{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# 快速入门" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'label': 1 type=str}" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP.io import CSVLoader\n", "\n", "loader = CSVLoader(headers=('raw_sentence', 'label'), sep='\\t')\n", "dataset = loader.load(\"./sample_data/tutorial_sample_dataset.csv\")\n", "dataset[0]" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'label': 1 type=str,\n", "'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'words': ['a', 'series', 'of', 'escapades', 'demonstrating', 'the', 'adage', 'that', 'what', 'is', 'good', 'for', 'the', 'goose', 'is', 'also', 'good', 'for', 'the', 'gander', ',', 'some', 'of', 'which', 'occasionally', 'amuses', 'but', 'none', 'of', 'which', 'amounts', 'to', 'much', 'of', 'a', 'story', '.'] type=list}" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 将所有字母转为小写, 并所有句子变成单词序列\n", "dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='sentence')\n", "dataset.apply(lambda x: x['sentence'].split(), new_field_name='words', is_input=True)\n", "dataset[0]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'label': 1 type=str,\n", "'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import Vocabulary\n", "\n", "# 使用Vocabulary类统计单词,并将单词序列转化为数字序列\n", "vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')\n", "vocab.index_dataset(dataset, field_name='words',new_field_name='words')\n", "dataset[0]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'label': 1 type=str,\n", "'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list,\n", "'target': 1 type=int}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 将label转为整数,并设置为 target\n", "dataset.apply(lambda x: int(x['label']), new_field_name='target', is_target=True)\n", "dataset[0]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "CNNText(\n", " (embed): Embedding(\n", " 177, 50\n", " (dropout): Dropout(p=0.0)\n", " )\n", " (conv_pool): ConvMaxpool(\n", " (convs): ModuleList(\n", " (0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))\n", " (1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))\n", " (2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))\n", " )\n", " )\n", " (dropout): Dropout(p=0.1)\n", " (fc): Linear(in_features=12, out_features=5, bias=True)\n", ")" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP.models import CNNText\n", "model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n", "model" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(62, 15)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 分割训练集/验证集\n", "train_data, dev_data = dataset.split(0.2)\n", "len(train_data), len(dev_data)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input fields after batch(if batch size is 2):\n", "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 26]) \n", "target fields after batch(if batch size is 2):\n", "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "\n", "training epochs started 2019-05-09-10-59-39\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.333333\n", "\n", "Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.533333\n", "\n", "Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.533333\n", "\n", "Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.533333\n", "\n", "Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.6\n", "\n", "Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.8\n", "\n", "Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.8\n", "\n", "Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.733333\n", "\n", "Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.733333\n", "\n", "Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.733333\n", "\n", "\n", "In Epoch:6/Step:12, got best dev performance:AccuracyMetric: acc=0.8\n", "Reloaded the best model.\n" ] }, { "data": { "text/plain": [ "{'best_eval': {'AccuracyMetric': {'acc': 0.8}},\n", " 'best_epoch': 6,\n", " 'best_step': 12,\n", " 'seconds': 0.22}" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric\n", "\n", "# 定义trainer并进行训练\n", "trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data,\n", " loss=CrossEntropyLoss(), metrics=AccuracyMetric())\n", "trainer.train()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 1 }