { "cell_type": "code", "execution_count": null, "id": "0b25b25c", "metadata": {}, "outputs": [], "source": [ "# import torch\n", "# import torch.nn as nn\n", "\n", "# from fastNLP.modules.torch import LSTM, MLP # 没有 MLP\n", "# from fastNLP import Embedding, CrossEntropyLoss\n", "\n", "\n", "# class ClsByModules(nn.Module):\n", "# def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n", "# nn.Module.__init__(self)\n", "\n", "# self.embedding = Embedding((vocab_size, embedding_dim))\n", "# self.lstm = LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True)\n", "# self.mlp = MLP([hidden_dim * 2, output_dim], dropout=dropout)\n", " \n", "# self.loss_fn = CrossEntropyLoss()\n", "\n", "# def forward(self, words):\n", "# output = self.embedding(words)\n", "# output, (hidden, cell) = self.lstm(output)\n", "# output = self.mlp(torch.cat((hidden[-1], hidden[-2]), dim=1))\n", "# return output\n", " \n", "# def train_step(self, words, target):\n", "# pred = self(words)\n", "# return {\"loss\": self.loss_fn(pred, target)}\n", "\n", "# def evaluate_step(self, words, target):\n", "# pred = self(words)\n", "# pred = torch.max(pred, dim=-1)[1]\n", "# return {\"pred\": pred, \"target\": target}" ] }, { "cell_type": "code", "execution_count": null, "id": "9dbbf50d", "metadata": {}, "outputs": [], "source": [ "# model = ClsByModules(vocab_size=len(vocabulary), embedding_dim=100, output_dim=2)\n", "\n", "# from torch.optim import AdamW\n", "\n", "# optimizers = AdamW(params=model.parameters(), lr=5e-5)" ] }, { "cell_type": "code", "execution_count": null, "id": "7a93432f", "metadata": {}, "outputs": [], "source": [ "# from fastNLP import Trainer, Accuracy\n", "\n", "# trainer = Trainer(\n", "# model=model,\n", "# driver='torch',\n", "# device=0, # 'cuda'\n", "# n_epochs=10,\n", "# optimizers=optimizers,\n", "# train_dataloader=train_dataloader,\n", "# evaluate_dataloaders=evaluate_dataloader,\n", "# metrics={'acc': Accuracy()}\n", "# )" ] }, { "cell_type": "code", "execution_count": null, "id": "31102e0f", "metadata": {}, "outputs": [], "source": [ "# trainer.run(num_eval_batch_per_dl=10)" ] }, { "cell_type": "code", "execution_count": null, "id": "8bc4bfb2", "metadata": {}, "outputs": [], "source": [ "# trainer.evaluator.run()" ] }, { "cell_type": "markdown", "id": "d9443213", "metadata": {}, "source": [ "## 2. fastNLP 中 models 模块的介绍\n", "\n", "### 2.1 示例一:models 实现 CNN 分类\n", "\n", "  本示例使用`fastNLP 0.8`中预定义模型`models`中的`CNNText`模型,实现`SST-2`文本二分类任务\n", "\n", "模型使用方面,如上所述,这里使用**基于卷积神经网络`CNN`的预定义文本分类模型`CNNText`**,结构如下所示\n", "\n", "  首先是内置的`100`维嵌入层、`dropout`层、紧接着是三个一维卷积,将`100`维嵌入特征,分别通过\n", "\n", "    **感受野为`1`、`3`、`5`的卷积算子变换至`30`维、`40`维、`50`维的卷积特征**,再将三者拼接\n", "\n", "  最终再次通过`dropout`层、线性变换层,映射至二元的输出值,对应两个分类结果上的几率`logits`\n", "\n", "```\n", "CNNText(\n", " (embed): Embedding(\n", " (embed): Embedding(5194, 100)\n", " (dropout): Dropout(p=0.0, inplace=False)\n", " )\n", " (conv_pool): ConvMaxpool(\n", " (convs): ModuleList(\n", " (0): Conv1d(100, 30, kernel_size=(1,), stride=(1,), bias=False)\n", " (1): Conv1d(100, 40, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n", " (2): Conv1d(100, 50, kernel_size=(5,), stride=(1,), padding=(2,), bias=False)\n", " )\n", " )\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (fc): Linear(in_features=120, out_features=2, bias=True)\n", ")\n", "```\n", "\n", "数据使用方面,此处**使用`datasets`模块中的`load_dataset`函数**,以如下形式,指定`SST-2`数据集自动加载\n", "\n", "  首次下载后会保存至`~/.cache/huggingface/modules/datasets_modules/datasets/glue/`目录下" ] }, { "cell_type": "code", "execution_count": null, "id": "1aa5cf6d", "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset\n", "\n", "sst2data = load_dataset('glue', 'sst2')" ] }, { "cell_type": "markdown", "id": "c476abe7", "metadata": {}, "source": [ "紧接着,使用`tutorial-1`和`tutorial-2`中的知识,将数据集转化为`fastNLP`中的`DataSet`格式\n", "\n", "  **使用`apply_more`函数、`Vocabulary`模块的`from_/index_dataset`函数预处理数据**\n", "\n", "    并结合`delete_field`函数删除字段调整格式,`split`函数划分测试集和验证集\n", "\n", "  **仅保留`'words'`字段表示输入文本单词序号序列、`'target'`字段表示文本对应预测输出结果**\n", "\n", "    两者**对应到`CNNText`中`train_step`函数和`evaluate_step`函数的签名/输入参数**" ] }, { "cell_type": "code", "execution_count": null, "id": "357ea748", "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('..')\n", "\n", "from fastNLP import DataSet\n", "\n", "dataset = DataSet.from_pandas(sst2data['train'].to_pandas())[:6000]\n", "\n", "dataset.apply_more(lambda ins:{'words': ins['sentence'].lower().split(), 'target': ins['label']}, \n", " progress_bar=\"tqdm\")\n", "dataset.delete_field('sentence')\n", "dataset.delete_field('label')\n", "dataset.delete_field('idx')\n", "\n", "from fastNLP import Vocabulary\n", "\n", "vocab = Vocabulary()\n", "vocab.from_dataset(dataset, field_name='words')\n", "vocab.index_dataset(dataset, field_name='words')\n", "\n", "train_dataset, evaluate_dataset = dataset.split(ratio=0.85)" ] }, { "cell_type": "markdown", "id": "96380c67", "metadata": {}, "source": [ "然后,使用`tutorial-3`中的知识,**通过`prepare_torch_dataloader`处理数据集得到`dataloader`**" ] }, { "cell_type": "code", "execution_count": null, "id": "b9dd1273", "metadata": {}, "outputs": [], "source": [ "from fastNLP import prepare_torch_dataloader\n", "\n", "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n", "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)" ] }, { "cell_type": "markdown", "id": "96941b63", "metadata": {}, "source": [ "接着,**从`fastNLP.models.torch`路径下导入`CNNText`**,初始化`CNNText`实例以及`optimizer`实例\n", "\n", "  注意:初始化`CNNText`时,**二元组参数`embed`、分类数量`num_classes`是必须传入的**,其中\n", "\n", "    **`embed`表示嵌入层的嵌入抽取矩阵大小**,因此第二个元素对应的是默认隐藏层维度 `100`维" ] }, { "cell_type": "code", "execution_count": null, "id": "f6e76e2e", "metadata": {}, "outputs": [], "source": [ "from fastNLP.models.torch import CNNText\n", "\n", "model = CNNText(embed=(len(vocab), 100), num_classes=2, dropout=0.1)\n", "\n", "from torch.optim import AdamW\n", "\n", "optimizers = AdamW(params=model.parameters(), lr=5e-4)" ] }, { "cell_type": "markdown", "id": "0cc5ca10", "metadata": {}, "source": [ "最后,使用`trainer`模块,集成`model`、`optimizer`、`dataloader`、`metric`训练" ] }, { "cell_type": "code", "execution_count": null, "id": "50a13ee5", "metadata": {}, "outputs": [], "source": [ "from fastNLP import Trainer, Accuracy\n", "\n", "trainer = Trainer(\n", " model=model,\n", " driver='torch',\n", " device=0, # 'cuda'\n", " n_epochs=10,\n", " optimizers=optimizers,\n", " train_dataloader=train_dataloader,\n", " evaluate_dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()}\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "28903a7d", "metadata": {}, "outputs": [], "source": [ "trainer.run()" ] }, { "cell_type": "code", "execution_count": null, "id": "f47a6a35", "metadata": {}, "outputs": [], "source": [ "trainer.evaluator.run()" ] }, { "cell_type": "markdown", "id": "7c811257", "metadata": {}, "source": [ "  注:此处使用`gc`模块删除相关变量,释放内存,为接下来新的模型训练预留存储空间" ] }, { "cell_type": "code", "execution_count": null, "id": "c1a2e2ca", "metadata": {}, "outputs": [], "source": [ "import gc\n", "\n", "del model\n", "del trainer\n", "del dataset\n", "del sst2data\n", "\n", "gc.collect()" ] }, { "cell_type": "markdown", "id": "6aec2a19", "metadata": {}, "source": [ "### 2.2 示例二:models 实现 BiLSTM 标注\n", "\n", "  通过两个示例一的对比可以发现,得益于`models`对模型结构的封装,使用`models`明显更加便捷\n", "\n", "    针对更加复杂的模型时,编码更加轻松;本示例将使用`models`中的`BiLSTMCRF`模型\n", "\n", "  避免`CRF`和`Viterbi`算法代码书写的困难,轻松实现`CoNLL-2003`中的命名实体识别`NER`任务\n", "\n", "模型使用方面,如上所述,这里使用**基于双向`LSTM`+条件随机场`CRF`的标注模型`BiLSTMCRF`**,结构如下所示\n", "\n", "  其中,隐藏层维度默认`100`维,因此对应双向`LSTM`输出`200`维,`dropout`层退学概率、`LSTM`层数可调\n", "\n", "```\n", "BiLSTMCRF(\n", " (embed): Embedding(7590, 100)\n", " (lstm): LSTM(\n", " (lstm): LSTM(100, 100, batch_first=True, bidirectional=True)\n", " )\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (fc): Linear(in_features=200, out_features=9, bias=True)\n", " (crf): ConditionalRandomField()\n", ")\n", "```\n", "\n", "数据使用方面,此处仍然**使用`datasets`模块中的`load_dataset`函数**,以如下形式,加载`CoNLL-2003`数据集\n", "\n", "  首次下载后会保存至`~.cache/huggingface/datasets/conll2003/conll2003/1.0.0/`目录下" ] }, { "cell_type": "code", "execution_count": null, "id": "03e66686", "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset\n", "\n", "ner2data = load_dataset('conll2003', 'conll2003')" ] }, { "cell_type": "markdown", "id": "fc505631", "metadata": {}, "source": [ "紧接着,使用`tutorial-1`和`tutorial-2`中的知识,将数据集转化为`fastNLP`中的`DataSet`格式\n", "\n", "  完成数据集格式调整、文本序列化等操作;此处**需要`'words'`、`'seq_len'`、`'target'`三个字段**\n", "\n", "此外,**需要定义`NER`标签到标签序号的映射**(**词汇表`label_vocab`**),数据集中标签已经完成了序号映射\n", "\n", "  所以需要人工定义**`9`个标签对应之前的`9`个分类目标**;数据集说明中规定,`'O'`表示其他标签\n", "\n", "  **后缀`'-PER'`、`'-ORG'`、`'-LOC'`、`'-MISC'`对应人名、组织名、地名、时间等其他命名**\n", "\n", "  **前缀`'B-'`表示起始标签、`'I-'`表示终止标签**;例如,`'B-PER'`表示人名实体的起始标签" ] }, { "cell_type": "code", "execution_count": null, "id": "1f88cad4", "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('..')\n", "\n", "from fastNLP import DataSet\n", "\n", "dataset = DataSet.from_pandas(ner2data['train'].to_pandas())[:4000]\n", "\n", "dataset.apply_more(lambda ins:{'words': ins['tokens'], 'seq_len': len(ins['tokens']), 'target': ins['ner_tags']}, \n", " progress_bar=\"tqdm\")\n", "dataset.delete_field('tokens')\n", "dataset.delete_field('ner_tags')\n", "dataset.delete_field('pos_tags')\n", "dataset.delete_field('chunk_tags')\n", "dataset.delete_field('id')\n", "\n", "from fastNLP import Vocabulary\n", "\n", "token_vocab = Vocabulary()\n", "token_vocab.from_dataset(dataset, field_name='words')\n", "token_vocab.index_dataset(dataset, field_name='words')\n", "label_vocab = Vocabulary(padding=None, unknown=None)\n", "label_vocab.add_word_lst(['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC'])\n", "\n", "train_dataset, evaluate_dataset = dataset.split(ratio=0.85)" ] }, { "cell_type": "markdown", "id": "d9889427", "metadata": {}, "source": [ "然后,同样使用`tutorial-3`中的知识,通过`prepare_torch_dataloader`处理数据集得到`dataloader`" ] }, { "cell_type": "code", "execution_count": null, "id": "7802a072", "metadata": {}, "outputs": [], "source": [ "from fastNLP import prepare_torch_dataloader\n", "\n", "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n", "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)" ] }, { "cell_type": "markdown", "id": "2bc7831b", "metadata": {}, "source": [ "接着,**从`fastNLP.models.torch`路径下导入`BiLSTMCRF`**,初始化`BiLSTMCRF`实例和优化器\n", "\n", "  注意:初始化`BiLSTMCRF`时,和`CNNText`相同,**参数`embed`、`num_classes`是必须传入的**\n", "\n", "    隐藏层维度`hidden_size`默认`100`维,调整`150`维;退学概率默认`0.1`,调整`0.2`" ] }, { "cell_type": "code", "execution_count": null, "id": "4e12c09f", "metadata": {}, "outputs": [], "source": [ "from fastNLP.models.torch import BiLSTMCRF\n", "\n", "model = BiLSTMCRF(embed=(len(token_vocab), 150), num_classes=len(label_vocab), \n", " num_layers=1, hidden_size=150, dropout=0.2)\n", "\n", "from torch.optim import AdamW\n", "\n", "optimizers = AdamW(params=model.parameters(), lr=1e-3)" ] }, { "cell_type": "markdown", "id": "bf30608f", "metadata": {}, "source": [ "最后,使用`trainer`模块,集成`model`、`optimizer`、`dataloader`、`metric`训练\n", "\n", "  **使用`SpanFPreRecMetric`作为`NER`的评价标准**,详细请参考接下来的`tutorial-5`\n", "\n", "  同时,**初始化时需要添加`vocabulary`形式的标签与序号之间的映射`tag_vocab`**" ] }, { "cell_type": "code", "execution_count": null, "id": "cbd6c205", "metadata": {}, "outputs": [], "source": [ "from fastNLP import Trainer, SpanFPreRecMetric\n", "\n", "trainer = Trainer(\n", " model=model,\n", " driver='torch',\n", " device=0, # 'cuda'\n", " n_epochs=10,\n", " optimizers=optimizers,\n", " train_dataloader=train_dataloader,\n", " evaluate_dataloaders=evaluate_dataloader,\n", " metrics={'F1': SpanFPreRecMetric(tag_vocab=label_vocab)}\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "0f8eff34", "metadata": {}, "outputs": [], "source": [ "trainer.run(num_eval_batch_per_dl=10)" ] }, { "cell_type": "code", "execution_count": null, "id": "37871d6b", "metadata": {}, "outputs": [], "source": [ "trainer.evaluator.run()" ] }, { "cell_type": "code", "execution_count": null, "id": "96bae094", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }