Migrated repository
Go to file
2019-07-08 11:03:00 +08:00
.github Update PULL_REQUEST_TEMPLATE.md 2018-12-14 19:10:44 +08:00
docs Update quickstart.rst 2019-06-13 11:17:02 +08:00
fastNLP - update dpcnn 2019-07-07 16:07:26 +08:00
legacy Dev0.4.0 (#149) 2019-05-22 18:43:56 +08:00
reproduction [verify] readme 2019-07-08 11:03:00 +08:00
test fix bug in test 2019-07-06 01:36:11 +08:00
tutorials Dev0.4.0 (#149) 2019-05-22 18:43:56 +08:00
.gitignore Create .gitignore 2019-06-05 16:35:59 +08:00
.travis.yml 禁止travis测试非 test之外的文件 2019-06-05 18:21:35 +08:00
codecov.yml add codecov fix 2019-02-04 09:56:08 +08:00
LICENSE add LICENSE, setup.py & requirements.txt 2018-05-25 18:32:02 +08:00
MANIFEST.in Dev0.4.0 (#149) 2019-05-22 18:43:56 +08:00
README.md 大幅度更新: 2019-07-06 01:08:55 +08:00
readthedocs.yml 修改了最新的文档 2019-05-24 01:58:04 +08:00
requirements.txt 大幅度更新: 2019-07-06 01:08:55 +08:00
setup.py 1.修复trainer中潜在多步更新bug; 2. LSTM的数据并行修改;3. embed_loader中bug修复, 且允许手动初始化; 2019-06-30 09:52:01 +08:00

fastNLP

Build Status codecov Pypi Hex.pm Documentation Status

fastNLP 是一款轻量级的 NLP 处理套件。你既可以使用它快速地完成一个序列标注(NER、POS-Tagging等、中文分词、文本分类、Matching、指代消解、摘要等任务; 也可以使用它构建许多复杂的网络模型,进行科研。它具有如下的特性:

  • 统一的Tabular式数据容器让数据预处理过程简洁明了。内置多种数据集的DataSet Loader省去预处理代码;
  • 多种训练、测试组件例如训练器Trainer测试器Tester以及各种评测metrics等等;
  • 各种方便的NLP工具例如预处理embedding加载包括EMLo和BERT; 中间数据cache等;
  • 详尽的中文文档、教程以供查阅;
  • 提供诸多高级模块例如Variational LSTM, Transformer, CRF等;
  • 在序列标注、中文分词、文本分类、Matching、指代消解、摘要等任务上封装了各种模型可供直接使用; 详细链接
  • 便捷且具有扩展性的训练器; 提供多种内置callback函数方便实验记录、异常捕获等。

安装指南

fastNLP 依赖如下包:

  • numpy>=1.14.2
  • torch>=1.0.0
  • tqdm>=4.28.1
  • nltk>=3.4.1
  • requests

其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 PyTorch 官网 。 在依赖包安装完成后,您可以在命令行执行如下指令完成安装

pip install fastNLP

参考资源

内置组件

大部分用于的 NLP 任务神经网络都可以看做由编码encoder、聚合aggregator、解码decoder三种模块组成。

fastNLP 在 modules 模块中内置了三种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 三种模块的功能和常见组件如下:

类型 功能 例子
encoder 将输入编码为具有具 有表示能力的向量 embedding, RNN, CNN, transformer
aggregator 从多个向量中聚合信息 self-attention, max-pooling
decoder 将具有某种表示意义的 向量解码为需要的输出 形式 MLP, CRF

完整模型

fastNLP 为不同的 NLP 任务实现了许多完整的模型,它们都经过了训练和测试。

你可以在以下两个地方查看相关信息

项目结构

fastNLP的大致工作流程如上图所示而项目结构如下

fastNLP 开源的自然语言处理库
fastNLP.core 实现了核心功能,包括数据处理组件、训练器、测试器等
fastNLP.models 实现了一些完整的神经网络模型
fastNLP.modules 实现了用于搭建神经网络模型的诸多组件
fastNLP.io 实现了读写功能,包括数据读入,模型读写等

In memory of @FengZiYjun. May his soul rest in peace. We will miss you very very much!