Migrated repository
Go to file
FengZiYjun 5be4cb7bb5 Merge Preprocessor into DataSet.
- DataSet's __init__ takes a function as argument, rather than class object
- Preprocessor is about to remove. Don't use anymore.
- Remove cross_validate in trainer, because it is rarely used and wired
- Loader.load is expected to be a static method
- Delete sth. in other_modules.py
- Add more tests
- Delete extra sample data
2018-10-01 16:49:54 +08:00
.github add logging in Trainer & Tester 2018-08-17 11:16:13 +08:00
docs Merge Preprocessor and DataSet 2018-09-28 21:35:17 +08:00
examples Merge Preprocessor and DataSet 2018-09-28 21:35:17 +08:00
fastNLP Merge Preprocessor into DataSet. 2018-10-01 16:49:54 +08:00
reproduction Merge Preprocessor and DataSet 2018-09-28 21:35:17 +08:00
test Merge Preprocessor into DataSet. 2018-10-01 16:49:54 +08:00
.travis.yml Update .travis.yml 2018-08-17 19:28:38 +08:00
LICENSE add LICENSE, setup.py & requirements.txt 2018-05-25 18:32:02 +08:00
README.md Merge pull request #60 from KuNyaa/master 2018-09-06 09:56:14 +08:00
requirements.txt add tensorboardX for loss visualization 2018-09-03 19:37:44 +08:00
setup.py set encoding model utf-8,otherwise in some computer it will compile failed. 2018-09-15 17:18:51 +08:00

fastNLP

Build Status codecov PyPI version Hex.pm Documentation Status

fastNLP is a modular Natural Language Processing system based on PyTorch, for fast development of NLP tools. It divides the NLP model based on deep learning into different modules. These modules fall into 4 categories: encoder, interaction, aggregation and decoder, while each category contains different implemented modules. Encoder modules encode the input into some abstract representation, interaction modules make the information in the representation interact with each other, aggregation modules aggregate and reduce information, and decoder modules decode the representation into the output. Most current NLP models could be built on these modules, which vastly simplifies the process of developing NLP models. The architecture of fastNLP is as the figure below:

Requirements

  • numpy>=1.14.2
  • torch==0.4.0
  • torchvision>=0.1.8
  • tensorboardX

Resources

Installation

Run the following commands to install fastNLP package.

pip install fastNLP

Cloning From GitHub

If you just want to use fastNLP, use:

git clone https://github.com/fastnlp/fastNLP
cd fastNLP

PyTorch Installation

Visit the [PyTorch official website] for installation instructions based on your system. In general, you could use:

# using conda
conda install pytorch torchvision -c pytorch
# or using pip
pip3 install torch torchvision

TensorboardX Installation

pip3 install tensorboardX

Project Structure

FastNLP
├── docs
├── fastNLP
│   ├── core
│   │   ├── action.py
│   │   ├── __init__.py
│   │   ├── loss.py
│   │   ├── metrics.py
│   │   ├── optimizer.py
│   │   ├── predictor.py
│   │   ├── preprocess.py
│   │   ├── README.md
│   │   ├── tester.py
│   │   └── trainer.py
│   ├── fastnlp.py
│   ├── __init__.py
│   ├── loader
│   │   ├── base_loader.py
│   │   ├── config_loader.py
│   │   ├── dataset_loader.py
│   │   ├── embed_loader.py
│   │   ├── __init__.py
│   │   └── model_loader.py
│   ├── models
│   ├── modules
│   │   ├── aggregation
│   │   ├── decoder
│   │   ├── encoder
│   │   ├── __init__.py
│   │   ├── interaction
│   │   ├── other_modules.py
│   │   └── utils.py
│   └── saver
├── LICENSE
├── README.md
├── reproduction
├── requirements.txt
├── setup.py
└── test
    ├── core
    ├── data_for_tests
    ├── __init__.py
    ├── loader
    ├── modules
    └── readme_example.py