Migrated repository
Go to file
FengZiYjun 887fc9281f update callbacks:
* rename callback methods. Use fastai's notation.
* add a new callback method - on_valid_begin
2019-01-25 21:43:24 +08:00
.github Update PULL_REQUEST_TEMPLATE.md 2018-12-14 19:10:44 +08:00
docs fix version number 2019-01-03 19:52:14 +08:00
fastNLP update callbacks: 2019-01-25 21:43:24 +08:00
reproduction update callbacks: 2019-01-25 21:43:24 +08:00
test update callbacks: 2019-01-25 21:43:24 +08:00
tutorials add testing tutorial 2019-01-23 14:56:25 +08:00
.travis.yml * update travis config 2019-01-11 20:14:18 +08:00
LICENSE add LICENSE, setup.py & requirements.txt 2018-05-25 18:32:02 +08:00
README.md * update travis config 2019-01-11 20:14:18 +08:00
readthedocs.yml update docs 2018-12-13 01:52:52 +08:00
requirements.txt 1. 优化trainer checkcode过程的报错信息 2018-12-05 20:15:59 +08:00
setup.py * fix processor.py 2018-12-06 19:28:27 +08:00

fastNLP

Build Status codecov PyPI version Hex.pm Documentation Status

FastNLP is a modular Natural Language Processing system based on PyTorch, built for fast development of NLP models.

A deep learning NLP model is the composition of three types of modules:

module type functionality example
encoder encode the input into some abstract representation embedding, RNN, CNN, transformer
aggregator aggregate and reduce information self-attention, max-pooling
decoder decode the representation into the output MLP, CRF

For example:

Requirements

  • Python>=3.6
  • numpy>=1.14.2
  • torch>=0.4.0
  • tensorboardX
  • tqdm>=4.28.1

Resources

Installation

Run the following commands to install fastNLP package.

pip install fastNLP

Project Structure

fastNLP an open-source NLP library
fastNLP.api APIs for end-to-end prediction
fastNLP.core data representation & train/test procedure
fastNLP.models a collection of NLP models
fastNLP.modules a collection of PyTorch sub-models/components/wheels
fastNLP.io readers & savers