mirror of
https://gitee.com/fastnlp/fastNLP.git
synced 2024-12-02 04:07:35 +08:00
811 lines
26 KiB
Plaintext
811 lines
26 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "aec0fde7",
|
||
"metadata": {},
|
||
"source": [
|
||
"# T0. trainer 和 evaluator 的基本使用\n",
|
||
"\n",
|
||
"  1   trainer 和 evaluator 的基本关系\n",
|
||
" \n",
|
||
"    1.1   trainer 和 evaluater 的初始化\n",
|
||
"\n",
|
||
"    1.2   driver 的含义与使用要求\n",
|
||
"\n",
|
||
"    1.3   trainer 内部初始化 evaluater\n",
|
||
"\n",
|
||
"  2   使用 fastNLP 0.8 搭建 argmax 模型\n",
|
||
"\n",
|
||
"    2.1   trainer_step 和 evaluator_step\n",
|
||
"\n",
|
||
"    2.2   trainer 和 evaluator 的参数匹配\n",
|
||
"\n",
|
||
"    2.3   一个实际案例:argmax 模型\n",
|
||
"\n",
|
||
"  3   使用 fastNLP 0.8 训练 argmax 模型\n",
|
||
" \n",
|
||
"    3.1   trainer 外部初始化的 evaluator\n",
|
||
"\n",
|
||
"    3.2   trainer 内部初始化的 evaluator "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "09ea669a",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. trainer 和 evaluator 的基本关系\n",
|
||
"\n",
|
||
"### 1.1 trainer 和 evaluator 的初始化\n",
|
||
"\n",
|
||
"在`fastNLP 0.8`中,**`Trainer`模块和`Evaluator`模块分别表示“训练器”和“评测器”**\n",
|
||
"\n",
|
||
"  对应于之前的`fastNLP`版本中的`Trainer`模块和`Tester`模块,其定义方法如下所示\n",
|
||
"\n",
|
||
"在`fastNLP 0.8`中,需要注意,在同个`python`脚本中先使用`Trainer`训练,然后使用`Evaluator`评测\n",
|
||
"\n",
|
||
"  非常关键的问题在于**如何正确设置二者的`driver`**。这就引入了另一个问题:什么是 `driver`?\n",
|
||
"\n",
|
||
"\n",
|
||
"```python\n",
|
||
"trainer = Trainer(\n",
|
||
" model=model, # 模型基于 torch.nn.Module\n",
|
||
" train_dataloader=train_dataloader, # 加载模块基于 torch.utils.data.DataLoader \n",
|
||
" optimizers=optimizer, # 优化模块基于 torch.optim.*\n",
|
||
"\t...\n",
|
||
"\tdriver=\"torch\", # 使用 pytorch 模块进行训练 \n",
|
||
"\tdevice='cuda', # 使用 GPU:0 显卡执行训练\n",
|
||
"\t...\n",
|
||
")\n",
|
||
"...\n",
|
||
"evaluator = Evaluator(\n",
|
||
" model=model, # 模型基于 torch.nn.Module\n",
|
||
" dataloaders=evaluate_dataloader, # 加载模块基于 torch.utils.data.DataLoader\n",
|
||
" metrics={'acc': Accuracy()}, # 测评方法使用 fastNLP.core.metrics.Accuracy \n",
|
||
" ...\n",
|
||
" driver=trainer.driver, # 保持同 trainer 的 driver 一致\n",
|
||
"\tdevice=None,\n",
|
||
" ...\n",
|
||
")\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "3c11fe1a",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1.2 driver 的含义与使用要求\n",
|
||
"\n",
|
||
"在`fastNLP 0.8`中,**`driver`**这一概念被用来表示**控制具体训练的各个步骤的最终执行部分**\n",
|
||
"\n",
|
||
"  例如神经网络前向、后向传播的具体执行、网络参数的优化和数据在设备间的迁移等\n",
|
||
"\n",
|
||
"在`fastNLP 0.8`中,**`Trainer`和`Evaluator`都依赖于具体的`driver`来完成整体的工作流程**\n",
|
||
"\n",
|
||
"  具体`driver`与`Trainer`以及`Evaluator`之间的关系请参考`fastNLP 0.8`的框架设计\n",
|
||
"\n",
|
||
"注:这里给出一条建议:**在同一脚本中**,**所有的`Trainer`和`Evaluator`使用的`driver`应当保持一致**\n",
|
||
"\n",
|
||
"  尽量不出现,之前使用单卡的`driver`,后面又使用多卡的`driver`,这是因为,当脚本执行至\n",
|
||
"\n",
|
||
"  多卡`driver`处时,会重启一个进程执行之前所有内容,如此一来可能会造成一些意想不到的麻烦"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2cac4a1a",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1.3 Trainer 内部初始化 Evaluator\n",
|
||
"\n",
|
||
"在`fastNLP 0.8`中,如果在**初始化`Trainer`时**,**传入参数`evaluator_dataloaders`和`metrics`**\n",
|
||
"\n",
|
||
"  则在`Trainer`内部,也会初始化单独的`Evaluator`来帮助训练过程中对验证集的评测\n",
|
||
"\n",
|
||
"```python\n",
|
||
"trainer = Trainer(\n",
|
||
" model=model,\n",
|
||
" train_dataloader=train_dataloader,\n",
|
||
" optimizers=optimizer,\n",
|
||
"\t...\n",
|
||
"\tdriver=\"torch\",\n",
|
||
"\tdevice='cuda',\n",
|
||
"\t...\n",
|
||
" evaluate_dataloaders=evaluate_dataloader, # 传入参数 evaluator_dataloaders\n",
|
||
" metrics={'acc': Accuracy()}, # 传入参数 metrics\n",
|
||
"\t...\n",
|
||
")\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "0c9c7dda",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. argmax 模型的搭建实例"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "524ac200",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 2.1 trainer_step 和 evaluator_step\n",
|
||
"\n",
|
||
"在`fastNLP 0.8`中,使用`pytorch.nn.Module`搭建需要训练的模型,在搭建模型过程中,除了\n",
|
||
"\n",
|
||
"  添加`pytorch`要求的`forward`方法外,还需要添加 **`train_step`** 和 **`evaluate_step`** 这两个方法\n",
|
||
"\n",
|
||
"```python\n",
|
||
"class Model(torch.nn.Module):\n",
|
||
" def __init__(self):\n",
|
||
" super(Model, self).__init__()\n",
|
||
" self.loss_fn = torch.nn.CrossEntropyLoss()\n",
|
||
" pass\n",
|
||
"\n",
|
||
" def forward(self, x):\n",
|
||
" pass\n",
|
||
"\n",
|
||
" def train_step(self, x, y):\n",
|
||
" pred = self(x)\n",
|
||
" return {\"loss\": self.loss_fn(pred, y)}\n",
|
||
"\n",
|
||
" def evaluate_step(self, x, y):\n",
|
||
" pred = self(x)\n",
|
||
" pred = torch.max(pred, dim=-1)[1]\n",
|
||
" return {\"pred\": pred, \"target\": y}\n",
|
||
"```\n",
|
||
"***\n",
|
||
"在`fastNLP 0.8`中,**函数`train_step`是`Trainer`中参数`train_fn`的默认值**\n",
|
||
"\n",
|
||
"  由于,在`Trainer`训练时,**`Trainer`通过参数`train_fn`对应的模型方法获得当前数据批次的损失值**\n",
|
||
"\n",
|
||
"  因此,在`Trainer`训练时,`Trainer`首先会寻找模型是否定义了`train_step`这一方法\n",
|
||
"\n",
|
||
"    如果没有找到,那么`Trainer`会默认使用模型的`forward`函数来进行训练的前向传播过程\n",
|
||
"\n",
|
||
"注:在`fastNLP 0.8`中,**`Trainer`要求模型通过`train_step`来返回一个字典**,**满足如`{\"loss\": loss}`的形式**\n",
|
||
"\n",
|
||
"  此外,这里也可以通过传入`Trainer`的参数`output_mapping`来实现输出的转换,详见(trainer的详细讲解,待补充)\n",
|
||
"\n",
|
||
"同样,在`fastNLP 0.8`中,**函数`evaluate_step`是`Evaluator`中参数`evaluate_fn`的默认值**\n",
|
||
"\n",
|
||
"  在`Evaluator`测试时,**`Evaluator`通过参数`evaluate_fn`对应的模型方法获得当前数据批次的评测结果**\n",
|
||
"\n",
|
||
"  从用户角度,模型通过`evaluate_step`方法来返回一个字典,内容与传入`Evaluator`的`metrics`一致\n",
|
||
"\n",
|
||
"  从模块角度,该字典的键值和`metric`中的`update`函数的签名一致,这样的机制在传参时被称为“**参数匹配**”\n",
|
||
"\n",
|
||
"<img src=\"./figures/T0-fig-training-structure.png\" width=\"68%\" height=\"68%\" align=\"center\"></img>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "fb3272eb",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 2.2 trainer 和 evaluator 的参数匹配\n",
|
||
"\n",
|
||
"在`fastNLP 0.8`中,参数匹配涉及到两个方面,分别是在\n",
|
||
"\n",
|
||
"  一方面,**在模型的前向传播中**,**`dataloader`向`train_step`或`evaluate_step`函数传递`batch`**\n",
|
||
"\n",
|
||
"  另方面,**在模型的评测过程中**,**`evaluate_dataloader`向`metric`的`update`函数传递`batch`**\n",
|
||
"\n",
|
||
"对于前者,在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`False`时\n",
|
||
"\n",
|
||
"    **`fastNLP 0.8`要求`dataloader`生成的每个`batch`**,**满足如`{\"x\": x, \"y\": y}`的形式**\n",
|
||
"\n",
|
||
"  同时,`fastNLP 0.8`会查看模型的`train_step`和`evaluate_step`方法的参数签名,并为对应参数传入对应数值\n",
|
||
"\n",
|
||
"    **字典形式的定义**,**对应在`Dataset`定义的`__getitem__`方法中**,例如下方的`ArgMaxDatset`\n",
|
||
"\n",
|
||
"  而在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`True`时\n",
|
||
"\n",
|
||
"    `fastNLP 0.8`会将`batch`直接传给模型的`train_step`、`evaluate_step`或`forward`函数\n",
|
||
"\n",
|
||
"```python\n",
|
||
"class Dataset(torch.utils.data.Dataset):\n",
|
||
" def __init__(self, x, y):\n",
|
||
" self.x = x\n",
|
||
" self.y = y\n",
|
||
"\n",
|
||
" def __len__(self):\n",
|
||
" return len(self.x)\n",
|
||
"\n",
|
||
" def __getitem__(self, item):\n",
|
||
" return {\"x\": self.x[item], \"y\": self.y[item]}\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f5f1a6aa",
|
||
"metadata": {},
|
||
"source": [
|
||
"对于后者,首先要明确,在`Trainer`和`Evaluator`中,`metrics`的计算分为`update`和`get_metric`两步\n",
|
||
"\n",
|
||
"    **`update`函数**,**针对一个`batch`的预测结果**,计算其累计的评价指标\n",
|
||
"\n",
|
||
"    **`get_metric`函数**,**统计`update`函数累计的评价指标**,来计算最终的评价结果\n",
|
||
"\n",
|
||
"  例如对于`Accuracy`来说,`update`函数会更新一个`batch`的正例数量`right_num`和负例数量`total_num`\n",
|
||
"\n",
|
||
"    而`get_metric`函数则会返回所有`batch`的评测值`right_num / total_num`\n",
|
||
"\n",
|
||
"  在此基础上,**`fastNLP 0.8`要求`evaluate_dataloader`生成的每个`batch`传递给对应的`metric`**\n",
|
||
"\n",
|
||
"    **以`{\"pred\": y_pred, \"target\": y_true}`的形式**,对应其`update`函数的函数签名\n",
|
||
"\n",
|
||
"<img src=\"./figures/T0-fig-parameter-matching.png\" width=\"75%\" height=\"75%\" align=\"center\"></img>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f62b7bb1",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 2.3 一个实际案例:argmax 模型\n",
|
||
"\n",
|
||
"下文将通过训练`argmax`模型,简单介绍如何`Trainer`模块的使用方式\n",
|
||
"\n",
|
||
"  首先,使用`pytorch.nn.Module`定义`argmax`模型,目标是输入一组固定维度的向量,输出其中数值最大的数的索引"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "5314482b",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": true
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import torch\n",
|
||
"import torch.nn as nn\n",
|
||
"\n",
|
||
"class ArgMaxModel(nn.Module):\n",
|
||
" def __init__(self, num_labels, feature_dimension):\n",
|
||
" super(ArgMaxModel, self).__init__()\n",
|
||
" self.num_labels = num_labels\n",
|
||
"\n",
|
||
" self.linear1 = nn.Linear(in_features=feature_dimension, out_features=10)\n",
|
||
" self.ac1 = nn.ReLU()\n",
|
||
" self.linear2 = nn.Linear(in_features=10, out_features=10)\n",
|
||
" self.ac2 = nn.ReLU()\n",
|
||
" self.output = nn.Linear(in_features=10, out_features=num_labels)\n",
|
||
" self.loss_fn = nn.CrossEntropyLoss()\n",
|
||
"\n",
|
||
" def forward(self, x):\n",
|
||
" pred = self.ac1(self.linear1(x))\n",
|
||
" pred = self.ac2(self.linear2(pred))\n",
|
||
" pred = self.output(pred)\n",
|
||
" return pred\n",
|
||
"\n",
|
||
" def train_step(self, x, y):\n",
|
||
" pred = self(x)\n",
|
||
" return {\"loss\": self.loss_fn(pred, y)}\n",
|
||
"\n",
|
||
" def evaluate_step(self, x, y):\n",
|
||
" pred = self(x)\n",
|
||
" pred = torch.max(pred, dim=-1)[1]\n",
|
||
" return {\"pred\": pred, \"target\": y}"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "71f3fa6b",
|
||
"metadata": {},
|
||
"source": [
|
||
"  接着,使用`torch.utils.data.Dataset`定义`ArgMaxDataset`数据集\n",
|
||
"\n",
|
||
"    数据集包含三个参数:维度`feature_dimension`、数据量`data_num`和随机种子`seed`\n",
|
||
"\n",
|
||
"    数据及初始化是,自动生成指定维度的向量,并为每个向量标注出其中最大值的索引作为预测标签"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "fe612e61",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": false
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from torch.utils.data import Dataset\n",
|
||
"\n",
|
||
"class ArgMaxDataset(Dataset):\n",
|
||
" def __init__(self, feature_dimension, data_num=1000, seed=0):\n",
|
||
" self.num_labels = feature_dimension\n",
|
||
" self.feature_dimension = feature_dimension\n",
|
||
" self.data_num = data_num\n",
|
||
" self.seed = seed\n",
|
||
"\n",
|
||
" g = torch.Generator()\n",
|
||
" g.manual_seed(1000)\n",
|
||
" self.x = torch.randint(low=-100, high=100, size=[data_num, feature_dimension], generator=g).float()\n",
|
||
" self.y = torch.max(self.x, dim=-1)[1]\n",
|
||
"\n",
|
||
" def __len__(self):\n",
|
||
" return self.data_num\n",
|
||
"\n",
|
||
" def __getitem__(self, item):\n",
|
||
" return {\"x\": self.x[item], \"y\": self.y[item]}"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2cb96332",
|
||
"metadata": {},
|
||
"source": [
|
||
"  然后,根据`ArgMaxModel`类初始化模型实例,保持输入维度`feature_dimension`和输出标签数量`num_labels`一致\n",
|
||
"\n",
|
||
"    再根据`ArgMaxDataset`类初始化两个数据集实例,分别用来模型测试和模型评测,数据量各1000笔"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "76172ef8",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": false
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"model = ArgMaxModel(num_labels=10, feature_dimension=10)\n",
|
||
"\n",
|
||
"train_dataset = ArgMaxDataset(feature_dimension=10, data_num=1000)\n",
|
||
"evaluate_dataset = ArgMaxDataset(feature_dimension=10, data_num=100)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "4e7d25ee",
|
||
"metadata": {},
|
||
"source": [
|
||
"  此外,使用`torch.utils.data.DataLoader`初始化两个数据加载模块,批量大小同为8,分别用于训练和测评"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "363b5b09",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from torch.utils.data import DataLoader\n",
|
||
"\n",
|
||
"train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True)\n",
|
||
"evaluate_dataloader = DataLoader(evaluate_dataset, batch_size=8)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c8d4443f",
|
||
"metadata": {},
|
||
"source": [
|
||
"  最后,使用`torch.optim.SGD`初始化一个优化模块,基于随机梯度下降法"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "dc28a2d9",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": false
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from torch.optim import SGD\n",
|
||
"\n",
|
||
"optimizer = SGD(model.parameters(), lr=0.001)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "eb8ca6cf",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 3. 使用 fastNLP 0.8 训练 argmax 模型\n",
|
||
"\n",
|
||
"### 3.1 trainer 外部初始化的 evaluator"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "55145553",
|
||
"metadata": {},
|
||
"source": [
|
||
"通过从`fastNLP`库中导入`Trainer`类,初始化`trainer`实例,对模型进行训练\n",
|
||
"\n",
|
||
"  需要导入预先定义好的模型`model`、对应的数据加载模块`train_dataloader`、优化模块`optimizer`\n",
|
||
"\n",
|
||
"  通过`progress_bar`设定进度条格式,默认为`\"auto\"`,此外还有`\"rich\"`、`\"raw\"`和`None`\n",
|
||
"\n",
|
||
"    但对于`\"auto\"`和`\"rich\"`格式,在notebook中,进度条在训练结束后会被丢弃\n",
|
||
"\n",
|
||
"  通过`n_epochs`设定优化迭代轮数,默认为20;全部`Trainer`的全部变量与函数可以通过`dir(trainer)`查询"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "b51b7a2d",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": false
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"from fastNLP import Trainer\n",
|
||
"\n",
|
||
"trainer = Trainer(\n",
|
||
" model=model,\n",
|
||
" driver=\"torch\",\n",
|
||
" device='cuda',\n",
|
||
" train_dataloader=train_dataloader,\n",
|
||
" optimizers=optimizer,\n",
|
||
" n_epochs=10, # 设定迭代轮数 \n",
|
||
" progress_bar=\"auto\" # 设定进度条格式\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "6e202d6e",
|
||
"metadata": {},
|
||
"source": [
|
||
"通过使用`Trainer`类的`run`函数,进行训练\n",
|
||
"\n",
|
||
"  其中,可以通过参数`num_train_batch_per_epoch`决定每个`epoch`运行多少个`batch`后停止,默认全部\n",
|
||
"\n",
|
||
"  此外,可以通过`inspect.getfullargspec(trainer.run)`查询`run`函数的全部参数列表"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "ba047ead",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": true
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Output()"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.run()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c16c5fa4",
|
||
"metadata": {},
|
||
"source": [
|
||
"通过从`fastNLP`库中导入`Evaluator`类,初始化`evaluator`实例,对模型进行评测\n",
|
||
"\n",
|
||
"  需要导入预先定义好的模型`model`、对应的数据加载模块`evaluate_dataloader`\n",
|
||
"\n",
|
||
"  需要注意的是评测方法`metrics`,设定为形如`{'acc': fastNLP.core.metrics.Accuracy()}`的字典\n",
|
||
"\n",
|
||
"  类似地,也可以通过`progress_bar`限定进度条格式,默认为`\"auto\"`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "1c6b6b36",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": true
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from fastNLP import Evaluator\n",
|
||
"from fastNLP.core.metrics import Accuracy\n",
|
||
"\n",
|
||
"evaluator = Evaluator(\n",
|
||
" model=model,\n",
|
||
" driver=trainer.driver, # 需要使用 trainer 已经启动的 driver\n",
|
||
" device=None,\n",
|
||
" dataloaders=evaluate_dataloader,\n",
|
||
" metrics={'acc': Accuracy()} # 需要严格使用此种形式的字典\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8157bb9b",
|
||
"metadata": {},
|
||
"source": [
|
||
"通过使用`Evaluator`类的`run`函数,进行训练\n",
|
||
"\n",
|
||
"  其中,可以通过参数`num_eval_batch_per_dl`决定每个`evaluate_dataloader`运行多少个`batch`停止,默认全部\n",
|
||
"\n",
|
||
"  最终,输出形如`{'acc#acc': acc}`的字典,在notebook中,进度条在评测结束后会被丢弃"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "f7cb0165",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": true
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'acc#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.41</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'total#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'correct#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">41.0</span><span style=\"font-weight: bold\">}</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.41\u001b[0m, \u001b[32m'total#acc'\u001b[0m: \u001b[1;36m100.0\u001b[0m, \u001b[32m'correct#acc'\u001b[0m: \u001b[1;36m41.0\u001b[0m\u001b[1m}\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'acc#acc': 0.41, 'total#acc': 100.0, 'correct#acc': 41.0}"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"evaluator.run()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "dd9f68fa",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 3.2 trainer 内部初始化的 evaluator \n",
|
||
"\n",
|
||
"通过在初始化`trainer`实例时加入`evaluate_dataloaders`和`metrics`,可以实现在训练过程中进行评测\n",
|
||
"\n",
|
||
"  通过`progress_bar`同时设定训练和评估进度条格式,在notebook中,在进度条训练结束后会被丢弃\n",
|
||
"\n",
|
||
"  **通过`evaluate_every`设定评估频率**,可以为负数、正数或者函数:\n",
|
||
"\n",
|
||
"    **为负数时**,**表示每隔几个`epoch`评估一次**;**为正数时**,**则表示每隔几个`batch`评估一次**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "183c7d19",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": true
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"trainer = Trainer(\n",
|
||
" model=model,\n",
|
||
" driver=trainer.driver, # 因为是在同个脚本中,这里的 driver 同样需要重用\n",
|
||
" train_dataloader=train_dataloader,\n",
|
||
" evaluate_dataloaders=evaluate_dataloader,\n",
|
||
" metrics={'acc': Accuracy()},\n",
|
||
" optimizers=optimizer,\n",
|
||
" n_epochs=10, \n",
|
||
" evaluate_every=-1, # 表示每个 epoch 的结束进行评估\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "714cc404",
|
||
"metadata": {},
|
||
"source": [
|
||
"通过使用`Trainer`类的`run`函数,进行训练\n",
|
||
"\n",
|
||
"  还可以通过参数`num_eval_sanity_batch`决定每次训练前运行多少个`evaluate_batch`进行评测,默认为2\n",
|
||
"\n",
|
||
"  之所以“先评测后训练”,是为了保证训练很长时间的数据,不会在评测阶段出问题,故作此试探性评测"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "2e4daa2c",
|
||
"metadata": {
|
||
"pycharm": {
|
||
"is_executing": true
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.run()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "c4e9c619",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
|
||
],
|
||
"text/plain": []
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'acc#acc': 0.46, 'total#acc': 100.0, 'correct#acc': 46.0}"
|
||
]
|
||
},
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.evaluator.run()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "db784d5b",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.4"
|
||
},
|
||
"pycharm": {
|
||
"stem_cell": {
|
||
"cell_type": "raw",
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"source": []
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|