fastNLP/reproduction/seqence_labelling/ner
2019-08-20 21:35:12 +08:00
..
data rename base_loader file as data_bundle 2019-08-16 17:40:43 +08:00
model 1.修复Embedding中潜在的寻找路径失败; 2.reproduction中增加分词模型; 3.修改ner模型为最新的pipe版本 2019-08-20 21:35:12 +08:00
test 新增NER的数据加载与模型代码; 修改metric中的typo; 修改LSTM中的默认初始化将forget gate设置为1. 2019-06-18 10:02:24 +08:00
__init__.py 新增NER的数据加载与模型代码; 修改metric中的typo; 修改LSTM中的默认初始化将forget gate设置为1. 2019-06-18 10:02:24 +08:00
README.md ner的readme更新 2019-07-02 11:32:45 +08:00
train_cnn_lstm_crf_conll2003.py 1.修复Embedding中潜在的寻找路径失败; 2.reproduction中增加分词模型; 3.修改ner模型为最新的pipe版本 2019-08-20 21:35:12 +08:00
train_idcnn.py 增加fastNLP.embeddings模块并修改对应的现有代码以适配fastNLP.embeddings 2019-07-12 04:07:47 +08:00
train_ontonote.py 1.修复Embedding中潜在的寻找路径失败; 2.reproduction中增加分词模型; 3.修改ner模型为最新的pipe版本 2019-08-20 21:35:12 +08:00

NER任务模型复现

这里使用fastNLP复现经典的BiLSTM-CNN的NER任务的模型旨在达到与论文中相符的性能。

论文链接Named Entity Recognition with Bidirectional LSTM-CNNs

数据集及复现结果汇总

使用fastNLP复现的结果vs论文汇报结果(/前为fastNLP实现后面为论文报道)

model name Conll2003 Ontonotes
BiLSTM-CNN 91.17/90.91 86.47/86.35