mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-04 21:28:01 +08:00
682 lines
24 KiB
Plaintext
682 lines
24 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# 使用Trainer和Tester快速训练和测试"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 数据读入和处理"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/remote-home/ynzheng/anaconda3/envs/now/lib/python3.8/site-packages/FastNLP-0.5.0-py3.8.egg/fastNLP/io/loader/classification.py:340: UserWarning: SST2's test file has no target.\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"In total 3 datasets:\n",
|
||
"\ttest has 1821 instances.\n",
|
||
"\ttrain has 67349 instances.\n",
|
||
"\tdev has 872 instances.\n",
|
||
"In total 2 vocabs:\n",
|
||
"\twords has 16292 entries.\n",
|
||
"\ttarget has 2 entries.\n",
|
||
"\n",
|
||
"+-----------------------------------+--------+-----------------------------------+---------+\n",
|
||
"| raw_words | target | words | seq_len |\n",
|
||
"+-----------------------------------+--------+-----------------------------------+---------+\n",
|
||
"| hide new secretions from the p... | 1 | [4110, 97, 12009, 39, 2, 6843,... | 7 |\n",
|
||
"+-----------------------------------+--------+-----------------------------------+---------+\n",
|
||
"Vocabulary(['hide', 'new', 'secretions', 'from', 'the']...)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from fastNLP.io import SST2Pipe\n",
|
||
"\n",
|
||
"pipe = SST2Pipe()\n",
|
||
"databundle = pipe.process_from_file()\n",
|
||
"vocab = databundle.get_vocab('words')\n",
|
||
"print(databundle)\n",
|
||
"print(databundle.get_dataset('train')[0])\n",
|
||
"print(databundle.get_vocab('words'))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"4925 872 75\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"train_data = databundle.get_dataset('train')[:5000]\n",
|
||
"train_data, test_data = train_data.split(0.015)\n",
|
||
"dev_data = databundle.get_dataset('dev')\n",
|
||
"print(len(train_data),len(dev_data),len(test_data))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"scrolled": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"+-------------+-----------+--------+-------+---------+\n",
|
||
"| field_names | raw_words | target | words | seq_len |\n",
|
||
"+-------------+-----------+--------+-------+---------+\n",
|
||
"| is_input | False | False | True | True |\n",
|
||
"| is_target | False | True | False | False |\n",
|
||
"| ignore_type | | False | False | False |\n",
|
||
"| pad_value | | 0 | 0 | 0 |\n",
|
||
"+-------------+-----------+--------+-------+---------+\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<prettytable.PrettyTable at 0x7f0db03d0640>"
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"train_data.print_field_meta()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP import AccuracyMetric\n",
|
||
"from fastNLP import Const\n",
|
||
"\n",
|
||
"# metrics=AccuracyMetric() 在本例中与下面这行代码等价\n",
|
||
"metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## DataSetIter初探"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"batch_x: {'words': tensor([[ 13, 830, 7746, 174, 3, 47, 6, 83, 5752, 15,\n",
|
||
" 2177, 15, 63, 57, 406, 84, 1009, 4973, 27, 17,\n",
|
||
" 13785, 3, 533, 3687, 15623, 39, 375, 8, 15624, 8,\n",
|
||
" 1323, 4398, 7],\n",
|
||
" [ 1045, 11113, 16, 104, 5, 4, 176, 1824, 1704, 3,\n",
|
||
" 2, 18, 11, 4, 1018, 432, 143, 33, 245, 308,\n",
|
||
" 7, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0]]), 'seq_len': tensor([33, 21])}\n",
|
||
"batch_y: {'target': tensor([1, 0])}\n",
|
||
"batch_x: {'words': tensor([[ 14, 10, 4, 311, 5, 154, 1418, 609, 7],\n",
|
||
" [ 14, 10, 437, 32, 78, 3, 78, 437, 7]]), 'seq_len': tensor([9, 9])}\n",
|
||
"batch_y: {'target': tensor([0, 1])}\n",
|
||
"batch_x: {'words': tensor([[ 4, 277, 685, 18, 7],\n",
|
||
" [15618, 3204, 5, 1675, 0]]), 'seq_len': tensor([5, 4])}\n",
|
||
"batch_y: {'target': tensor([1, 1])}\n",
|
||
"batch_x: {'words': tensor([[ 2, 155, 3, 4426, 3, 239, 3, 739, 5, 1136,\n",
|
||
" 41, 43, 2427, 736, 2, 648, 10, 15620, 2285, 7],\n",
|
||
" [ 24, 95, 28, 46, 8, 336, 38, 239, 8, 2133,\n",
|
||
" 2, 18, 10, 15622, 1421, 6, 61, 5, 387, 7]]), 'seq_len': tensor([20, 20])}\n",
|
||
"batch_y: {'target': tensor([0, 0])}\n",
|
||
"batch_x: {'words': tensor([[ 879, 96, 8, 1026, 12, 8067, 11, 13623, 8, 15619,\n",
|
||
" 4, 673, 662, 15, 4, 1154, 240, 639, 417, 7],\n",
|
||
" [ 45, 752, 327, 180, 10, 15621, 16, 72, 8904, 9,\n",
|
||
" 1217, 7, 0, 0, 0, 0, 0, 0, 0, 0]]), 'seq_len': tensor([20, 12])}\n",
|
||
"batch_y: {'target': tensor([0, 1])}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from fastNLP import BucketSampler\n",
|
||
"from fastNLP import DataSetIter\n",
|
||
"\n",
|
||
"tmp_data = dev_data[:10]\n",
|
||
"# 定义一个Batch,传入DataSet,规定batch_size和去batch的规则。\n",
|
||
"# 顺序(Sequential),随机(Random),相似长度组成一个batch(Bucket)\n",
|
||
"sampler = BucketSampler(batch_size=2, seq_len_field_name='seq_len')\n",
|
||
"batch = DataSetIter(batch_size=2, dataset=tmp_data, sampler=sampler)\n",
|
||
"for batch_x, batch_y in batch:\n",
|
||
" print(\"batch_x: \",batch_x)\n",
|
||
" print(\"batch_y: \", batch_y)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"batch_x: {'words': tensor([[ 13, 830, 7746, 174, 3, 47, 6, 83, 5752, 15,\n",
|
||
" 2177, 15, 63, 57, 406, 84, 1009, 4973, 27, 17,\n",
|
||
" 13785, 3, 533, 3687, 15623, 39, 375, 8, 15624, 8,\n",
|
||
" 1323, 4398, 7],\n",
|
||
" [ 1045, 11113, 16, 104, 5, 4, 176, 1824, 1704, 3,\n",
|
||
" 2, 18, 11, 4, 1018, 432, 143, 33, 245, 308,\n",
|
||
" 7, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n",
|
||
" -1, -1, -1]]), 'seq_len': tensor([33, 21])}\n",
|
||
"batch_y: {'target': tensor([1, 0])}\n",
|
||
"batch_x: {'words': tensor([[ 14, 10, 4, 311, 5, 154, 1418, 609, 7],\n",
|
||
" [ 14, 10, 437, 32, 78, 3, 78, 437, 7]]), 'seq_len': tensor([9, 9])}\n",
|
||
"batch_y: {'target': tensor([0, 1])}\n",
|
||
"batch_x: {'words': tensor([[ 2, 155, 3, 4426, 3, 239, 3, 739, 5, 1136,\n",
|
||
" 41, 43, 2427, 736, 2, 648, 10, 15620, 2285, 7],\n",
|
||
" [ 24, 95, 28, 46, 8, 336, 38, 239, 8, 2133,\n",
|
||
" 2, 18, 10, 15622, 1421, 6, 61, 5, 387, 7]]), 'seq_len': tensor([20, 20])}\n",
|
||
"batch_y: {'target': tensor([0, 0])}\n",
|
||
"batch_x: {'words': tensor([[ 4, 277, 685, 18, 7],\n",
|
||
" [15618, 3204, 5, 1675, -1]]), 'seq_len': tensor([5, 4])}\n",
|
||
"batch_y: {'target': tensor([1, 1])}\n",
|
||
"batch_x: {'words': tensor([[ 879, 96, 8, 1026, 12, 8067, 11, 13623, 8, 15619,\n",
|
||
" 4, 673, 662, 15, 4, 1154, 240, 639, 417, 7],\n",
|
||
" [ 45, 752, 327, 180, 10, 15621, 16, 72, 8904, 9,\n",
|
||
" 1217, 7, -1, -1, -1, -1, -1, -1, -1, -1]]), 'seq_len': tensor([20, 12])}\n",
|
||
"batch_y: {'target': tensor([0, 1])}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"tmp_data.set_pad_val('words',-1)\n",
|
||
"batch = DataSetIter(batch_size=2, dataset=tmp_data, sampler=sampler)\n",
|
||
"for batch_x, batch_y in batch:\n",
|
||
" print(\"batch_x: \",batch_x)\n",
|
||
" print(\"batch_y: \", batch_y)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"batch_x: {'words': tensor([[ 45, 752, 327, 180, 10, 15621, 16, 72, 8904, 9,\n",
|
||
" 1217, 7, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
|
||
" [ 879, 96, 8, 1026, 12, 8067, 11, 13623, 8, 15619,\n",
|
||
" 4, 673, 662, 15, 4, 1154, 240, 639, 417, 7,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'seq_len': tensor([12, 20])}\n",
|
||
"batch_y: {'target': tensor([1, 0])}\n",
|
||
"batch_x: {'words': tensor([[ 13, 830, 7746, 174, 3, 47, 6, 83, 5752, 15,\n",
|
||
" 2177, 15, 63, 57, 406, 84, 1009, 4973, 27, 17,\n",
|
||
" 13785, 3, 533, 3687, 15623, 39, 375, 8, 15624, 8,\n",
|
||
" 1323, 4398, 7, 0, 0, 0, 0, 0, 0, 0],\n",
|
||
" [ 1045, 11113, 16, 104, 5, 4, 176, 1824, 1704, 3,\n",
|
||
" 2, 18, 11, 4, 1018, 432, 143, 33, 245, 308,\n",
|
||
" 7, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'seq_len': tensor([33, 21])}\n",
|
||
"batch_y: {'target': tensor([1, 0])}\n",
|
||
"batch_x: {'words': tensor([[ 14, 10, 4, 311, 5, 154, 1418, 609, 7, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0],\n",
|
||
" [ 14, 10, 437, 32, 78, 3, 78, 437, 7, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0]]), 'seq_len': tensor([9, 9])}\n",
|
||
"batch_y: {'target': tensor([0, 1])}\n",
|
||
"batch_x: {'words': tensor([[ 2, 155, 3, 4426, 3, 239, 3, 739, 5, 1136,\n",
|
||
" 41, 43, 2427, 736, 2, 648, 10, 15620, 2285, 7,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
|
||
" [ 24, 95, 28, 46, 8, 336, 38, 239, 8, 2133,\n",
|
||
" 2, 18, 10, 15622, 1421, 6, 61, 5, 387, 7,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'seq_len': tensor([20, 20])}\n",
|
||
"batch_y: {'target': tensor([0, 0])}\n",
|
||
"batch_x: {'words': tensor([[ 4, 277, 685, 18, 7, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
|
||
" [15618, 3204, 5, 1675, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
||
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'seq_len': tensor([5, 4])}\n",
|
||
"batch_y: {'target': tensor([1, 1])}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from fastNLP.core.field import Padder\n",
|
||
"import numpy as np\n",
|
||
"class FixLengthPadder(Padder):\n",
|
||
" def __init__(self, pad_val=0, length=None):\n",
|
||
" super().__init__(pad_val=pad_val)\n",
|
||
" self.length = length\n",
|
||
" assert self.length is not None, \"Creating FixLengthPadder with no specific length!\"\n",
|
||
"\n",
|
||
" def __call__(self, contents, field_name, field_ele_dtype, dim):\n",
|
||
" #计算当前contents中的最大长度\n",
|
||
" max_len = max(map(len, contents))\n",
|
||
" #如果当前contents中的最大长度大于指定的padder length的话就报错\n",
|
||
" assert max_len <= self.length, \"Fixed padder length smaller than actual length! with length {}\".format(max_len)\n",
|
||
" array = np.full((len(contents), self.length), self.pad_val, dtype=field_ele_dtype)\n",
|
||
" for i, content_i in enumerate(contents):\n",
|
||
" array[i, :len(content_i)] = content_i\n",
|
||
" return array\n",
|
||
"\n",
|
||
"#设定FixLengthPadder的固定长度为40\n",
|
||
"tmp_padder = FixLengthPadder(pad_val=0,length=40)\n",
|
||
"#利用dataset的set_padder函数设定words field的padder\n",
|
||
"tmp_data.set_padder('words',tmp_padder)\n",
|
||
"batch = DataSetIter(batch_size=2, dataset=tmp_data, sampler=sampler)\n",
|
||
"for batch_x, batch_y in batch:\n",
|
||
" print(\"batch_x: \",batch_x)\n",
|
||
" print(\"batch_y: \", batch_y)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 使用DataSetIter自己编写训练过程\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"-----start training-----\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 2.68 seconds!\n",
|
||
"Epoch 0 Avg Loss: 0.66 AccuracyMetric: acc=0.708716 29307ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.38 seconds!\n",
|
||
"Epoch 1 Avg Loss: 0.41 AccuracyMetric: acc=0.770642 52200ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.51 seconds!\n",
|
||
"Epoch 2 Avg Loss: 0.16 AccuracyMetric: acc=0.747706 70268ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.96 seconds!\n",
|
||
"Epoch 3 Avg Loss: 0.06 AccuracyMetric: acc=0.741972 90349ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 1.04 seconds!\n",
|
||
"Epoch 4 Avg Loss: 0.03 AccuracyMetric: acc=0.740826 114250ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.8 seconds!\n",
|
||
"Epoch 5 Avg Loss: 0.02 AccuracyMetric: acc=0.738532 134742ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.65 seconds!\n",
|
||
"Epoch 6 Avg Loss: 0.01 AccuracyMetric: acc=0.731651 154503ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.8 seconds!\n",
|
||
"Epoch 7 Avg Loss: 0.01 AccuracyMetric: acc=0.738532 175397ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.36 seconds!\n",
|
||
"Epoch 8 Avg Loss: 0.01 AccuracyMetric: acc=0.733945 192384ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=55.0), HTML(value='')), layout=Layout(dis…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.84 seconds!\n",
|
||
"Epoch 9 Avg Loss: 0.01 AccuracyMetric: acc=0.744266 214417ms\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=5.0), HTML(value='')), layout=Layout(disp…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"Evaluate data in 0.04 seconds!\n",
|
||
"[tester] \n",
|
||
"AccuracyMetric: acc=0.786667\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'AccuracyMetric': {'acc': 0.786667}}"
|
||
]
|
||
},
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"from fastNLP import BucketSampler\n",
|
||
"from fastNLP import DataSetIter\n",
|
||
"from fastNLP.models import CNNText\n",
|
||
"from fastNLP import Tester\n",
|
||
"import torch\n",
|
||
"import time\n",
|
||
"\n",
|
||
"embed_dim = 100\n",
|
||
"model = CNNText((len(vocab),embed_dim), num_classes=2, dropout=0.1)\n",
|
||
"\n",
|
||
"def train(epoch, data, devdata):\n",
|
||
" optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n",
|
||
" lossfunc = torch.nn.CrossEntropyLoss()\n",
|
||
" batch_size = 32\n",
|
||
"\n",
|
||
" # 定义一个Batch,传入DataSet,规定batch_size和去batch的规则。\n",
|
||
" # 顺序(Sequential),随机(Random),相似长度组成一个batch(Bucket)\n",
|
||
" train_sampler = BucketSampler(batch_size=batch_size, seq_len_field_name='seq_len')\n",
|
||
" train_batch = DataSetIter(batch_size=batch_size, dataset=data, sampler=train_sampler)\n",
|
||
"\n",
|
||
" start_time = time.time()\n",
|
||
" print(\"-\"*5+\"start training\"+\"-\"*5)\n",
|
||
" for i in range(epoch):\n",
|
||
" loss_list = []\n",
|
||
" for batch_x, batch_y in train_batch:\n",
|
||
" optimizer.zero_grad()\n",
|
||
" output = model(batch_x['words'])\n",
|
||
" loss = lossfunc(output['pred'], batch_y['target'])\n",
|
||
" loss.backward()\n",
|
||
" optimizer.step()\n",
|
||
" loss_list.append(loss.item())\n",
|
||
"\n",
|
||
" #这里verbose如果为0,在调用Tester对象的test()函数时不输出任何信息,返回评估信息; 如果为1,打印出验证结果,返回评估信息\n",
|
||
" #在调用过Tester对象的test()函数后,调用其_format_eval_results(res)函数,结构化输出验证结果\n",
|
||
" tester_tmp = Tester(devdata, model, metrics=AccuracyMetric(), verbose=0)\n",
|
||
" res=tester_tmp.test()\n",
|
||
"\n",
|
||
" print('Epoch {:d} Avg Loss: {:.2f}'.format(i, sum(loss_list) / len(loss_list)),end=\" \")\n",
|
||
" print(tester_tmp._format_eval_results(res),end=\" \")\n",
|
||
" print('{:d}ms'.format(round((time.time()-start_time)*1000)))\n",
|
||
" loss_list.clear()\n",
|
||
"\n",
|
||
"train(10, train_data, dev_data)\n",
|
||
"#使用tester进行快速测试\n",
|
||
"tester = Tester(test_data, model, metrics=AccuracyMetric())\n",
|
||
"tester.test()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python Now",
|
||
"language": "python",
|
||
"name": "now"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.8.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|