mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-04 21:28:01 +08:00
623 lines
17 KiB
Plaintext
623 lines
17 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# 使用 Callback 自定义你的训练过程"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"- 什么是 Callback\n",
|
||
"- 使用 Callback \n",
|
||
"- 一些常用的 Callback\n",
|
||
"- 自定义实现 Callback"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"什么是Callback\n",
|
||
"------\n",
|
||
"\n",
|
||
"Callback 是与 Trainer 紧密结合的模块,利用 Callback 可以在 Trainer 训练时,加入自定义的操作,比如梯度裁剪,学习率调节,测试模型的性能等。定义的 Callback 会在训练的特定阶段被调用。\n",
|
||
"\n",
|
||
"fastNLP 中提供了很多常用的 Callback ,开箱即用。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"使用 Callback\n",
|
||
" ------\n",
|
||
"\n",
|
||
"使用 Callback 很简单,将需要的 callback 按 list 存储,以对应参数 ``callbacks`` 传入对应的 Trainer。Trainer 在训练时就会自动执行这些 Callback 指定的操作了。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {
|
||
"ExecuteTime": {
|
||
"end_time": "2019-09-17T07:34:46.465871Z",
|
||
"start_time": "2019-09-17T07:34:30.648758Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"In total 3 datasets:\n",
|
||
"\ttest has 1200 instances.\n",
|
||
"\ttrain has 9600 instances.\n",
|
||
"\tdev has 1200 instances.\n",
|
||
"In total 2 vocabs:\n",
|
||
"\tchars has 4409 entries.\n",
|
||
"\ttarget has 2 entries.\n",
|
||
"\n",
|
||
"training epochs started 2019-09-17-03-34-34\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.1 seconds!\n",
|
||
"Evaluation on dev at Epoch 1/3. Step:300/900: \n",
|
||
"AccuracyMetric: acc=0.863333\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.11 seconds!\n",
|
||
"Evaluation on dev at Epoch 2/3. Step:600/900: \n",
|
||
"AccuracyMetric: acc=0.886667\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.1 seconds!\n",
|
||
"Evaluation on dev at Epoch 3/3. Step:900/900: \n",
|
||
"AccuracyMetric: acc=0.890833\n",
|
||
"\n",
|
||
"\r\n",
|
||
"In Epoch:3/Step:900, got best dev performance:\n",
|
||
"AccuracyMetric: acc=0.890833\n",
|
||
"Reloaded the best model.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from fastNLP import (Callback, EarlyStopCallback,\n",
|
||
" Trainer, CrossEntropyLoss, AccuracyMetric)\n",
|
||
"from fastNLP.models import CNNText\n",
|
||
"import torch.cuda\n",
|
||
"\n",
|
||
"# prepare data\n",
|
||
"def get_data():\n",
|
||
" from fastNLP.io import ChnSentiCorpPipe as pipe\n",
|
||
" data = pipe().process_from_file()\n",
|
||
" print(data)\n",
|
||
" data.rename_field('chars', 'words')\n",
|
||
" train_data = data.datasets['train']\n",
|
||
" dev_data = data.datasets['dev']\n",
|
||
" test_data = data.datasets['test']\n",
|
||
" vocab = data.vocabs['words']\n",
|
||
" tgt_vocab = data.vocabs['target']\n",
|
||
" return train_data, dev_data, test_data, vocab, tgt_vocab\n",
|
||
"\n",
|
||
"# prepare model\n",
|
||
"train_data, dev_data, _, vocab, tgt_vocab = get_data()\n",
|
||
"device = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n",
|
||
"model = CNNText((len(vocab),50), num_classes=len(tgt_vocab))\n",
|
||
"\n",
|
||
"# define callback\n",
|
||
"callbacks=[EarlyStopCallback(5)]\n",
|
||
"\n",
|
||
"# pass callbacks to Trainer\n",
|
||
"def train_with_callback(cb_list):\n",
|
||
" trainer = Trainer(\n",
|
||
" device=device,\n",
|
||
" n_epochs=3,\n",
|
||
" model=model, \n",
|
||
" train_data=train_data, \n",
|
||
" dev_data=dev_data, \n",
|
||
" loss=CrossEntropyLoss(), \n",
|
||
" metrics=AccuracyMetric(), \n",
|
||
" callbacks=cb_list, \n",
|
||
" check_code_level=-1\n",
|
||
" )\n",
|
||
" trainer.train()\n",
|
||
"\n",
|
||
"train_with_callback(callbacks)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"fastNLP 中的 Callback\n",
|
||
"-------\n",
|
||
"fastNLP 中提供了很多常用的 Callback,如梯度裁剪,训练时早停和测试验证集,fitlog 等等。具体 Callback 请参考 fastNLP.core.callbacks"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {
|
||
"ExecuteTime": {
|
||
"end_time": "2019-09-17T07:35:02.182727Z",
|
||
"start_time": "2019-09-17T07:34:49.443863Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"training epochs started 2019-09-17-03-34-49\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.13 seconds!\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.12 seconds!\n",
|
||
"Evaluation on data-test:\n",
|
||
"AccuracyMetric: acc=0.890833\n",
|
||
"Evaluation on dev at Epoch 1/3. Step:300/900: \n",
|
||
"AccuracyMetric: acc=0.890833\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.09 seconds!\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.09 seconds!\n",
|
||
"Evaluation on data-test:\n",
|
||
"AccuracyMetric: acc=0.8875\n",
|
||
"Evaluation on dev at Epoch 2/3. Step:600/900: \n",
|
||
"AccuracyMetric: acc=0.8875\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.11 seconds!\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.1 seconds!\n",
|
||
"Evaluation on data-test:\n",
|
||
"AccuracyMetric: acc=0.885\n",
|
||
"Evaluation on dev at Epoch 3/3. Step:900/900: \n",
|
||
"AccuracyMetric: acc=0.885\n",
|
||
"\n",
|
||
"\r\n",
|
||
"In Epoch:1/Step:300, got best dev performance:\n",
|
||
"AccuracyMetric: acc=0.890833\n",
|
||
"Reloaded the best model.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from fastNLP import EarlyStopCallback, GradientClipCallback, EvaluateCallback\n",
|
||
"callbacks = [\n",
|
||
" EarlyStopCallback(5),\n",
|
||
" GradientClipCallback(clip_value=5, clip_type='value'),\n",
|
||
" EvaluateCallback(dev_data)\n",
|
||
"]\n",
|
||
"\n",
|
||
"train_with_callback(callbacks)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"自定义 Callback\n",
|
||
"------\n",
|
||
"\n",
|
||
"这里我们以一个简单的 Callback作为例子,它的作用是打印每一个 Epoch 平均训练 loss。\n",
|
||
"\n",
|
||
"#### 创建 Callback\n",
|
||
" \n",
|
||
"要自定义 Callback,我们要实现一个类,继承 fastNLP.Callback。\n",
|
||
"\n",
|
||
"这里我们定义 MyCallBack ,继承 fastNLP.Callback 。\n",
|
||
"\n",
|
||
"#### 指定 Callback 调用的阶段\n",
|
||
" \n",
|
||
"Callback 中所有以 on_ 开头的类方法会在 Trainer 的训练中在特定阶段调用。 如 on_train_begin() 会在训练开始时被调用,on_epoch_end() 会在每个 epoch 结束时调用。 具体有哪些类方法,参见 Callback 文档。\n",
|
||
"\n",
|
||
"这里, MyCallBack 在求得loss时调用 on_backward_begin() 记录当前 loss ,在每一个 epoch 结束时调用 on_epoch_end() ,求当前 epoch 平均loss并输出。\n",
|
||
"\n",
|
||
"#### 使用 Callback 的属性访问 Trainer 的内部信息\n",
|
||
" \n",
|
||
"为了方便使用,可以使用 Callback 的属性,访问 Trainer 中的对应信息,如 optimizer, epoch, n_epochs,分别对应训练时的优化器,当前 epoch 数,和总 epoch 数。 具体可访问的属性,参见文档 Callback 。\n",
|
||
"\n",
|
||
"这里, MyCallBack 为了求平均 loss ,需要知道当前 epoch 的总步数,可以通过 self.step 属性得到当前训练了多少步。\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {
|
||
"ExecuteTime": {
|
||
"end_time": "2019-09-17T07:43:10.907139Z",
|
||
"start_time": "2019-09-17T07:42:58.488177Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"training epochs started 2019-09-17-03-42-58\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.11 seconds!\n",
|
||
"Evaluation on dev at Epoch 1/3. Step:300/900: \n",
|
||
"AccuracyMetric: acc=0.883333\n",
|
||
"\n",
|
||
"Avg loss at epoch 1, 0.100254\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.1 seconds!\n",
|
||
"Evaluation on dev at Epoch 2/3. Step:600/900: \n",
|
||
"AccuracyMetric: acc=0.8775\n",
|
||
"\n",
|
||
"Avg loss at epoch 2, 0.183511\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Evaluate data in 0.13 seconds!\n",
|
||
"Evaluation on dev at Epoch 3/3. Step:900/900: \n",
|
||
"AccuracyMetric: acc=0.875833\n",
|
||
"\n",
|
||
"Avg loss at epoch 3, 0.257103\n",
|
||
"\r\n",
|
||
"In Epoch:1/Step:300, got best dev performance:\n",
|
||
"AccuracyMetric: acc=0.883333\n",
|
||
"Reloaded the best model.\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from fastNLP import Callback\n",
|
||
"from fastNLP import logger\n",
|
||
"\n",
|
||
"class MyCallBack(Callback):\n",
|
||
" \"\"\"Print average loss in each epoch\"\"\"\n",
|
||
" def __init__(self):\n",
|
||
" super().__init__()\n",
|
||
" self.total_loss = 0\n",
|
||
" self.start_step = 0\n",
|
||
" \n",
|
||
" def on_backward_begin(self, loss):\n",
|
||
" self.total_loss += loss.item()\n",
|
||
" \n",
|
||
" def on_epoch_end(self):\n",
|
||
" n_steps = self.step - self.start_step\n",
|
||
" avg_loss = self.total_loss / n_steps\n",
|
||
" logger.info('Avg loss at epoch %d, %.6f', self.epoch, avg_loss)\n",
|
||
" self.start_step = self.step\n",
|
||
"\n",
|
||
"callbacks = [MyCallBack()]\n",
|
||
"train_with_callback(callbacks)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.3"
|
||
},
|
||
"varInspector": {
|
||
"cols": {
|
||
"lenName": 16,
|
||
"lenType": 16,
|
||
"lenVar": 40
|
||
},
|
||
"kernels_config": {
|
||
"python": {
|
||
"delete_cmd_postfix": "",
|
||
"delete_cmd_prefix": "del ",
|
||
"library": "var_list.py",
|
||
"varRefreshCmd": "print(var_dic_list())"
|
||
},
|
||
"r": {
|
||
"delete_cmd_postfix": ") ",
|
||
"delete_cmd_prefix": "rm(",
|
||
"library": "var_list.r",
|
||
"varRefreshCmd": "cat(var_dic_list()) "
|
||
}
|
||
},
|
||
"types_to_exclude": [
|
||
"module",
|
||
"function",
|
||
"builtin_function_or_method",
|
||
"instance",
|
||
"_Feature"
|
||
],
|
||
"window_display": false
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|