{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# 详细指南" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 数据读入" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'label': 1 type=str}" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP.io import CSVLoader\n", "\n", "loader = CSVLoader(headers=('raw_sentence', 'label'), sep='\\t')\n", "dataset = loader.load(\"./sample_data/tutorial_sample_dataset.csv\")\n", "dataset[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instance表示一个样本,由一个或多个field(域,属性,特征)组成,每个field有名字和值。\n", "\n", "在初始化Instance时即可定义它包含的域,使用 \"field_name=field_value\"的写法。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'raw_sentence': fake data type=str,\n", "'label': 0 type=str}" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import Instance\n", "\n", "dataset.append(Instance(raw_sentence='fake data', label='0'))\n", "dataset[-1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 数据处理" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'label': 1 type=str,\n", "'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list,\n", "'target': 1 type=int}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import Vocabulary\n", "\n", "# 将所有字母转为小写, 并所有句子变成单词序列\n", "dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='sentence')\n", "dataset.apply_field(lambda x: x.split(), field_name='sentence', new_field_name='words')\n", "\n", "# 使用Vocabulary类统计单词,并将单词序列转化为数字序列\n", "vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')\n", "vocab.index_dataset(dataset, field_name='words',new_field_name='words')\n", "\n", "# 将label转为整数\n", "dataset.apply(lambda x: int(x['label']), new_field_name='target')\n", "dataset[0]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'label': 1 type=str,\n", "'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n", "'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list,\n", "'target': 1 type=int,\n", "'seq_len': 37 type=int}\n" ] } ], "source": [ "# 增加长度信息\n", "dataset.apply_field(lambda x: len(x), field_name='words', new_field_name='seq_len')\n", "print(dataset[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 使用内置模块CNNText\n", "设置为符合内置模块的名称" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "CNNText(\n", " (embed): Embedding(\n", " 177, 50\n", " (dropout): Dropout(p=0.0)\n", " )\n", " (conv_pool): ConvMaxpool(\n", " (convs): ModuleList(\n", " (0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))\n", " (1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))\n", " (2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))\n", " )\n", " )\n", " (dropout): Dropout(p=0.1)\n", " (fc): Linear(in_features=12, out_features=5, bias=True)\n", ")" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP.models import CNNText\n", "\n", "model_cnn = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n", "model_cnn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "我们在使用内置模块的时候,还应该使用应该注意把 field 设定成符合内置模型输入输出的名字。" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "words\n", "seq_len\n", "target\n" ] } ], "source": [ "from fastNLP import Const\n", "\n", "dataset.rename_field('words', Const.INPUT)\n", "dataset.rename_field('seq_len', Const.INPUT_LEN)\n", "dataset.rename_field('target', Const.TARGET)\n", "\n", "dataset.set_input(Const.INPUT, Const.INPUT_LEN)\n", "dataset.set_target(Const.TARGET)\n", "\n", "print(Const.INPUT)\n", "print(Const.INPUT_LEN)\n", "print(Const.TARGET)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 分割训练集/验证集/测试集" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "(64, 7, 7)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dev_data, test_data = dataset.split(0.1)\n", "train_data, dev_data = train_dev_data.split(0.1)\n", "len(train_data), len(dev_data), len(test_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 训练(model_cnn)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### loss\n", "训练模型需要提供一个损失函数\n", "\n", "下面提供了一个在分类问题中常用的交叉熵损失。注意它的**初始化参数**。\n", "\n", "pred参数对应的是模型的forward返回的dict的一个key的名字,这里是\"output\"。\n", "\n", "target参数对应的是dataset作为标签的field的名字,这里是\"label_seq\"。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "from fastNLP import CrossEntropyLoss\n", "\n", "# loss = CrossEntropyLoss()\n", "# 等价于\n", "loss = CrossEntropyLoss(pred=Const.OUTPUT, target=Const.TARGET)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Metric\n", "定义评价指标\n", "\n", "这里使用准确率。参数的“命名规则”跟上面类似。\n", "\n", "pred参数对应的是模型的predict方法返回的dict的一个key的名字,这里是\"predict\"。\n", "\n", "target参数对应的是dataset作为标签的field的名字,这里是\"label_seq\"。" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "from fastNLP import AccuracyMetric\n", "\n", "# metrics=AccuracyMetric()\n", "# 等价于\n", "metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input fields after batch(if batch size is 2):\n", "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n", "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "target fields after batch(if batch size is 2):\n", "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "\n", "training epochs started 2019-05-12-21-38-34\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.285714\n", "\n", "Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.428571\n", "\n", "Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.428571\n", "\n", "Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.428571\n", "\n", "Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.428571\n", "\n", "Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.428571\n", "\n", "Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.428571\n", "\n", "Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.857143\n", "\n", "Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.857143\n", "\n", "Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n", "\n", "\n", "In Epoch:8/Step:16, got best dev performance:AccuracyMetric: acc=0.857143\n", "Reloaded the best model.\n" ] }, { "data": { "text/plain": [ "{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n", " 'best_epoch': 8,\n", " 'best_step': 16,\n", " 'seconds': 0.21}" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import Trainer\n", "\n", "trainer = Trainer(model=model_cnn, train_data=train_data, dev_data=dev_data, loss=loss, metrics=metrics)\n", "trainer.train()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 测试(model_cnn)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[tester] \n", "AccuracyMetric: acc=0.857143\n" ] }, { "data": { "text/plain": [ "{'AccuracyMetric': {'acc': 0.857143}}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import Tester\n", "\n", "tester = Tester(test_data, model_cnn, metrics=AccuracyMetric())\n", "tester.test()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 编写自己的模型\n", "\n", "完全支持 pytorch 的模型,与 pytorch 唯一不同的是返回结果是一个字典,字典中至少需要包含 \"pred\" 这个字段" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", "\n", "class LSTMText(nn.Module):\n", " def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n", " super().__init__()\n", "\n", " self.embedding = nn.Embedding(vocab_size, embedding_dim)\n", " self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True, dropout=dropout)\n", " self.fc = nn.Linear(hidden_dim * 2, output_dim)\n", " self.dropout = nn.Dropout(dropout)\n", "\n", " def forward(self, words):\n", " # (input) words : (batch_size, seq_len)\n", " words = words.permute(1,0)\n", " # words : (seq_len, batch_size)\n", "\n", " embedded = self.dropout(self.embedding(words))\n", " # embedded : (seq_len, batch_size, embedding_dim)\n", " output, (hidden, cell) = self.lstm(embedded)\n", " # output: (seq_len, batch_size, hidden_dim * 2)\n", " # hidden: (num_layers * 2, batch_size, hidden_dim)\n", " # cell: (num_layers * 2, batch_size, hidden_dim)\n", "\n", " hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)\n", " hidden = self.dropout(hidden)\n", " # hidden: (batch_size, hidden_dim * 2)\n", "\n", " pred = self.fc(hidden.squeeze(0))\n", " # result: (batch_size, output_dim)\n", " return {\"pred\":pred}" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input fields after batch(if batch size is 2):\n", "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n", "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "target fields after batch(if batch size is 2):\n", "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "\n", "training epochs started 2019-05-12-21-38-36\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.571429\n", "\n", "Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.571429\n", "\n", "Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.571429\n", "\n", "Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.571429\n", "\n", "Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.714286\n", "\n", "Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.857143\n", "\n", "Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.857143\n", "\n", "Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.857143\n", "\n", "Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.857143\n", "\n", "Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n", "\n", "\n", "In Epoch:6/Step:12, got best dev performance:AccuracyMetric: acc=0.857143\n", "Reloaded the best model.\n" ] }, { "data": { "text/plain": [ "{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n", " 'best_epoch': 6,\n", " 'best_step': 12,\n", " 'seconds': 2.15}" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_lstm = LSTMText(len(vocab),50,5)\n", "trainer = Trainer(model=model_lstm, train_data=train_data, dev_data=dev_data, loss=loss, metrics=metrics)\n", "trainer.train()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[tester] \n", "AccuracyMetric: acc=0.857143\n" ] }, { "data": { "text/plain": [ "{'AccuracyMetric': {'acc': 0.857143}}" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tester = Tester(test_data, model_lstm, metrics=AccuracyMetric())\n", "tester.test()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 使用 Batch编写自己的训练过程" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0 Avg Loss: 3.11 18ms\n", "Epoch 1 Avg Loss: 2.88 30ms\n", "Epoch 2 Avg Loss: 2.69 42ms\n", "Epoch 3 Avg Loss: 2.47 54ms\n", "Epoch 4 Avg Loss: 2.38 67ms\n", "Epoch 5 Avg Loss: 2.10 78ms\n", "Epoch 6 Avg Loss: 2.06 91ms\n", "Epoch 7 Avg Loss: 1.92 103ms\n", "Epoch 8 Avg Loss: 1.91 114ms\n", "Epoch 9 Avg Loss: 1.76 126ms\n", "[tester] \n", "AccuracyMetric: acc=0.571429\n" ] }, { "data": { "text/plain": [ "{'AccuracyMetric': {'acc': 0.571429}}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import BucketSampler\n", "from fastNLP import Batch\n", "import torch\n", "import time\n", "\n", "model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n", "\n", "def train(epoch, data):\n", " optim = torch.optim.Adam(model.parameters(), lr=0.001)\n", " lossfunc = torch.nn.CrossEntropyLoss()\n", " batch_size = 32\n", "\n", " # 定义一个Batch,传入DataSet,规定batch_size和去batch的规则。\n", " # 顺序(Sequential),随机(Random),相似长度组成一个batch(Bucket)\n", " train_sampler = BucketSampler(batch_size=batch_size, seq_len_field_name='seq_len')\n", " train_batch = Batch(batch_size=batch_size, dataset=data, sampler=train_sampler)\n", " \n", " start_time = time.time()\n", " for i in range(epoch):\n", " loss_list = []\n", " for batch_x, batch_y in train_batch:\n", " optim.zero_grad()\n", " output = model(batch_x['words'])\n", " loss = lossfunc(output['pred'], batch_y['target'])\n", " loss.backward()\n", " optim.step()\n", " loss_list.append(loss.item())\n", " print('Epoch {:d} Avg Loss: {:.2f}'.format(i, sum(loss_list) / len(loss_list)),end=\" \")\n", " print('{:d}ms'.format(round((time.time()-start_time)*1000)))\n", " loss_list.clear()\n", " \n", "train(10, train_data)\n", "tester = Tester(test_data, model, metrics=AccuracyMetric())\n", "tester.test()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 使用 Callback 实现自己想要的效果" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input fields after batch(if batch size is 2):\n", "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n", "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "target fields after batch(if batch size is 2):\n", "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "\n", "training epochs started 2019-05-12-21-38-40\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.285714\n", "\n", "Sum Time: 51ms\n", "\n", "\n", "Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.285714\n", "\n", "Sum Time: 69ms\n", "\n", "\n", "Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.285714\n", "\n", "Sum Time: 91ms\n", "\n", "\n", "Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.571429\n", "\n", "Sum Time: 107ms\n", "\n", "\n", "Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.571429\n", "\n", "Sum Time: 125ms\n", "\n", "\n", "Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.571429\n", "\n", "Sum Time: 142ms\n", "\n", "\n", "Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.571429\n", "\n", "Sum Time: 158ms\n", "\n", "\n", "Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.571429\n", "\n", "Sum Time: 176ms\n", "\n", "\n", "Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.714286\n", "\n", "Sum Time: 193ms\n", "\n", "\n", "Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n", "\n", "Sum Time: 212ms\n", "\n", "\n", "\n", "In Epoch:10/Step:20, got best dev performance:AccuracyMetric: acc=0.857143\n", "Reloaded the best model.\n" ] }, { "data": { "text/plain": [ "{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n", " 'best_epoch': 10,\n", " 'best_step': 20,\n", " 'seconds': 0.2}" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import Callback\n", "\n", "start_time = time.time()\n", "\n", "class MyCallback(Callback):\n", " def on_epoch_end(self):\n", " print('Sum Time: {:d}ms\\n\\n'.format(round((time.time()-start_time)*1000)))\n", " \n", "\n", "model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n", "trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data,\n", " loss=CrossEntropyLoss(), metrics=AccuracyMetric(), callbacks=[MyCallback()])\n", "trainer.train()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 1 }